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Abstract

This paper introduces an affine invariant shape descrip-

tor for maximally stable extremal regions (MSER). Affine in-

variant feature descriptors are normally computed by sam-

pling the original grey-scale image in an invariant frame

defined from each detected feature, but we instead use only

the shape of the detected MSER itself. This has the ad-

vantage that features can be reliably matched regardless

of the appearance of the surroundings of the actual region.

The descriptor is computed using the scale invariant feature

transform (SIFT), with the resampled MSER binary mask as

input. We also show that the original MSER detector can

be modified to achieve better scale invariance by detecting

MSERs in a scale pyramid. We make extensive comparisons

of the proposed feature against a SIFT descriptor computed

on grey-scale patches, and also explore the possibility of

grouping the shape descriptors into pairs to incorporate

more context. While the descriptor does not perform as well

on planar scenes, we demonstrate various categories of full

3D scenes where it outperforms the SIFT descriptor com-

puted on grey-scale patches. The shape descriptor is also

shown to be more robust to changes in illumination. We

show that a system can achieve the best performance under

a range of imaging conditions by matching both the texture

and shape descriptors.

1. Introduction

Recently there has been much interest in object de-

tection and view matching using local invariant features

[2, 7, 8, 9, 10, 11, 12, 14]. Such features allow corre-

spondences to be found in cluttered scenes with significant

amounts of occlusion. Computation of a local invariant fea-

ture basically consists in first detecting a local image region

in an affine covariant manner. The next step is to sample

a local patch of the input image in the covariant reference

frame and describe its texture. The re-sampling step re-

sults in a representation of the local patch that is invariant

to view changes. Typically the size of the local patch is sig-

Figure 1. Top left: Input image. Top right: A random selection of

64 MSERs. Bottom left: grey-scale patches in normalised frames.

Bottom right: MSERs in normalised frames.

nificantly larger than the size of the initial region, and thus

this approach makes the implicit assumption that the feature

neighbourhood is locally planar.

Although successful for many scenes, such texture patch

descriptors tend not to work so well on full 3D scenes un-

der changing illumination conditions. They also have prob-

lems with scenes that contain structures at several differ-

ent depths, and thus significant amounts of occlusion and

changes of background to the detected features.

In this paper we will make use of Maximally Stable Ex-

tremal Region (MSER) features [8]. MSERs are regions

that are either darker, or brighter than their surroundings,

and that are stable across a range of thresholds of the inten-

sity function. MSERs have also been defined on other scalar

functions [13], and have been extended to colour [4]. Fig-

ure 1 shows an image from the on-line data-set at [17], and

a random selection of MSERs detected in the image. The

lower left image in the figure shows the affine normalised

patches normally used to construct feature descriptors, and
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the lower right image shows the MSER shapes themselves

after affine normalisation. As can be seen, the detected

MSERs exhibit a wide variety of shapes, and this motivates

us to use them to construct shape descriptors as an alterna-

tive to the texture patch descriptors.

1.1. Related work

Another non-texture based descriptor for MSER was re-

cently introduced by Chum and Matas [2]. Their approach

relies on local affine frames (LAF). LAFs are defined from

triplets of points affine-invariantly selected from the MSER

contour and its centroid. The descriptor in their approach is

based on two LAFs, one LAF is used as a reference frame,

and one is used as a descriptor frame. The three points in

the descriptor LAF are expressed in the reference frame and

subsequently used to construct a descriptor. This descriptor

is then used as an index to a hash-table. Their method is

used to match planar scenes such as logos with different

colours, from different view angles, and with and without

transparency, and different spectral bands of satellite im-

ages, even though contrast is often inverted between the

bands. Although these results are impressive, their method

suffers from two serious limitations, which we amend in this

paper. Firstly, the method requires that the two LAFs are

co-planar (otherwise the descriptor will not be repeatable),

which severely limits the applicability of the approach to

full 3D scenes (especially scenes of non-man-made objects,

where co-planarity is rare). Secondly, the use of only six

scalars to describe the LAF pair effectively rules out the use

of the descriptor for bag-of-features style object recognition

(see e.g. [18]), since the frequency of hash-table collisions

will become too high when many objects and views need to

be stored.

