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Abstract— This article describes a vision-based system for 3D
localization of a mobile robot in a natural environment. The
system includes a mountable head with three on-board CCD
cameras that can be installed on the robot. The main emphasis
of this work is on the ability to estimate the motion of the robot
independently from any prior scene knowledge, landmark or
extra sensory devices. Distinctive scene features are identified
using a novel algorithm and their 3D locations are estimated
with high accuracy by a stereo algorithm. Using new two-stage
feature tracking and iterative motion estimation in a symbiotic
manner, precise motion vectors are obtained. The 3D positions
of scene features and the robot are refined by a Kalman filtering
approach with a complete error propagation modeling scheme.
Experimental results show that good tracking and localization
can be achieved using the proposed vision system.

Index Terms— Vision based tracking, 3D trajectory tracking,
feature based tracking, visual motion tracking, visual trajectory
tracking, robot vision, 3D localization.

I. INTRODUCTION

EMOTELY controlled mobile robots have been a subject

of interest for many years. They have a wide range of
applications in science and in industries such as aerospace,
marine, forestry, construction and mining. A key requirement
of such control is the full and precise knowledge of the
location and motion of the mobile robot at each moment of
time.

This paper describes on-going research at the University of
British Columbia on the problem of real-time purely vision-
based 3D trajectory estimation for outdoor and unknown
environments. The system includes an inexpensive trinocular
stereo camera that can be mounted anywhere on the robot. It
employs existing scene information and requires no prior map,
nor any modification to be made in the scene. Special attention
is paid to the problems of reliability in different environmental
and imaging conditions. The main assumptions here are that
the scene provides enough features for matching and that most
of the scene objects are static. Moreover, it is assumed that
the velocity of the robot is limited in such a way that there
is some overlap between each two consecutive frames. The
system is mainly designed for use in autonomous navigation in
natural environments where a map or prior information about
the scene is either impossible or impractical to acquire.

A. Previous Work

In visual motion and trajectory tracking, the relative motion
between objects in a scene and the camera is determined
through the apparent motion of objects in a sequence of
images.

One class of visual trajectory tracking methods, Motion-
based approaches, detect motion through optical flow tracking
and motion-energy estimation. They operate based on extract-
ing the velocity field and calculating the temporal derivatives
of images. Methods based on this approach are fast, however
they cannot be used where the camera motion is more than
a few pixels. Moreover, they are subject to noise, leading to
imprecise values and often the pixel motion is detected but
not quantified [1] [2].

Another class of visual trajectory tracking methods, Feature-
based approaches, recognize an object or objects (landmarks or
scene structures) and extract the position in successive frames.
The problem of recognition-based camera localization can be
divided into two general domains:

1) Landmark-Based Methods: Motion tracking in these
methods is performed by detecting landmarks, followed by
camera position estimation based on triangulation. These
methods employ either predesigned landmarks that must be
placed at different but known locations in the environment,
or they automatically extract naturally-occuring landmarks
via a local distinctiveness criterion from the environment
during a learning phase. Such systems usually require an
a priori map of the environment. For example, Sim and
Dudeck [3] used regions of the scene images with a high
number of edges as natural landmarks. MINERVA [4] is
a tour-guide robot that uses camera mosaics of the ceiling
along with several other sensor readings for the localization
task. The main advantage of landmark-based methods is that
they have a bounded cumulative error. However, they require
some knowledge of the geometric model of the environment,
either built into the system in advance, or acquired using
sensory information during movement, the learning phase, or
sometimes a combination of both. This requirement seriously
limits the approach’s capability in unknown environments.
More examples about landmark based methods can be found
in [5]-[7].

2) Natural Feature-Based Methods: Natural feature-based
approaches track the projection of preliminary features of a
scene in a sequence of images. They find the trajectory and
motion of the robot by tracking and finding relative changes
in the position of these features. The type of feature is highly
dependent on the working environment that the system is
designed for [8]. For instance, the centroid and diameter of
circles are used by Harrell et al. [9], for a fruit tracking
robot for harvesting. Rives and Borrelly [10] employ edge
features to track pipes with an underwater robot. The road-
following vehicle of Dickmanns et al. [11] is also based on
edge tracking. The main advantage of using local features
is that they correspond to specific physical features of the



observed objects, and once these are correctly located and
matched, they provide very accurate information concerning
the relative position between camera and scene. Also, in
systems based on landmarks or models, it is possible that
no landmark is visible, so the motion estimation cannot be
accurate for some percentage of the time, while estimations
based on scene features are potentially less likely to fail due
to the large number of features that can be available from
any point of view. The accuracy of these methods, however, is
highly dependent on the accuracy of the features. Even a small
amount of positional uncertainty can eventually result in a
significant trajectory drift. Due to limitations of processing and
sensory technologies, early work using natural scene features
were limited to 2D estimations [12] [13]. Later attempts were
directed toward 3D tracking using monocular images [14] [15].
These methods had poor overall estimation, limited motion
with small range tolerance and large long term cumulative
error. Recently however more accurate systems are developed
using monocular camera systems [16], [17]. The use of multi-
ple cameras, stereoscopy and multiple sensor fusion provided
new tools for vision-based tracking methods [18] [19]. Jung
and Lacroix [20] represent a system for high resolution terrain
mapping using stereo images and naturally occurring terrain
feature points. Recently, Se [21] introduced an indoor system
using scale invariant features, observed by a stereo camera
system, and combining the readings of an odometer with
those of the vision system. Se’s use of an odometer has the
advantage that it helps to reduce the search space for finding
feature match correspondences. It has the disadvantage though,
that any slippage would increase the error in the position
estimate and enlarge the search space. Since the proposed
work was ultimately intended for outdoor applications, we
anticipated considerable wheel slippage. In addition, outdoor
environments have a large number of corners due to foliage
for example compared to most indoor environments. Not only
can outdoor environments have more corner features, but a
significant number of the corners can be moving (e.g. leaves
blowing in the wind) - a second issue not addressed in the
paper by Se et al.

Also recently, Olson et al. [22] suggested an approach to
navigation that separated translational and rotation estimates.
The translation estimates were determined from a vision
system and it was proposed that the rotation be obtained from
some form of orientation sensor since the error in orientation
estimates with vision alone grew rapidly. Since various means
of orientation sensing are also susceptible to vibration induced
by rough terrain, and based upon previous work we had
done with narrow-angle cameras (FOV=53°) yielding similar
problems as those experienced by Olson et al, we selected a
wider angle of view of the camera (FOV=104°) which better
separates rotation from translation (e.g. when image features
in a narrow angle camera translate to the left, it is hard to
estimate whether that is due to a translation to the right, or a
rotation to the right). Also not addressed in the work of Olson
et al, are large numbers of foliage corners and their dynamic
motion.

Unlike either Se at al or Olson et al, the approach of the
present paper, in which the 3D reconstruction of feature points

in space was carried out by interpolation of the warped images,
the accuracy of estimated motion was improved by about 8%
over doing interpolation in the unwarped space, and leads
to low errors in both translation and rotation in a complex
outdoor scene.

