Segmentation by Clustering

Reading: Chapter 14 (skip 14.5)

- Data reduction - obtain a compact representation for interesting image data in terms of a set of components
- Find components that belong together (form clusters)
- Frame differencing - Background Subtraction and Shot Detection

Segmentation by Clustering

Segmentation by Clustering

(a)

(ө)

(b)

(f)

(c)

(g)

(h)

Segmentation by Clustering

General ideas

- Tokens
- whatever we need to group (pixels, points, surface elements, etc., etc.)
- Top down segmentation
- tokens belong together because they lie on the same object
- Bottom up segmentation
- tokens belong together because they are locally coherent
- These two are not mutually exclusive

Why do these tokens belong together?

Top-down segmentation

Credit: D. Marr, "Vision," W.H. Freeman, 1982

Basic ideas of grouping in human vision

- Figure-ground discrimination
- grouping can be seen in terms of allocating some elements to a figure, some to ground
- Can be based on local bottom-up cues or high level recognition
- Gestalt properties
- Psychologists have studies a series of factors that affect whether elements should be grouped together
- Gestalt properties

Elevator buttons in Berkeley Computer Science Building

Groupings by Invisible Completions

Segmentation as clustering

- Cluster together (pixels, tokens, etc.) that belong together
- Agglomerative clustering
- merge closest clusters
- repeat
- Divisive clustering
- split cluster along best boundary
- repeat
- Point-Cluster distance
- single-link clustering
- complete-link clustering
- group-average clustering
- Dendrograms
- yield a picture of output as clustering process continues

Feature Space

- Every token is identified by a set of salient visual characteristics called features. For example:
- Position
- Color
- Texture
- Motion vector
- Size, orientation (if token is larger than a pixel)
- The choice of features and how they are quantified implies a feature space in which each token is represented by a point
- Token similarity is thus measured by distance between points ("feature vectors") in feature space

K-Means Clustering

- Initialization: Given K categories, N points in feature space. Pick K points randomly; these are initial cluster centers (means) $\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{K}}$. Repeat the following:

1. Assign each of the N points, $\boldsymbol{x}_{\mathrm{j}}$, to clusters by nearest m_{i} (make sure no cluster is empty)
2. Recompute mean m_{i} of each cluster from its member points
3. If no mean has changed, stop

- Effectively carries out gradient descent to minimize:

Example: 3-means Clustering

Convergence in 3 steps

Image
Clusters on intensity
Clusters on color

Technique: Background Subtraction

- If we know what the background looks like, it is easy to segment out new regions
- Applications
- Person in an office
- Tracking cars on a road
- Surveillance
- Video game interfaces
- Approach:
- use a moving average to estimate background image
- subtract from current frame
- large absolute values are interesting pixels

Algorithm

video sequence $I(\mathrm{x}, t) \quad$ background $I_{0}(\mathrm{x}, t)$
frame difference $d(\mathbf{x}, t)$ thresholded frame diff $d_{T}(\mathbf{x}, t)$
for $\mathrm{t}=1: \mathrm{N}$
Update background model $I_{0}(\mathrm{x}, t)$
Compute frame difference $d(\mathrm{x}, t)=\left|I(\mathrm{x}, t)-I_{0}(\mathrm{x}, t)\right|$
Threshold frame difference $d_{T}(\mathrm{x}, t)=d(\mathrm{x}, t)>$ thresh
Noise removal $\quad d_{l^{\prime}}(\mathrm{x}, t)=\operatorname{imerode}\left(d_{l^{\prime}}(\mathrm{x}, t)\right)$
end
Objects are detected where $d_{T}(\mathrm{x}, t)$ is non-zero

Background Modeling

- Offline average $\quad I_{0}(\mathrm{x}, t)=\frac{1}{T} \sum_{t=1}^{T} I(\mathrm{x}, t)$
- Pixel-wise mean values are computed during training phase (also called Mean and Threshold)
- Adjacent Frame Difference $\quad I_{0}(\mathrm{x}, t)=I(\mathrm{x}, t-1)$
- Each image is subtracted from previous image in sequence
- Moving average $\quad I_{0}(\mathbf{x}, t)=\frac{w_{a} I(\mathrm{x}, t)+\sum_{i=1}^{N} w_{i} I(\mathrm{x}, \iota-i)}{w_{c}}$
- Background model is linear weighted sum of previous frames

Background Subtraction: Issues

- Noise models
- Unimodal: Pixel values vary over time even for static scenes
- Multimodal: Features in background can "oscillate", requiring models which can represent disjoint sets of pixel values (e.g., waving trees against sky)
- Gross illumination changes
- Continuous: Gradual illumination changes alter the appearance of the background (e.g., time of day)
Discontinuous: Sudden changes in illumination and other scene
parameters alter the appearance of the background (e.g., flipping a parameters a
light switch
- Bootstrapping
- Is a training phase with "no foreground" necessary, or can the system learn what's static vs. dynamic online?

Technique: Shot Boundary Detection

- Find the shots in a
sequence of video
- shot boundaries usually result in big differences between succeeding frames
- Strategy
- compute interframe distances
- declare a boundary where these are big
- Distance measures
- frame differences
- histogram differences
- block comparisons
- edge differences
- Applications
- representation for movies, or video sequences
- obtain "most representative" frame
- supports search

Application: Sony Eyetoy

- For most games, this apparently uses simple frame differencing to detect regions of motion
- However, some applications use background subtraction to cut out an image of the user to insert in video
- Over 4 million units sold