In the experiment section, we will compare our shape

descriptor to a texture descriptor. The texture descriptor we

use is the SIFT descriptor computed on a grey-scale patch,

re-sampled in an affine-covariant reference frame. This de-

scriptor was found to be the best descriptor for MSER in a

recent evaluation [11]. MSER with SIFT texture descrip-

tors were also used recently in a large scale object recogni-

tion system by Nistér and Stewénius [12]. We are unable to

compare our method with the LAF approach [2], since the

LAF-point selection is not discussed in their paper.

Recently there has been considerable interest in using

shape as a feature for object recognition by matching por-

tions of edge contours extracted from the image [3, 15, 16].

This line of research is complementary to ours, since

these papers match short fragments from object contours,

whereas we match closed contours for stable regions. Due

to the difficulty of identifying stable continuations in edge

maps, this previous work has so far used shorter and less

distinctive fragments than our region shapes. We rely on the

stability of the MSER regions to provide us with a repeat-

able segmentation of the complete closed contour. How-

ever, these previous approaches share with ours the over-

all goal of extracting shape rather than grey-scale patches

in order to reduce the influence of illumination and nearby

clutter, so a combination of these approaches could be con-

sidered in future work.

2. Multi-Resolution MSER

Although detected MSERs come in many different sizes,

they are all detected at a single image resolution. When a

scene is blurred or viewed from increasing distances, many

details in the image disappear and different region bound-

aries are formed. This means that the MSER detector could

potentially achieve better invariance to scale change by ob-

serving the scene at several different resolutions. To see

whether this is the case, we have made a simple multi-

resolution extension of the MSER detector.

Instead of detecting features only in the input image,

we construct a scale pyramid with one octave between

scales, and detect MSERs separately at each resolution. Af-

ter detection, duplicate MSERs are removed by eliminat-

ing fine scale MSERs with similar locations and sizes as

MSERs detected at the next coarser scale. The location

requirement that we use for elimination is that the cen-

troid distance should be smaller than 4 pixels in the finer

grid. For two areas, a1 and a2, we additionally require that

abs(a1 − a2)/max(a1, a2) < 0.2. This typically results in

the removal of between 7% and 30% of all regions. On all

scales except the finest, we require the minor axis of the el-

lipse to be larger than 5. The scale pyramid is constructed

by blurring and sub-sampling with a 6-tap Gaussian kernel

with σ = 1.0 pixels. To deal with border effects, we employ

normalized averaging [5].

Our experimental results described in section 4.4 confirm

that this approach gives considerably improved invariance

to scale change and image blur. As a result, we use multi-

resolution MSERs in all our other experiments throughout

this paper.

3. Descriptor computation

The computation of the shape descriptor and the texture

patch descriptor are quite similar. As we go through the al-

gorithm details, we will introduce a number of parameters,

which we will later tune in section 3.4.

3.1. Affine normalisation

To compute the patches shown in the lower part of fig-

ure 1, we first blur the input image (or for the shape de-

scriptor, each of the binary masks in the top right) with a

Gaussian kernel with scale σi. The mask centroid m and

the eigenvalue decomposition of the mask covariance ma-

trix C = RDRT (with detR > 0) define a rectifying



transform as:

x = sAx̂ + m , for A = 2RD1/2 . (1)

A point at position x̂ in the patch should now be sampled

in the image at position x. The parameter s is a scaling

factor that determines how much wider the patch should

be compared to the covariance matrix. The sampling at

x̂ ∈ [−1, 1]2, is performed using bilinear interpolation, fol-

lowed by blurring with another Gaussian kernel with scale

σp. The number of samples in the patch is determined by a

parameter Ns. The amount of blur before sampling is au-

tomatically determined from the maximum sample density

change, to give σ = 0.5 pixels after resampling. This re-

sults in the expression σi = bs/Ns, where b is the minor

axis of the approximating ellipse.