B. Objective

The design presented in this paper is an exploration of the
relevant issues in creating a real-time on-board motion tracking
system for a natural environment using an active camera. The
system is designed with the following assumptions:

o The scene includes mostly static objects. If there are a few
moving objects, the system is able to rely on static object
information, while information from moving objects can
be discarded as statistical outliers.

o The camera characteristics are known. In particular, focal
length and the baseline separation of the stereo cameras
is assumed to be known.

o The motion of the robot is assumed to be limited in
acceleration. This allows the match-searching techniques
to work on a predictable range of possible matches.

o The working environment is not a uniform scene and it
includes a number of objects and textures.

The primary novelty of this work is a methodology for
obtaining camera trajectories for outdoors in the presence of
possibly moving scene features without the need for odometers
or sensors other than vision.

C. Paper Outline

The basis of a novel binary corner detector, that is developed
for this work, is explained in Section II. Section III describes
the approach for the 3D world reconstruction problem in which
the positional uncertainty resulting from the lens distortion
removal process is minimized. Section IV addresses a two-
stage approach for tracking world features that improves the
accuracy by means of more accurate match correspondences
and a lower number of outliers. The 3D motion estimation is
then described in Section V. Section VI represents the error
modeling for the robot and features. Finally the experimental
results are reported in Section VII. Conclusions and future
work are represented in Section VIII.

II. BINARY FEATURE DETECTION

An important requirement of a motion tracking system is
its fast performance. Processing all the pixels of an image,
from which only a small number carry information about
the camera’s motion, may not be possible with the real-time
requirement for such systems. Therefore, special attention is
paid to selecting regions with higher information content.

A. Features

Deciding on the feature type is critical and depends greatly
on the type of input sensors used. Common features that are
generally used include the following [23]:

« Raw pixel values, i.e. the intensities.



« Edges, surfaces and contours that correspond to real 3D
structures in the scene.

o Salient features, such as corners, line intersections and
points of locally maximum curvature on contour lines.

« Statistical features, such as moment invariance, energy,
entropy and color histograms.

Choosing simple features within the scene increases the
reliability of the solution for motion tracking and enables the
system to find answers to problems most of the time, unless
the scene is very uniform. In the search for a feature type
that suits our application, a natural, unstructured environment
with varying lighting conditions, corners were chosen, because
they are discrete and partially invariant to scale and rotational
changes.

B. Binary Corner Detection (BCD)

In our previous work [24], the Harris corner detector [25]
was used. The Harris corner detector involves several Gaussian
smoothing processes that not only may displace a corner
from its real position but make the approach computationally
expensive. A corner detector with higher positional accuracy,
SUSAN, was developed by [26]. A faster corner detector with
more precise localization can lead to a more accurate and/or
faster motion estimation since the changes between consec-
utive frames are smaller. While the SUSAN corner detector
provides a more precise corner location, computationally it is
more expensive. In order to take advantage of the positional
accuracy of SUSAN corner detector, a novel binary corner
detector was developed [27]. This corner detector defines
corners similar to SUSAN using geometrical descriptions. Its
main emphasis however is on exploiting binary images and
substituting arithmetic operations with logicals.

To generate a binary image, first a Gaussian smoothing is
applied to the original image. A ¢ of 0.8 is chosen for the
smoothing process. By using this value for o, the 1D kernel
of the filter can be approximated by [0.25 0.5 1 0.5 0.25].
Using this kernel every 4 multiplications can be substituted
by 4 shift operations. The Laplacian is then approximated at
each point (4,7 + 1) of the smoothened intensity image by:
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I; ; represents the image intensity value at row ¢ and column
j. The binary image is then generated by the sign of the
Laplacian value at each point.
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Next, a circular mask, IV, is placed on each point of the binary
image in the same manner as in SUSAN corner detector. The
binary value of each point inside the mask is compared with
that of the central point.

1 if B(p) = B(po),

0 if B(p) # Blpo). @

C(po,p) —{

B(p) represents the binary image value at location p(z,y).
Now a total running sum n is generated from the output of

C(po.p)-

n(p) = Y C(po,p) )
w

n represents the area of the mask where the sign of the
Laplacian of the image is the same as that of the central point.
For each pixel to be considered a potential corner, the value
of n must be smaller than at least half the size of the mask
W in pixels. This value is shown by ¢ in the corner response
Equation (5).

n if n <t,
0 otherwise.
Similar to SUSAN, for each candidate with R(py) > 0, a
center of gravity (centroid) G(pg) is computed.

G(po) = \/9(z0)” + g(yo)’ (6)
where
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g(0) = - . gw) = ——— (D)
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The center of gravity G provides the corner direction, as well
as a condition to eliminate points with random distributions.
Randomly distributed binary patches tend to have a center
of gravity fairly close to the center of the patch. Therefore,
all points with close centers of gravity are filtered out of the
remaining process.

G(po) > |ry| ®

It was found that the two conditions in (5) and (8), proposed
in [26], do not (by themselves) provide enough stability for
corner declaration. Therefore, in this work a new inspection
is performed by computing the directional derivative of the
centroid cell. First, the vector that connects the center of
gravity to the centroid of the cell py is computed. Next, the
above vector is extended to pass py and then the intensity
variation is examined. If the intensity variation is small, then
Po is not a corner otherwise it is announced as a corner. That
is if:

|1(po) — I(p)| > It )

where I; represents the brightness variation threshold, a corner
is detected.

Figure 1 displays the output of the proposed method on one
of the sample outdoor images. The Binary Corner Detector
was compared with the Harris and SUSAN corner detectors
in the same manner as introduced by [28]. Harris exceeds the
BCD repeatability rate by 20%. In scenes like Figure 1 with
a large number of features, the loss does not affect overall
performance. However BCD performs 1.6 times faster than
Harris and 7.2 times faster than SUSAN with a running time of
23.293 millisecond on a 1.14 GHz AMD Athlon™ Processor.



Fig. 1. Corners are found using Binary corner detector.

IT1I. 3D WORLD RECONSTRUCTION

Systems with no prior information about a scene require
the 3D positions of points in the scene be determined. This
section describes the problem of optical projection, 3D world
position reconstruction for feature points, and considerations
for increasing the system accuracy.

A. Camera Model

A camera can be simply modeled using the classic pinhole
model. This leads to perspective projection equations for
calculating where on an image plane a point in space will
appear. The projective transformations that project a world
point P(z,y, z) to its image point p(u,v) are

u=for  and, w=f,2 (10)
z z

where f, and f, represent the horizontal and vertical
focal lengths of the camera. Since a camera exhibits non-
ideal behavior, precise measurements from an image that are
necessary in the 3D reconstruction process require a more
sophisticated camera model than the ideal model.

B. Camera calibration

A camera model consists of extrinsic and intrinsic param-
eters. Some of the camera intrinsic parameters are f, and f,
(horizontal and vertical focal lengths), and C, and C, (image
centers). The camera model transforms real world coordinates
into their ideal image coordinates and vice versa.

Using camera intrinsic parameters a lookup table is gener-
ated that transfers each pixel on the distorted image onto its
location on the corresponding undistorted location. Figure 2.a
shows an image, acquired by our camera system, that has a
104° field of view. In this image the distortion effect is more
noticeable on the curved bookshelves. Figure 2.b shows the
same image after removal of the lens distortion. It can be
clearly seen that the curved shelves on the original image are
now straightened.

b

Fig. 2. a)A warped image. b)The corresponding cut unwarped image.

