Segmentation by Clustering Reading: Chapter 14 (skip 14.5)

- Data reduction obtain a compact representation for interesting image data in terms of a set of components
- Find components that belong together (form **clusters**)
- Frame differencing Background Subtraction and Shot Detection

Slide credits for this chapter: David Forsyth, Christopher Rasmussen

Segmentation by Clustering

Segmentation by Clustering

Segmentation by Clustering

From: Object Recognition as Machine Translation, Duygulu, Barnard, $\operatorname{\mathbf{de}}$ Freitas, Forsyth, ECCV02

General ideas

- Tokens
 - whatever we need to group (pixels, points, surface elements, etc., etc.)
- Top down segmentation
 - tokens belong together because they lie on the same object
- Bottom up segmentation
 - tokens belong together because they are locally coherent
- These two are not mutually exclusive

Why do these tokens belong together?

Basic ideas of grouping in human vision

- Figure-ground discrimination
 - grouping can be seen in terms of allocating some elements to a figure, some to ground
 - Can be based on local bottom-up cues or high level recognition
- · Gestalt properties
 - Psychologists have studies a series of factors that affect whether elements should be grouped together
 - Gestalt properties

Segmentation as clustering

- Cluster together (pixels, tokens, etc.) that belong together
- Agglomerative clustering
 - merge closest clusters
 - repeat
- Divisive clustering
 - split cluster along best boundary
 - repeat

- · Point-Cluster distance
 - single-link clustering
 - complete-link clustering
 - group-average clustering
- · Dendrograms
 - yield a picture of output as clustering process continues

Feature Space

- Every token is identified by a set of salient visual characteristics called *features*. For example:
 - Position
 - Color
 - Texture
 - Motion vector
 - Size, orientation (if token is larger than a pixel)
- The choice of features and how they are quantified implies a feature space in which each token is represented by a point
- Token similarity is thus measured by distance between points ("feature vectors") in feature space

Slide credit: Christopher Rasmussen

K-Means Clustering

- Initialization: Given K categories, N points in feature space. Pick K points randomly; these are initial cluster centers (means) m₁, ..., m_K. Repeat the following:
 - 1. Assign each of the N points, x_j , to clusters by nearest m_i (make sure no cluster is empty)
 - 2. Recompute mean m_i of each cluster from its member points
 - 3. If no mean has changed, stop
- Effectively carries out gradient descent to minimize:

$$\sum_{i \in \text{clusters}} \left\{ \sum_{j \in \text{elements of i'th cluster}} \left\| x_j - \mu_i \right\|^2 \right\}$$

Slide credit: Christopher Rasmusse

K-Means

Minimizing squared distances to the center implies that the center is at the mean:

$$\begin{split} e(\mathbf{m}_i) &= \sum_{i=1}^{n_c} \sum_{j;c_j=i} |\mathbf{x}_j - \mathbf{m}_i|^2 \\ \frac{\partial e}{\partial \mathbf{m}_k} &= \sum_{j,c_j=k} -2(\mathbf{x}_j - \mathbf{m}_k) = 0 \end{split} \qquad \begin{array}{c} \text{Derivative of error is zero at the minimum} \end{split}$$

$$\mathbf{m}_k = \frac{\sum_{j:c_j = k} \mathbf{x}_j}{\sum_{j:c_j = k} 1} = \frac{1}{n_k} \sum_{j:c_j = k} \mathbf{x}_j$$

K-means clustering using intensity alone and color alone

Technique: Background Subtraction

- · If we know what the background looks like, it is easy to segment out new regions
- Applications
 - Person in an office
 - Tracking cars on a road
 - Surveillance
 - Video game interfaces
- · Approach:
 - use a moving average to estimate background image
 - subtract from current frame
 - large absolute values are interesting pixels

Background Subtraction

The problem: Segment moving foreground objects from static

Current image

Background image Foreground pixels

Slide credit: Christopher Rasm

Algorithm

background $I_0(\mathbf{x},t)$ video sequence $I(\mathbf{x}, t)$

thresholded frame diff $d_T(\mathbf{x},t)$ frame difference $d(\mathbf{x}, t)$

for t = 1:N

Update background model $I_0(\mathbf{x}, t)$

Compute frame difference $d(\mathbf{x},t) = |I(\mathbf{x},t) - I_0(\mathbf{x},t)|$ Threshold frame difference $d_T(\mathbf{x},t) = d(\mathbf{x},t) > thresh$ $d_T(\mathbf{x}, t) = imerode(d_T(\mathbf{x}, t))$ Noise removal

end

Objects are detected where $d_T(\mathbf{x},t)$ is non-zero

Background Modeling

- · Offline average
- $I_0(\mathbf{x},t) = \frac{1}{T} \sum_{t=1}^{T} I(\mathbf{x},t)$
- Pixel-wise mean values are computed during training phase (also called Mean and Threshold)
- Adjacent Frame Difference $I_0(x,t) = I(x,t-1)$
 - Each image is subtracted from previous image in sequence
- Moving average $I_0(\mathbf{x},t) = \frac{w_a I(\mathbf{x},t) + \sum_{i=1}^N w_i I(\mathbf{x},t-i)}{2}$
 - Background model is linear weighted sum of previous frames

Background Subtraction: Issues

- · Noise models
 - Unimodal: Pixel values vary over time even for static scenes
 - Multimodal: Features in background can "oscillate", requiring models which can represent disjoint sets of pixel values (e.g., waving trees against sky)
- Gross illumination changes
 Continuous: Gradual illumination changes alter the appearance of the background (e.g., time of day)
 - **Discontinuous:** Sudden changes in illumination and other scene parameters alter the appearance of the background (e.g., flipping a light switch
- Bootstrapping
 - Is a training phase with "no foreground" necessary, or can the system learn what's static vs. dynamic online?

Application: Sony Eyetoy

- · For most games, this apparently uses simple frame differencing to detect regions of motion
- However, some applications use background subtraction to cut out an image of the user to insert in video
- · Over 4 million units sold

Technique: Shot Boundary Detection

- · Find the shots in a sequence of video
 - shot boundaries usually result in big differences between succeeding frames
- Strategy
 - compute interframe distances
 - declare a boundary where these are big

- Distance measures
 - frame differences
 - histogram differences
 - block comparisons
 - edge differences
- Applications
 - representation for movies, or video sequences
 - obtain "most representative" frame
 - supports search