3.2. SIFT descriptor

The computation of the SIFT descriptor is basically the

same as described by Lowe [7]. In order to find reference

orientations for the patch, gradients are computed and a

histogram of gradient directions, with Nb bins, is formed.

The orientation peaks are found as the maxima of a 3-tap

quadratic polynomial fit, at local maxima of the histogram.

The gradient votes in the histogram are weighted with the

gradient magnitude, and a spatial Gaussian weight of σh.

A reference orientation is formed for each local maximum

that is above 80% of the highest peak value. This gives on

average 1.6 peaks per patch. After this the gradients are re-

sampled in an orientation normalised frame, i.e. x̂ = Rxr.

Then the patch is divided into 4 × 4 squares, and gradient

direction histograms are computed for each of them, with

linear interpolation between the spatial locations. Just like

in the orientation histogram, the votes are weighted with

the gradient magnitude, and a Gaussian with scale σd. The

number of orientation directions in the histogram is set to 8,

giving 4 × 4 × 8 = 128 values for the descriptor. Finally,

the descriptor is normalised to unit length.

3.3. Dissimilarity score

We use the X 2-metric to compare individual descriptors.

This was found to give a significant improvement over least

squares in a recent study [18], while still being much faster

than the more sophisticated Earth-movers distance. The fi-

nal matching score is given as the ratio between the best and

the second best dissimilarities,

r = d1/d2 . (2)

This ratio score was introduced in [7]. It basically discredits

matches for which there are similar alternatives, and thus a

higher likelihood of the match being incorrect. In line with

[7] we also make sure that the second-best match either has

a different size, or originates from a different part of the

image.

3.4. Parameter tuning

Mikolajczyk et al. [9] recently performed a large scale

repeatability test of different features, and provided the

dataset, with corresponding ground-truth on-line at [17].

We have made use of the two view-change sequences in

this dataset (’Graffiti’ and ’Wall’) for tuning the parame-

ters of the descriptors. Each sequence contains one frontal

view, and five views at 20◦, 30◦, 40◦, 50◦, and 60◦ angles.

This gives us a total of 10 view pairs. For these, we simply

tried all combinations of all parameters and checked which

tentative matches were correct. By ordering the matches

according to the ratio score (2) we can compute the inlier

frequency curve:

f(n) =
1

n

n∑

k=1

inlier(k) , (3)

where inlier(k) is a function that outputs 1 if the k-th

tentative correspondence is an inlier, and 0 otherwise. To

evaluate a particular choice of parameters we used the score:

s =
∑

250

k=1
f(n). That is, the area under the curve f(n)

between 1 and 250. In addition to favouring many correct

matches, this score also favours parameter choices that put

the correct matches first.

The optimal parameters are given in table 1. Of these

parameters, Ns and Nb had no distinct peaks, so we simply

picked a value in the interval where they gave high scores.

method Ns s σp Nb σh σd

shape 41 1.2 1.2 38 0.5 0.4

texture patch 41 2.5 1.0 38 0.3 0.9

Table 1. Tuned parameter values for the two methods.

3.5. Pair descriptors

A simple way to extend the complexity of the shape de-

scriptor, and thus allow it to match features that occur many

times in a set of images, is to select pairs of nearby features,

and append their descriptors. We define a measure of spatial

feature proximity using the vector between the centroids,

d = mref −mneighbour. We tried generating pairs as both the

K nearest Euclidean and affine normalised distances:

r2

e = dT d , and r2

a = dT C−1

ref d . (4)

but found that the affine normalised distance in general did

better. The descriptor of Chum and Matas [2] directly relies

on pairs. In their method, pairs are selected by allowing all

features with ra below a threshold, and which are of similar

size to the reference frame. We made the choice of picking

the K nearest neighbours instead of thresholding, since this

adapts to the local feature density, and removes the need

for an additional threshold on the size relation. There can



Figure 2. Epipolar geometry. Left: Construction of tangency

points p1 and p2 from the polar line lp. Right: Induced epipo-

lar tangents l′1 and l′2, and the tangency points in this view. The

intersection points x′

1 and x′

2 are used to compute the overlap er-

ror.