C. Stereo correspondence matching rules

The camera system, Digiclops [29], includes 3 stereo cam-
eras that are vertically and horizontally aligned. The displace-
ment between the reference camera and the horizontal and the
vertical cameras is 10 centimeters. To fully take advantage of
the existing features in the three stereo images, the following
constraints are employed in the stereo matching process:

o Feature stability constraint I: For each feature in the
reference image that is located in the common regions
amongst the three stereo images, there should be two
correspondences, otherwise the feature gets rejected. 3D
locations of the features that pass this constraint are
estimated by the multiple baseline method [30]. the
multiple baseline method uses the two (or more) sets of
stereo images to obtain more precise distance estimates
and to eliminate false match correspondences that are not
persistent in the two set of stereo images.

o Feature stability constraint II: Features located on the
areas common to only the reference and horizontal or
to the reference and vertical images are reconstructed if
they pass the validity check by Fua’s method [31]. The
validity check adds a consistency test via which false
match correspondences can be identified and eliminated
from the stereo process.

« Disparity constraint: The disparities of each feature from
the vertical and horizontal images to the reference image
have to be positive, similar (with maximum difference of
1 pixel), and smaller than 90 pixels. This constraint allows
the construction of the points as close as 12.5cm from the
camera for the existing camera system configuration.

o Epipolar constraint: The vertical disparity between the
matched features in the horizontal and reference images
must be within 1 pixel. The same rule applies to the
horizontal disparity for matches between the vertical and
reference match correspondences.



e Match uniqueness constraint: If a feature has more than
one match candidate that satisfies all the above condi-
tions, it is considered ambiguous and gets omitted from
the rest of the process.

The similarities between each feature and its corresponding
candidates are measured by employing the Normalized Mean-
Squared Differences metric [32]. After matching the features,
a subset of features from the reference image is retained, and
for each one, its 3D location with respect to the current camera
coordinate system is obtained using Equation 10.

D. Depth construction with higher accuracy

One necessary step in stereo process is the unwarping
process in which the images are corrected for the radial
lens distortion. During a conventional unwarping process the
following occurs:

I. The image coordinates of each pixel, integer values, are
transformed into the corresponding undistorted image
coordinates in floating point, Figure 3.2.

II. An interpolation scheme is used to reconstruct the
image values at an integer, equally spaced, mesh grid,
Figure 3.3.

III. The resultant image is cut to the size of the original raw
image, Figure 3.4.

Fig. 3. Conventional unwarping process: The raw image (1). The raw image
right after the calibration (2). The calibrated image after the interpolation(3).
The final cut unwarped image(4).

Each one of these steps, although necessary, could add
some artifacts that can increase the uncertainty of the depth
construction process. For instance, for our camera system,
28.8% of the unwarped image pixels would be merely guessed
at by the interpolation of the neighboring pixels. This could
create considerable distortion of the shape of smaller objects
located near the sides and increase the inaccuracy of the 3D
world reconstruction and the overall system.

To minimize the error associated with the radial lens dis-
tortion removal process, instead of using the conventional
method, we employed a partial unwarping process. This means

that we find the feature points in the raw (warped) images first.
The image coordinates of each feature are then unwarped using
unwarping lookup tables. For constructing the 3D positions
of the features, the unwarped locations are used. However,
when later measuring the similarity of features, raw locations
in the warped image content are used. Performing a partial
unwarping procedure for a small percentage of each image
also improves the processing time of the system.

The 3D reconstruction of the feature points can be summa-
rized as having the following steps:

1. Two projection lookup tables using intrinsic camera
parameters for raw image projection onto the unwarped
image and vice versa.

2. Detection of features in raw images.

3. Disparity measurement in raw images using the projec-
tion lookup table.

4. 3D reconstruction of image features using the constraints
in Equation 10.

IV. FEATURE TRACKING

The measurement of local displacement between the 2D
projection of similar features in consecutive image frames is
the basis for measuring the 3D camera motion in the world
coordinate system. Therefore, world and image features must
be tracked from one frame (at time=t) to the next frame (at
time=t + At).

In order to take advantage of all the information acquired
while navigating in the environment, a database is created.
This database includes information about all the features seen
since n frames before (a value of n = 5 is used for our
system). For each feature, the 3D location in the reference
coordinate system and the number of times it has been
observed are recorded. Each database entry also holds a 3x3
covariance matrix that represents the uncertainty associated
with the 3D location of that feature. The initial camera frame
is used as the reference coordinate system, and all the features
are represented in relation to this frame. After the world
features are reconstructed using the first frame, the reference
world features, as well as the robot’s starting position, are
initialized. By processing the next frame, in which a new
set of world features are created, relative to the current robot
position, new entries are created in the database. This database
is updated as the robot navigates in the environment.

A. Similarity Measurement

In order to measure the similarity of a feature with a
set of correspondence candidates, normalized mean-squared
differences [32] are employed. Each feature and its candidates
are first projected onto their corresponding image planes. The
normalized mean-squared differences function, Equation 11,



is then estimated for each pair:

C(I,b) =
S (h(uyw) — L) — (I (u,0) — B))°
Z Z (I1 (u,v) 11)2 Z Z (I (u,v) — L)

(1)
Here, I; and I, are average gray levels over image patches
of I and I, with dimensions of M x M (a value of M =
13 is used in our system). After evaluation of the similarity
metric for all pairs, the best match with the highest similarity
is selected.

The highest similarity as estimated by the cross-correlation
measurement does not, by itself, provide enough assurance
for a true match. Since the patch sizes are fairly small, there
may be cases where a feature (at time=t) and its match
correspondence (at time=t + At) do not correspond to an
identical feature in the space. In order to eliminate such falsely
matched pairs, a validity check is performed. In this check,
after finding the best match for a feature, the roles of the match
and the feature are exchanged. Once again, all the candidates
for the match are found on the previous frame (at time=t).
The similarity metric is evaluated for all candidate pairs and
the most similar pair is chosen. If this pair is exactly the same
as the one found before, then the pair is announced as a true
match correspondence. Otherwise, the corner under inspection
gets eliminated from the rest of the process.

A comparison of the validity check of the number of correct
match correspondences for two consecutive outdoor images
is shown in Figure 4. Figures 4.a and 4.b, show the match
correspondence without the validity check. Figures 4.c, and 4.d
display the results of the matching process for the same images
in the presence of a validity check. Clearly, the number of false
matches are reduced after the validity check.

B. Feature Matching

The objective of the feature matching process is to find
and to match the correspondences of a feature in the 3D
world on two consecutive image planes (the current and the
previous frames) of the reference camera. At all times, a copy
of the previous image frame is maintained. Therefore, database
feature points in the reference global coordinate system are
transformed to the last found robot (camera) position. They are
then projected onto the previous unwarped image plane using
the perspective projection transformation. Using the inverse
calibration lookup table the corresponding locations on the
raw image planes are found, if their coordinates fall inside the
image boundaries (columns [0 320] and rows [0 240]). With
two sets of feature points, one in the previous image frame and
one in the current image frame, the goal becomes to establish
a one to one correspondence between the members of both
sets. The matching and tracking process is performed using a
two-stage scheme.