be several descriptors per feature due to multiple reference

orientations, e.g. a feature pair with 2 and 3 descriptors will

generate 2 × 3 pair descriptors. Note that whenever two

pair descriptors have been matched, we have obtained two

tentative correspondences.

For pairs, correct individual correspondences often ap-

pear in many pairs. We could either give a correspondence

a match score based on the best score for a pair descriptor

it belongs to, or count the number of pairs that it belongs

to, with a dissimilarity below a threshold. We have used

the former approach, while Chum and Matas [2] use the lat-

ter approach. We made this choice, since our descriptors

are more descriptive, and thus a low dissimilarity should be

more meaningful in our case. Using the best score also al-

lows matching of features that do not have many matching

neighbours.

4. Experiments

4.1. 3D scene correspondence evaluation

Moreels and Perona [11] have previously developed

a correspondence evaluation scheme for full 3D scenes.

Their scheme geometrically verifies matches between cor-

responding points in two views of a scene using an ad-

ditional auxiliary view. While this setup guarantees that

almost no false matches are let through, it has the disad-

vantage that only features visible in all three views can

be checked. Furthermore, their use of point correspon-

dences implicitly discourages matching of large regions,

since these are represented by the region centroid, which

is only affine invariant, with an error that increases with the

region size.

We instead use a correspondence checking scheme

where the auxiliary view is omitted, and the approximat-

ing ellipses of the regions are compared using their epipo-

lar tangents [6]. The fundamental matrix F, relates corre-

sponding points x and x′ in the two views as xT Fx′ = 0
[6]. First we extract the epipoles of the fundamental matrix

F, as the left and right singular vectors. Using these, and the

pole-polar relationship[6], we then compute the two points

Figure 3. Example of an image pair with known geometry. Images

are 800 × 600. Blue dots are 26 ground truth correspondences

selected by hand. Blue lines are epipolar lines for points. The

mean absolute epipolar line distance for points is 1.1 pixels.

p1, p2 at which there are epipolar lines in tangency to the

ellipse. See figure 2, left. The epipolar lines of these tan-

gency points, l′
1

= FT p1, l′
2

= FT p2 are called the epipo-

lar tangents. For a perfect correspondence, the tangency

points p′

1
, p′

2
in the other view, should lie on these epipolar

tangents. See figure 2, right. To decide whether to accept

a correspondence, we define an overlap error along the po-

lar line l′p, in analogy with the area overlap error defined

in [10]. The overlap error is computed from the positions

of the tangency points p′

1
and p′

2
, and the points x′

1
and

x′

2
, where the epipolar tangents intersect the polar line. Us-

ing their coordinates along the polar line, we can define the

overlap error as:

ε = 1 −
max(0,min(xh, ph) − max(xl, pl))

max(xh, ph) − min(xl, pl)
. (5)

Here xh and xl are the higher and the lower of the intersec-

tion coordinates respectively, and analogously for ph and pl.

We accept a correspondence whenever the average overlap

error in the two views is less than 20%. In principle this

risks letting through false matches as correct, but in practise

this is quite rare. Since the overlap error is size normalised,

we are able to allow more large region correspondences,

which tell us more about the scene geometry, without al-

lowing too many false matches between small regions.

Figure 3 shows two views of a scene with 26 hand-picked

correspondences indicated as dots. From these correspon-

dences we have computed the fundamental matrix, relating

the views. The epipolar lines for the 26 points are also

shown in the figure. The average error for all points is 1.1
pixels. This geometry is used as the ground truth.