I. The position of each feature in the previous frame is

used to create a search boundary for corresponding
match candidates in the current frame. For this purpose
it is assumed that the motion of features from previous
frame to the current frame do not have image projection
displacements more than w pixels in all four directions.
A value of w = 70, used for this work, allows a feature
point to move up to 70 pixels between frames. If a
feature does not have any correspondences, it cannot
be used at this stage and therefore is ignored until the
end of first stage of the tracking.
The normalized 13x13 pixels cross-correlation with
validity check, as explained in Section IV-A, is then
evaluated over windows of 141 x 141 search space. Using
the established match correspondences between the two
frames, the motion of the camera is estimated. Due to the
large search window, and therefore, a large number of
match candidates, some of these match correspondences
may be false. In order to eliminate inaccuracy due to
faulty matches, the estimated motion is used as an initial
guess for the amount and direction of the motion to
facilitate a more precise motion estimation in the next
stage.

II. Using the found motion vector and the previous robot
location, all the database features are transformed into
the current camera coordinate system. Regardless of the
motion type or the distance of the features from the coor-
dinate center, features with a persistent 3D location end
up on a very close neighborhood to their real matches on
the current image plane. Using a small search window
(4 x4) best match correspondence is found quickly with
higher accuracy. If there are more than one match
candidate in the search window, the normalized cross-
correlation and the image intensity values in the previous
and current frames are used to find the best match
correspondence. The new set of correspondences are
used to estimate a motion correction vector that is added
to the previous estimated motion vector to provide the
final camera motion.

Figures 5.a and 5.b, show match correspondences on the two
frames for the first step and Figures 5.c and 5.d, show the
matches using the initial motion estimation from the first step.
Not only does the number of false matches decrease when a
rough motion estimate is used, but the total number of matches
increases dramatically.

V. MOTION ESTIMATION

Given a set of corresponding features between a pair of
consecutive images, motion estimation becomes the problem
of optimizing a 3D transformation that projects the world
corners, from the previous image coordinate system, onto the
next image. With the assumption of local linearity the problem
of 3D motion estimation is a promising candidate for the
application of Newton’s minimization method.

A. Least-squares minimization

Rather than solving this directly for the camera motion with
6 DoF, the iterative Newton’s method is used to estimate



Fig. 4. Validity checking reduces the number of false match correspondences. In this figure feature points are shown in white dots. Matched features in the
first frame with no validity check are shown in circles (a). Match features in the second frame are shown with arrows that connect their previous positions
into their current positions (b). Matched features in the first frame with validity check are shown in circles (c). Match features with validity check in the
second frame are shown with arrows that connect their previous positions into their current positions (d).

a correction vector £ with 3 rotational and 3 translational
components, that if subtracted from the current estimate,
results in the new estimate [33]. If P is the vector of
parameters for iteration 7, then
plth) — pti) _ 3 (12)
Given a vector of error measurements between the projection
of 3D world features on two consecutive image frames, e, a
vector Z is computed that minimizes this error [34].
JT=¢e (13)
The effect of each correction vector element, Z;, on error
measurement e; is defined by

(14)

Here e; is the error vector between the predicted location of
the object and the actual position of the match found in image
coordinates. n represents the number of matched features.
Since Equation (13) is usually over-determined, 2 is estimated
to minimize the error residual (min||.J% — e||?) [35].

G=[1JT0 " JTe (15)

7 includes two rotational and translational vector components
T
of (Dz,Rz) .

B. Setting up the equations

With the assumption that the rotational components of the
motion vector are small, the projection of the transformed
point (z,y,z) in space on the image plane can be approxi-
mated by:

flz+Ds) fly+Dy)
z+ D, z+ D,

(u,0) = (

Here D,, D, and D, are the incremental translations and f
is the focal length of the camera. The partial derivatives in
rows 2n and 2n + 1 of the Jacobian matrix J, in Equation 13,
that corresponds to the n’th matched feature are calculated
as shown in [36]. After setting up Equation 15, it is solved
iteratively until a stable solution is obtained.

) (16)

C. Implementation consideration

In order to minimize the effect of faulty matches or scene
dynamic features on the final estimated motion, the following
considerations are taken into account during implementation:

« The estimated motion is allowed to converge to a more
stable state by running the first three consecutive itera-
tions.

o At the end of each iteration the residual error for each
matched pair in both coordinate directions, E, and E,,
are computed.

o From the fourth iteration, the motion is refined by elim-
ination of outliers. For a feature to be considered an



Fig. 5.

Two-stage tracking improves the accuracy of the estimated motion. Motion vectors for the matched features are shown in the previous and current

images. Figures a and b show these vectors in the first stage. The white arrows show correct matches and the black arrows show false match correspondences.
Figures ¢ and d show same images with their match correspondences using the estimated motion of the first stage. Not only does the number of correct match
correspondences increase but the number of false match correspondences is decreased.

outlier, it must have a large residual error, v/ Eu2 + E,,z.
On each iteration, at most 10% of the features with the
residual error higher than 0.5 pixels, will be discarded as
outliers.

o The minimization is repeated for up to 10 iterations if
changes in the variance of the error residual vector is
more than 10%. During this process the estimation moves
gradually toward the best solution.

o The minimization process stops if the number of inliers
drops to 40 or less matches.

It is important to note that if the number of features from
dynamic objects is more than that of the static features, the
robustness of the system could be compromised and therefore
false trajectory estimation will be resulted.

D. Motion estimation results

The results of an entire motion estimation cycle, for a
distance of about Scm in the outdoor environment, is presented
in Table I.

As shown in this table, the error is reduced in a consistent
manner and the final error residual is less than a pixel.
Generally the error residual is only a fraction of a pixel.

E. Feature Update

After the motion parameters are found, the database in-
formation must be updated. This is performed based on the

TABLE I
ITERATION RESULTS ALONG WITH THE ERROR RESIDUAL, IN PIXELS, FOR
ONE MOTION ESTIMATION.

Number Dy,Dy,D, bz Py P Error
of (Cm, Cm, Cm) (Deg, Deg, Deg ) residual

matches (Pixel)
188 (—6.06,—0.06, —0.23) | (—0.04,0.12,—1.04) 19.79
188 (—5.97,0.01, —0.20) (0.11,0.09, —1.01) 10.52
188 (—5.97,0.01, —0.20) (0.11,0.09, —1.01) 10.48
170 (—6.41,0.06, —0.49) (—0.03,0.57, —0.34) 4.40
153 (—6.40,0.09, —0.41) (0.02,0.53, —0.20) 2.40
138 (—6.46,0.11, —0.45) (—0.03,0.54, —0.12) 1.55
125 (—6.53,0.14, —0.42) (0.05,0.58, —0.05) 1.19
113 (—6.68,0.10, —0.42) (—0.03,0.61, —0.06) 1.28
102 (—6.52,0.14, —0.46) (—0.01,0.58, —0.07) 0.79
92 (—6.51,0.13, —0.45) (—0.01,0.56, —0.07) 0.63

prediction and observation of each feature and the robot’s
motion.

o The position and uncertainty matrix for features that are
expected to be seen and have corresponding matches are
updated. Their count increases by 1.

« Features that are expected to be seen but have no unique
matches are updated. The uncertainty for these features
increases by a constant rate of 10% and their count
decreases by 1.

o New features, with no correspondence in the reference



world, are initialized in the database and their count is
set to 1.

F. Feature Retirement

After updating global feature points, an investigation is
carried out to eliminate those features that have not been
seen over some distance. For this purpose, feature points
with a count value of —5, indicating that they have not been
observed for at least 5 consecutive frames, which for our
system corresponds to a distance of 50cm, are eliminated. This
condition removes some of the remaining unstable features that
falsely pass the stability and disparity conditions in the stereo
matching process in spite of their poor conditions.

VI. POSITION ERROR MODELING

The noise associated with an image is considered to be
white and Gaussian [37]. The disparity measurement using
such an image inherits this noise. Since the 3D estimation
of each feature in space is a linear function of the inverse
disparity, a Kalman filter estimator seems to be a promising
model for reducing the system error associated with the
existing noise [38]. Therefore, a Kalman filtering scheme is
incorporated into the system, that uses the many measurements
of a feature over time and smooths out the effects of noise in
the feature positions, as well as in the robot’s trajectory.

For each feature an individual Kalman filter is generated.
Each Kalman filter includes a 3 x 1 mean position, Sk r, vector
and a 3 x3 covariance matrix, X g r, that respectively represent
the mean position and the positional uncertainty associated
with that feature in space. A Kalman filter is also created
for the robot mounted camera, that includes position and the
uncertainty associated with it.

A. Camera Position Uncertainty

The robot’s position is updated using the estimated mo-
tion vector found by the least-squares minimization. For this
purpose, a simple Kalman filter model is employed. The
assumption that is made for this model is that the robot moves
with a constant velocity. Following equations represent the
Kalman filter model for this application:

Tpp1 = Fap + & (17)
2p = Hzxy + ny (18)

where xy, represents the state variable at frame £,
Tk = [2,Y,2, Gu, by, b2, 8,0, 2, by by, 0] (19)

and F' is a constant 12 x 12 matrix and is defined by:

1T 0 0 0 0 000O0O0O0
01 7T 000000000
00 17T 00000000
0000 17T 0000000
00000 1T 000000
0000001700000

F=19 00000 100000 @
0000000710000
000000001000
0000 0O0O0O0O0100
00000 0O0D00O00O0T10
0000 00 0O00O0O0O0 1

In matrix F', T is the sampling rate and is set to 1. & and 7
are respectively the (unknown) system and observation noises.
H is a 6 x 12 matrix and is defined by [I N] ,where [ is a
6 x 6 identity and N is a 6 x 6 zero matrices.

B. Prediction

Using the standard Kalman filter notation [39], the state
prediction is made by

2(k + 1|k) = Fa(k|k) 1)

If P(k|k) represents the process covariance, the process co-
variance prediction is

P(k +1|k) = FP(k|E)FT + Q(k) (22)

Q shows the noise associated with the process covariance and
is defined by
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(23)

0.03

Matrix () is a constant matrix and is found experimentally.
In this matrix, the associated uncertainties with the rotational



components of the state variable are defined to be smaller
than those of the translational parameters. This is mainly
due to the fact that the accuracy of the estimated rotational
parameters of the motion is higher. These values however are
defined to be larger than the estimated uncertainties associated
with the measurements as shown in Equation 26. Such larger
uncertainties emphasize the fact that the measurement values
are more reliable under normal circumstances. However, if
for any reason, the least-squared minimization for estimating
the motion parameters fails, then the covariance matrix of the
measurements in Equation 26 is changed to an identity matrix,
forcing the system to give larger weight to the predicted values.

C. Measurement

The measurement prediction is computed as
z(k+1lk) = Hx(k + 1|k) (24)

The new position of the robot, =1 s, is obtained by updating its
previous position, z(k|k), using estimated camera motion pa-
rameters by the least squares minimization from Equation 15,
& =[Ds, Rz]".

zrs = [Ra [x(k|k)] + [Ds] (25)

The covariance Rpg for the measurement is obtained by
computing the inverse of .J7.J [33] in Section V-A.

Matrix 26 represents a typical Ry, s that is computed by our
system during one of the tracking processes.

0.000001  0.000000  0.000000
0.000000  0.000000  —0.000000
R,s— | (000000 —0.000000 0.000001
g 0.000001  0.000001  0.000001
—0.000002 —0.000001 —0.000001
—0.000001  —0.000000 —0.000001
0.000001  —0.000002 —0.000001
0.000001  —0.000001 —0.000000
0.000001  —0.000001 —0.000001 26)
0.000005  —0.000004 —0.000004
—0.000004  0.000006  0.000005
—0.000004  0.000005  0.000007

If for any reason, a feasible result for the measurement
vector zrs is not found by the least-squared minimization
procedure, Rys is set to a 6 x 6 identity matrix. A Rrg
with larger components, comparing to (), causes the system to
give the prediction values a higher weight than the unknown
measurements that are set to zero.

D. Update

The Kalman filtering process can be presented by the
following set of relationships:

P(0]0) = Var(xo)

P(k+1|k) = FP(k|k)F" + Q(k)
W(k+1)=P(k+1k)H"[HP(k + 1|k)H" + Rpg]"
Pk+1k+1) = P(k+ 1|k) — W(k + )HP(k + 1|k)

x(k + 1|k) = Fa(k|k)

z(k+1k+1)=a(k+1|k) + Wk +1)(zrs — 2(k + 1|k))
k=1,2,...
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Figure 6 represents a graphical presentation of the Kalman
filtering model that is used for the linear motion of the camera.

x(k+1|k+1)

x(k+11k)

Fig. 6. Camera position Kalman filtering model.

E. Feature Position Uncertainty

Uncertainties in the image coordinates, (u, v), and disparity
values, d, of the features from the stereo algorithm propagate
to uncertainty in the features’ 3D positions. A first-order error
propagation model [40] is used to compute the positional
uncertainties associated with each feature in space.

. b%0?¢ b2 (C? +u?)o?y  b’o?
0, = =+ = + <
N d? d* d?
) bQUQC b2(1)2 + 03)0.2(1 b2(7'2v
0%y = — T +— (28)
s f2b2(72d
S

(Cz,Cy), b and f represent the image center, stereo camera
separations and camera focal length. 0%, 0%, 0%., 0%c,,
o’c, and 0?4 are the variances of z, y, z, C,, C, and
d, respectively. Based on the results given in Section V-C,
where the mean of error in the least-squares minimization is
less than one pixel, assumptions are made that 0202 = 0.5,
o’c, = 05, 0% = 1,0% =1 and 0, = 1. Therefore,
variances of each feature’s 3D position, in the current camera
frame coordinate, are computed according to the above error
propagation formula.

F. Feature Update

Each time a feature is observed, a new set of measurements
is obtained for that feature in the space. Therefore, at the
end of each frame and after estimating the motion, world
features found in the current frame are used to update the
existing global feature set. This requires that these features
be transformed into the global coordinate system first. Next,
the positional mean and covariance of each feature are com-
bined with corresponding matches in the global set. The 3D
uncertainty of a feature in the current frame is computed as
described by 28. However, when this feature is transformed
into the global coordinate system the uncertainty of the motion
estimation and robot position propagates to the feature’s 3D
position uncertainty in the global frame. Therefore, before
combining the measurements, the 3D positional uncertainties
of the feature are updated first.