For the scene in figure 3 we obtain the correspondences

shown in figure 4. All these 56 correspondences have been

visually verified to be correct.

4.2. 3D scene results

Figure 5 shows how the two descriptors compare on the

scene in figure 3. Getting the first few matches right is what

matters if algorithms such as RANSAC [6] or PROSAC [1]

are to be used for geometry estimation, and thus the left



Figure 4. The 56 accepted correspondences are shown in blue.

Features from rejected correspondences are shown in green. (Us-

ing MSER area threshold 100 pixels, instead of 30, for clarity of

presentation.)
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Figure 5. Performance of shape and texture descriptors on the

scene in figure 3.

plot shows the inlier frequency curve (3) for the first 100
tentative correspondences. Here the shape patches are better

at guessing the first 60 correspondences.

For object recognition techniques such as bag-of-

features [18], however, it is the quantity of correct matches

that matters, and there the texture patches do better. To illus-

trate performance for such applications, we have also shown

the number of correspondences for different sample sizes in

the right plot of figure 5. Note that this graph shows num-

ber of inliers for all tentative correspondence set sizes. For

this view pair the curve shows only the first 326 correspon-

dences; those that had a ratio score (2) below 0.95.

Figure 6 shows the shapes used to find the first 48 tenta-

tive correspondences. It is interesting to compare these with

the first 48 patches chosen by the texture patch method, see

figure 7. For the shape descriptor, the MSER itself occu-

pies most of the patch, while the texture patch descriptor is

dominated by surrounding context. This is in fact even more

the case in other published approaches, e.g. [7] mentions a

patch scale of 5, and Mikolajczyk et al. [9] use 3, where we

use 2.5, see table 1.

4.3. Natural 3D scenes

For scenes with many near occlusions, texture patch

methods have problems, since they essentially assume that

the local neighbourhood is planar. Figure 8 shows such a

scene. As can be seen in the graphs, the shape descriptor

has both a significantly higher inlier frequency, and finds

more correspondences than the texture patch method. We

Figure 6. First 48 tentative correspondences for the shape descrip-

tor. Left: view 1, Right: view 2. False matches are shown in grey.

Shapes are ordered top-to-bottom, left-to-right.

Figure 7. First 48 tentative correspondences for the texture patch

method. Left: view 1, Right: view 2. False matches are crossed

out. Patches are ordered top-to-bottom, left-to-right.
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Figure 8. Scene with many near occlusions. For this kind of scene,

shape does significantly better than texture.

have also shown the results for the pairs method here. For

this particular scene, though, they offer no clear advantage.

Another natural scene is shown in figure 9. In this scene,

the shape patches are better than the texture patches at find-

ing the first few correspondences, but over all, the tex-

ture patches find more correspondences. In this scene, the

advantage of using shape pairs is evident, since the pairs

method has both a higher inlier frequency, and in the end

finds more correspondences than the texture patch method.
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Figure 9. Scene with leaves. For this kind of scene, the use of

shape pairs is advantageous.
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Figure 10. A planar scene with view change. In this case, the tex-

ture descriptor has better performance than the shape descriptor.

4.4. Planar and parallax-free scenes

Previously features and descriptors have been exten-

sively evaluated on planar and parallax-free scenes [9, 10].

We have tested the two methods on the scenes available at

[17], using a program, also downloaded at [17], to verify

correspondences. We have used an overlap error threshold

of 50% throughout.

A typical result for planar scenes is shown in figure 10.

Sometimes (as in this example) the shape patch method is

better at finding the first few correspondences. In general

however, the texture patch method finds many more corre-

spondences, typically a factor 1.5 − 2 times more.

Two of the parallax-free scenes in the test-set also al-

low us to confirm our suspicion that MSERs benefit from

being detected at multiple resolutions. Figure 11 shows a
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Figure 11. A scene with de-focus blur. The multi-resolution

MSER provides better performance than using only the original

resolution.

comparison of the single resolution and the multi-resolution

MSER detectors, under de-focus blur. As can be seen, the

multi-resolution extension gives a consistent improvement.