From the least-squares minimization procedure, the current
robot pose, as well as its covariance, can be obtained [33].



The current position of the features can be transfered into the
reference frame by

Pnew - (RY (RX (RZ (Pobs))) +T (29)

where P,,s and P, are the observed 3D position of a
feature in the current frame and the corresponding transformed
position in the reference frame respectively . T', R, Rx and
Ry represent the location and orientation of the camera head
system in the reference frame respectively.

G. Feature covariance update

The goal is to obtain the covariance of the features in
the reference coordinate system (X,.,), given the diagonal
uncertainty matrix for each observed feature in the current
frame consisting of 02, 0, and 0. Since each feature point
undergoes a rotation and a translation when transforming from
the local coordinate system to the global coordinate system,
the corresponding covariances of o?,, o%, and o?, must
be transformed using the same transformation. Considering
that each motion estimation consists of a rotational and a
translational component the updated covariance of each feature
after the transformation is defined by:

o% 0 0 -|
Ynew = A¢z¢m¢y + 10 0’% 0 (30)
0 0 o)

where the first term, Ay 4,4, represents the covariance due
to rotation and the second term represents the translational
covariance. Components of the translational covariance matrix,
(0%, 0}, 0%), are the translational uncertainties associated
with the estimated motion by the least square minimization.

Details for computation of Ay g ¢, are presented in Ap-
pendix, Section A.

H. Feature position update

To update the 3D position of a feature [41], the transformed
covariance matrix, X,,.,, , is combined with the existing covari-
ance of the matching global feature, ¥ i r, to obtain the new
covariance matrix, E'K P

Sier = (Cxp + nd) (1)
The new global position of the feature, S'K > is then found
using the covariances, the transformed position (using Equa-
tion 29) and the previous position.

SIKF’ = EIKF‘(Z;(lF’SKF + E:Lelwpnew) (32)

1. Experimental Results

Figure 7 shows the projection of estimated uncertainties
associated with world features on the image plane. In this
figure, the uncertainties associated with closer objects are
very small and therefore appear as bright dots. As expected
farther features, for instance features around windows on
the upper right corner of the scene, have larger projected
uncertainties. Some of the closer features also have large
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50 100 150 200 250 300

Fig. 7. Positional uncertainties associated with features in the image plane.

positional uncertainties associated with them. These large
positional uncertainties imply incorrect depth estimation for
those features.

To get a closer look at 3D scene features and their positional
uncertainties Figure 8 is generated. It demonstrates a top
view of world features and their associated uncertainties.
As clearly displayed, associated positional uncertainties with
features grow in dimensions as these features move away
(in depth) from the camera plane and as they move to the
sides (from the camera center). In this figure, dotted ellipsoids
show the original and the solid ellipsoids show the updated
uncertainties.

Z[m] ,

25F

X[m]

Fig. 8. Original and updated positional uncertainties of world features.

Results of the Kalman filters incorporated with the trajectory
tracking system are presented in Section VII.

VII. EXPERIMENTAL RESULTS

This section contains the experimental results obtained from
implementing the solution strategies put forth in previous
sections.



A. Camera System: Digiclops™

The Digiclops stereo vision camera system is designed and
implemented by Point Grey Research [29]. It provides real-
time digital image capture for different applications. It includes
three monochrome cameras, each VL-ICX084 Sony CCDs
with VL-2020 2.0 mm Universe Kogaku America lenses, and
a software system with the IEEE-1394 interface. These three
cameras are rigidly positioned so that each adjacent pair is
horizontally or vertically aligned.

In this work, the intrinsic camera parameters are also
provided by Point Grey Research. The camera system captures
gray scale images of 320x240 pixels. In order to reduce the
ambiguity between the yaw rotation and lateral translation,
a set of wide angle lenses with a 104° field of view is
used. These lenses incorporate information from the sides
of the images that behave differently under translational and
rotational movements.

B. Trajectory Estimation

The performance of the system is evaluated based on its
cumulative trajectory error or positional drift. For this purpose
experiments are performed on closed paths. On a closed path,
the robot starts from an initial point with an initial pose. After
roving around, it returns to the exact initial point. To ensure
returning to the exact initial pose, an extra set of images are
acquired at the starting position, right before the robot starts
its motion. This set is used as the last set and with it the
starting point and the ending point are projected onto an exact
physical location. In an ideal condition the expected cumula-
tive positional error must be zero and therefore anything else
represents the system’s drift.

C. Experiment 1:

In this experiment the robot moves along an outdoor path.
The scene was a natural environment including trees, leaves

Fig. 9.

The outdoor scene for experiment VII-C.

and building structures that were located in distances between
0.1 to 20 meters from the camera image plane. The traversed
path was 6 meter long and along the path 172 raw (warped)
images were captured and processed. Figure 9 shows the
scene in this experiment. In this figure the traversed path is
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highlighted with a dark line and the facing of the camera is
shown using a white arrow. The robot starts the forward motion
from point A to point B. At point B the backward motion
begins until point A is reached.

Although the scene includes some structures from the
building, but most of the features, over 90%, belong to
the unstructured objects of the scene. Figure 10 shows the
overall estimated trajectory along the entire path. In this
figure the gradual motion the camera system is displayed
using a graphical interface that is written in Visual C++ and
VTK 4. The estimated trajectory at each frame is shown
with the dark sphere and the orientation is displayed with
the light color cone. The center of the reference camera is
considered as the center of the motion. Table II displays the

i visualization Toolkit - Win3Z0penGL #1

=lolx|

Fig. 10. The graphic representation of the traced path in experiment VII-C
using Visualization Toolkit 4.

cumulative trajectory error in this experiment. From this table

TABLE II
3D DRIFT FOR A 6 METER LONG TRANSLATION.

Cumulative Ep,.Ep,.Ep, Ey, Eg,.Ey.
error (Cm,Cm,Cm) (Deg,Deg,Deg)
[ Experiment I ]| —1.930, 1.745, 0.529 || —0.066,0.008,_1.009 |

the translation error is about 2.651cm which is only 0.4% of
the overall translation.

D. Experiment 2:

In this experiment the robot moves on a closed circular
path including a full 360° yaw rotation. The orientation of the
camera is toward the ground. During this experiment, 101 raw
images are captured and processed. Figure 11 represents the
overview of the environment in this scenario.

Figure 12 represents the overall estimated trajectory from a
closer distance. The cumulative error in this case is represented
in Table III.



Fig. 11. The outdoor scene used for the rotational motion.

Il visualization Toolkit - Win320penGL #1 B

Fig. 12. A closer view of the circular path with a radius of 30cm in
experiment 2.

TABLE III
3D DRIFT FOR A MOTION WITH 360° ROTATION ON A CIRCULAR PATH
WITH A RADIUS OF 60CM.

Cumulative Ep,.Ep,, Ep. Ey, Eg,.Ey.
error (Cm , Cm, Cm) (Deg , Deg, Deg)
[ Experiment 2 || 1.030, —0.252,0.603 | —1.071,~2.599, 1.182 |

From this table the overall rotational error in this experiment
is about 3.341° or 0.9% and the translational error is 1.22cm
or 0.6%.

E. Trajectory Estimation Refinement by Kalman Filtering

Comparison of the estimated trajectory with and without
a Kalman filtering scheme is represented through the com-
parison of the cumulative error in 3D trajectory parameters.
This comparison is studied for represented case in VII-C, in
which the traversed path is 6 meter long. Table IV represents
the results of this comparison.In this table E7 and Eo
represent overall translational and rotational errors. The overall
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TABLE IV
COMPARISON OF THE REDUCTION OF 3D DRIFT FOR A 6 METER LONG
PATH USING KALMAN FILTER.

Kalman ET Eo
filter (Cm) (Deg)
On 2.66 1.01

Off 6.31 0.39

translational error with Kalman filter is considerably less than
that without Kalman filtering algorithm. The Rotational error
with the Kalman filtering is slightly more. However, both these
values, 1.01 and 0.39 degrees, are very small and they can
easily be due to the noise in the estimation process. Figures 13
represents the estimated trajectories in the presence of the
Kalman filtering scheme. As shown at the top of this figure
the robot moves along X for 3 meters and then it returns
to its starting point. The overall translational error for this
experiment is about 2.66 centimeters.
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Fig. 13. Estimated distances for a 6 meter long path with Kalman filter.

Figure 14 represents the estimated orientation for this ex-
periment. The cumulative orientation error for this experiment
is about 1°. As represented in the second row of Table IV,
the positional error is increased to 6.31 centimeters when the
Kalman filter is turned off.

F. Trinocular and Binocular Stereo Comparison

Establishing accurate match correspondences in a stereo
system is a key issue in 3D reconstruction and trajectory
tracking problems. The physical arrangement of the cameras
in stereo vision plays an important role in the correspondence
matching problem. The accuracy of the depth reconstruction
has a direct relationship with the baseline and it can be
improved by choosing a wider separation between the stereo
lenses. On the other hand a narrower baseline facilitates a
faster search scheme when establishing the correspondences
in the stereo image pair. The use of more than one stereo
camera was originally introduced to compensate for the trade-
off between the accuracy and ease of the match correspon-
dences [42].
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Fig. 14. Estimated orientations for a 6 meter long path with Kalman filter

on.

The stereo baselines are almost identical in length for
Digiclops camera system. Therefore the improvement of the
accuracy by means of multi-baseline stereo matching is not ex-
pected. However, the non-collinear arrangement of the lenses
adds a multiple view of the scene that could improve the
robustness and therefore the long term system accuracy. This
is mainly because:

o Generally a wider scope of the scene is viewable by the

three images increasing the number of the features.

o Moreover, the third image is used for a consistency check,
eliminating a number of unstable features that are due to
shadows and light effects.

The above improvement however could potentially cause a
slow down in the system as each time there is one extra image
to be processed.

To assess the effectiveness of trinocular stereo versus binoc-
ular, an experiment was undertaken in which a closed path (of
length 3 meters) is traversed. Once again the cumulative error
is used as a measure of system performance. Table V shows
the resultant error in the both cases. In this table F; and

TABLE V
COMPARISON OF THE CUMULATIVE ERROR FOR TRINOCULAR AND
BINOCULAR STEREOS.

Camera Ep, ,E‘Dy,E‘DZ Eg,, E¢y L Ey, Er Fo
number Cm ,Cm,Cm Deg , Deg,Deg Cm Deg
Three —1.14,—0.03, —0.23 0.18 ,0.01,0.19 1.16 0.26

Two —1.77 , —0.40 0.58 —0.06 ,0.14 , —0.03 1.91 0.15

Eo represent overall translational and rotational errors. These
values clearly show the similarity of estimated motions by the
two systems. Considering that the cost and the complication of
a binocular system is less than a trinocular stereo, the binocular
stereo might be a better solution for some applications.

G. Computational Cost

The presented system is implemented in Microsoft Visual
C*t* 6.0 language, on a 1.14 GHz AMD Athlon”™ processor
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under Microsoft Windows® operating system. The camera
system captures gray scale images of 320x240 pixels. An
effort has been made to optimize the code and modularize
the system in order to obtain fast subsystems with less
communication cost and required memory.

The most severe drawback of the system is its high com-
putational requirement. Currently for outdoor scenes it has a
rate of 8.4 seconds per frame and for indoor scenes it performs
at a rate of 2.4Hz [43]. The number of features has a great
impact in the speed of our system. If n represents the number
of corners, the stereo matching and construction stages have
complexities of O(n?). Tracking n 3D features from one frame
to another frame has also a complexity of O(n?). This is due
to the fact that both tracking and stereo processes are heavily
involved in the use of the normalized mean-squared differences
function for the purpose of measuring similarities. For instance
when we moved from indoor to outdoor the number of our
features (1200 corner points) became 4 times larger than the
indoor scene (300 corner points). This factor increases the
running time of the tracking and stereo tasks alone by a
minimum factor of 16. As expected the running times of these
two procedures increased to 5.1 and 1.35 seconds (from 0.21
and 0.057 seconds for our indoor scene).

Theoretically having three correct matches must be enough
to provide an answer for the motion estimation problem
using least-squared minimization. However, during our work
we noticed that a minimum number of 40 match inliers are
necessary for a reliable solution.

It is important to see the trade off between the system
processing rate with the motion rate and search window
dimensions in the tracking process. A smaller motion, between
two consecutive frames, results in smaller displacements of
image features in two corresponding image frames. In such
conditions, corresponding features can be found by searching
over smaller regions. Smaller windows speed up the system
processing rate. Therefore, through a slower moving robot a
faster performance can be achieved.

The computational cost may be reduced by creating an
image resolution pyramid. Features can be detected on the
coarser level and using them a rough motion estimation is
obtained that can be refined by moving to a finer pyramid
level. Another way to improve the processing rate is to select
and process only selected patches of each image instead of the
entire image. Employment of specific hardware (e.g. FPGA’s)
that allows the system to perform bitwise parallel operations
can also improve the speed of the system.

VIII. CONCLUSIONS

This paper has presented the successful development of a
general purpose 3D trajectory tracking system. It is applicable
to unknown indoor and outdoor environments and it requires
no modifications to be made to the scene. The primary novelty
of this work is a methodology for obtaining camera trajectories
for outdoors in the presence of possibly moving scene features
without the need for odomtery or sensors other than vision.
Contributions of this work can be summarized as:

e« A novel fast feature detection algorithm named the

Binary Corner Detector (BCD) has been developed. A



60% performance improvement is gained by substituting
arithmetic operations with logical ones. Since the main
assumption for the whole system has been that temporal
changes between consecutive frames are not large, a faster
feature detector leads to less temporal changes between
the consecutive frames and therefore resulting in a higher
accuracy in the overall system.

e Due to imperfect lenses, the acquired images include
some distortions that are corrected through the calibra-
tion process. Not only is the image calibration at each
frame for the trinocular camera images a time consuming
process but it could add positional shifts (error) to image
pixels. This process degrades 3D reconstruction results
and increases the cumulative error in the overall trajectory
tracking process. To remove this undesired effect, a
calibration map for each of the cameras is constructed
that defines the relationship between the integer position
of the uncalibrated pixels with the corresponding floating
point location on the calibrated image. Operating on the
warped (raw) images allows one to work with sharper
details. It also provides a faster processing time by
eliminating the calibration process for three individual
images.

o Correct identification of identical features, depends on
several factors such as search boundaries, similarity
measurement window size, and a robot’s motion range.
Expanding search boundaries and the window size for
similarity evaluation can improve the accuracy by adding
more correct matches. They can however slow down
the performance, leading to a larger motion for the
same camera speed, between two consecutive frames. A
larger motion introduces more inaccuracy into the system.
To improve the accuracy, a two-stage tracking scheme
is introduced in which the match correspondences are
first found using a large search window and a smaller
similarity measurement window. Through this set of
correspondences a rough estimation of the motion is
obtained. These motion parameters are used in the second
stage to find and track identical features with higher
accuracy. The process increases the tracking accuracy by
up to 30%.