Figure 12 compares single and multi-resolution MSERs on

a large scale change. Again, the multi-resolution version

does consistently better.

In figures 13 and 14 we have also shown the correspon-

dences actually found using both single and multi resolu-

tion MSERs for these scenes. As can be seen, the multi-

resolution algorithm creates new regions by joining non-

connected nearby regions with similar colours, such as the

panes in the windows of figure 13, and also regions divided

by straws of grass and thin wires in figure 14. Blur often

causes MSERs to shrink somewhat in size, and this prob-

lem is also reduced by the algorithm, since it picks coarse

scale MSERs (which are less affected by blur) instead of

fine scale versions whenever there is a choice.

4.5. 3D scenes with planar parts

For 3D scenes with planar parts, the texture patch ap-

proach has the advantage that it includes the surroundings

of the MSER, and can exploit this to tell similar regions

apart. For such scenes, the pair descriptors are a distinct

improvement over using individual shapes, but since the

two descriptors in the pair are normalised separately (e.g.

all rectangular windows will be normalised to squares), the

texture patches still do significantly better. See figure 15 for

an example of such a scene. When the illumination condi-

tions are significantly different, the shape, and shape pair

descriptors again do better, see figure 16.

4.6. Combining the methods

The texture and shape patch approaches are in general

complementary. The shape patches handle large illumi-
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Figure 12. A scene with scale change. Again, the multi-resolution

MSER gives better performance.

Figure 13. Correspondences found on de-focus blur scene. Top

image shows the 22 correspondences found using single resolution

MSERs. Bottom image shows the 53 correspondences found using

multi-resolution MSERs.

nation changes and near occlusions better, while texture

patches work better for small regions, and locally planar

scenes. Thus, it would make sense to combine their results,

to obtain a more robust matching system. A simple way

to combine the results is to merge-sort the correspondence

lists, according to the ratio score (2), and then remove du-

plicates from the list. Figure 17 shows the result of such a

merger. As can be seen, the combination is consistently as

good as, or better than, the best individual method (here the

shape pairs).

5. Conclusions

We have introduced novel shape descriptors for matching

MSER regions that often provide better robustness to illu-

mination change and nearby occlusions than existing meth-

Figure 14. Correspondences found on scale change scene. Top

image shows the 22 correspondences found using single resolution

MSERs. Bottom image shows the 33 correspondences found using

multi-resolution MSERs.
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Figure 15. Crane scene, with and without pairs.

ods. When used in a complete vision system, these descrip-

tors can be added to existing ones to extend the system per-

formance under difficult matching conditions.

Our shape descriptor inherits the affine invariance prop-

erties of the MSER region detector. It achieves a high de-

gree of invariance to illumination and nearby clutter by bi-

narising the region shape. The SIFT descriptor is used to

describe the shape boundary in order to minimise sensitiv-

ity to small shape deformations.

The original MSER detector is not fully scale invariant,

as it is applied to just a single initial image resolution. We

have shown how to improve its scale invariance at low addi-

tional cost by computing the MSER regions over a scale

pyramid and removing duplicate detections. Our results
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Figure 16. Crane scene, with and without pairs. Day and night.
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Figure 17. Combination of shape pair and texture patch features

for the day and night pair in figure 16.

show that this improves matching performance over large

scale changes and for blurred images, which would be use-

ful for any application of MSERs.

Our experiments have shown the value of shape descrip-

tors for matching specific objects, but shape has also been

widely recognised as being particularly important for char-

acterising object classes. Therefore, an important area for

future work will be to test our features in the context of

generic object class recognition. We also intend to test the

performance of our features for matching objects to large

databases, in which case our pair matching method may be

expected to further increase in importance. Another area we

intend to examine in future research is to exploit the Maxi-

mally Stable Colour Region extension of MSER [4] for im-

proving the identification of stable regions.
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