APPENDIX

A. Feature Uncertainty Computation

1) Rotational covariance computation: Given two points
X and X' with the following relationship:
X'=PX (33)

where P is a 3 x 3 transformation matrix, rotation matrix in our
case, we would like to compute the uncertainty associated with
X' given the uncertainties associated with the X, (o2,, 02,
02.). Here the old and new positions X and X' are vectors of
3 x 1. If there are errors associated with both P and X , Ap
(9 x 9 covariance for P) and, Ax (3 x 3 covariance for X),
the 3 x 3 covariance of the resulting vector X' is computed
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by [44]
X 0 0
[XT 0 0 ]A 0 0 X 0
Ay =10 X" OP[OPA} 0 0 X
[0 o XT J X _
PT
(34)

In Equation 34, the first matrix is a 3 x 12, the second is
a 12 x 12 and the third, which is the transpose of the first
matrix, is a 12 x 3 matrix. With the assumption that at each
time the three rotation angles are small and therefore inde-
pendent, the transformation proceeds, in order, for rotations
¢- (roll), ¢, (pitch), ¢, (yaw) first. Variances of aiz, 0(2%
and af,z are already found during the last motion estimation.
Required transformations for each stage and how the positional
uncertainties propagate are explained next.

2) Roll transformation: The roll transformation is defined
by:

cos(¢,) —sin(¢s) 0
Rz = |sin(¢y) cos(¢) O (35)
0 0 1

With the assumption that noise associated with the rotational
angles is Gaussian and of zero mean, the 9 x 9 covariance
matrix for the roll transformation is computed by

A 0 0 0 A 00 0 0 1
0 B 0 -B 0 0 0 0 O
0 0 0 0 0 0 0 0 O
0O -B 0 B 0 0 0 0 0
A 0 0 0 A0 D000 (36)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 O
0 0 0 0 0 00 0 O]
where
A = Variance(cosd.) = E(cos’¢.) — E*(cosp.) (37)
B = Variance(sing.) = E(sin*¢.) — E*(sing.) (38)

The expected value of cos?¢. is computed [45], with the
assumption that ¢, has a Gaussian distribution, by

1 oo L 2 1 4 cos26-
E(cos®¢.) = —— / e 27 Md@
V2roy, J oo 2
1 1 -
= — —e T 3
5 + 5¢ (39)
E(cosg,) = e F (40)
therefore
1 .
A= (14e 76 =207 %:) (41)
1 .
B=2(1- e 205, ) 42)

Using Equation 34 and the rotational transformation equations,
the covariance matrix after the roll, ¢,, rotation is computed



from

[ Az? + By? + o2cos¢.
—20’in03¢; sing.

+¢7§si'nz¢z

A, = (A— B)zy
¢- +0’3y(COS2¢; — sin’¢.)
+(U§ — Ui)sin@cos@
o2, cosp.
i foizsimf)z
(43)
(A—B)zy

Uﬁzcos@ W

2 2 .2 2 .
togy(cos ¢, —sin“¢p.)  —oy.sing.
+(o7 — (75)51:”¢z(;08¢2

2 2 2 92 2 -
Ay® + Bx” 4+ o sin” ¢, 0,.8ing,
2 . 2
+20,, 81N, Cosp. +0,.c05¢,
+¢7§cosz¢z
o2, sing.
2 2
+0,.c08¢. o

Here, (z, y, 2) is the 3D global location of the feature in the
current frame. Since this is the first time the transformation
is carried out, 0}, = 0. = 0, = 0 as the initial covariance
matrix of the observation is a diagonal matrix. Applying the
roll transformation to the initial position of the feature provides
the transformed position of the feature. This new position is
used for the next stage. The uncertainty associated with this

position is the recent covariance matrix of Ay .

%

3) Pitch transformation: Given the pitch transformation,

[0 0 1 ]
Rx =10 cos(¢,) —sin(s,) (44)
0 sin(éy) cos(d,) |

the 9 x 9 covariance matrix for the pitch rotation, ¢, , is com-
puted in a similar way, as shown in Equation 36. Once again,
substituting the pitch rotational transform in Equation 34 and
the covariance matrix in 44, the new covariance matrix can be
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defined by
[ o2 Uiycos@g
—02, sinds
Jiycosqﬁz } Qy2 + D§2 }
—02,s5ing, —I—a;coszqﬁm +o2sin’¢,
Asaga = —202,c08¢, sing
yz T ©
o2, sing, (C —D)yz
+02, 08¢, +(0’Z — Jf)cosqﬁzsi'nqﬁz
i +r7§z(cosz¢z — sin2¢z)

(45)
Uiysimﬁz

+02, 08¢

(C — D)yz
+(U§ — af)cos¢zsin¢m
+J§Z(cos2¢z — 32'112¢I)

Cz* + Dy?
+0§sin2¢m + 030052@5
+20§Zcos¢zsin¢z

where C' and D are defined by

1 2 2
C = g(14e o —2¢7%) (46)

D= %(1 — e %) (47)

In this formula, aéT is found from the last motion estimation.

(x, y, 2) is the transformed 3D location of the feature after
the roll transformation and o3, 0, 07, 03,, 02 and o, _ are
from the covariance matrix Ay, . Applying the pitch transform
provides the transformed position of the feature, which is used

in the next stage together with this new feature covariance.

4) Yaw transformation: The 9 x 9 covariance matrix after
the yaw rotation

[ cos(¢y,) 0 sm(%)-l
Ry = 0 1 0 (48)
[fsm((;ﬁy) 0 COS(¢y)J

is computed by



Ez? + F2* Uiycomf)y
+o2cos’py, + alsin’d, +(7§zsi'n¢y
+202, sing, cosg,
A _ 02,C080,
$z02dy +(7§zsi'n¢y (75
(E - F)zz oa,sing,
+(0? — o2)singycospy, —0n.co8p,
L +02,(cos’ ¢, — sin’¢,)
(49)
(E— F)zz
+(02 — 02)sing,cosg,
+02.(cos’py — sin’py)
Jizcos¢y7(7£ysi'n¢y
Ez* 4+ Fa?
+olsin’ ¢, + olcos’P,
—202, sing, cosd,
E and F' are defined by:
1 92 _ 2
E=g(l+e 276y — 2ev) (50)
1 92

F=g(1-e 74y) (51

and oiy is the variance of ¢, estimated earlier in the motion
estimation process. (z, y, 2) is the transformed 3D location of

the feature after the pitch transformation and Ui, o2, 0

0.2

Tz

2 2

2 2
y 9’ z 9 U‘zy 9’
and o2, are from the covariance matrix A

Yz ¢z ¢z *
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