
Stereo Vision
Reading: Chapter 11

• Stereo matching computes depth from two or more images

• Subproblems:
– Calibrating camera positions.

– Finding all corresponding points (hardest part)

– Computing depth or surfaces.

Slide credits for this chapter: David Jacobs, Frank Dellaert, Octavia Camps, Steve Seitz





Stereo vision

Triangulate on two images of the 
same point to recover depth.
– Feature matching across views
– Calibrated cameras
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The epipolar constraint

• Epipolar Constraint

– Matching points lie along corresponding epipolar lines

– Reduces correspondence problem to 1D search along 
conjugate epipolar lines

– Greatly reduces cost and ambiguity of matching

epipolar plane
epipolar lineepipolar lineepipolar lineepipolar line

Slide credit: Steve Seitz



Simplest Case: Rectified Images

• Image planes of cameras are parallel.

• Focal points are at same height.

• Focal lengths same.

• Then, epipolar lines fall along the horizontal scan lines of 
the images

• We will assume images have been rectified so that epipolar 
lines correspond to scan lines

– Simplifies algorithms

– Improves efficiency



We can always achieve this 
geometry with image rectification

• Image Reprojection
– reproject image planes onto common 

plane parallel to line between optical 
centers

• Notice, only focal point of camera really 
matters

(Seitz)



Basic Stereo Derivations
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Correspondence

• It is fundamentally ambiguous, even with stereo constraints

Ordering constraint… …and its failure



Correspondence: What should we match?

• Objects?

• Edges?

• Pixels?

• Collections of pixels?



Julesz: showed that recognition is not needed for stereo.



Correspondence: Epipolar constraint.

The epipolar constraint helps, but much ambiguity remains.



Correspondence: Photometric constraint

• Same world point has same intensity in both images.

– True for Lambertian surfaces

• A Lambertian surface has a brightness that is 
independent of viewing angle

– Violations:

• Noise

• Specularity

• Non-Lambertian materials

• Pixels that contain multiple surfaces



Pixel matching

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

This leaves too much ambiguity, so:

Improvement:  match windows
(Seitz)



Correspondence Using 
Correlation

SSD error

disparity
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scanline



Sum of Squared (Pixel) 
Differences
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Image Normalization

• Even when the cameras are identical models, there can be 
differences in gain and sensitivity.

• For these reason and more, it is a good idea to normalize the 
pixels in each window:
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Images as Vectors

Left Right
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“Unwrap”
image to form 
vector, using 
raster scan order

Each window is a vector
in an m2 dimensional
vector space.
Normalization makes
them unit length.



Image Metrics
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Stereo Results

Images courtesy of Point Grey Research



Window size

W = 3 W = 20

• Effect of window size

• Some approaches have been developed to use an adaptive 
window size (try multiple sizes and select best match)

(Seitz)



Stereo testing and comparisons

Ground truthScene

D. Scharstein and R. Szeliski. "A Taxonomy and Evaluation of Dense Two-
Frame Stereo Correspondence Algorithms," International Journal of 
Computer Vision, 47 (2002), pp. 7-42. 



Scharstein and Szeliski



Results with window correlation

Window-based matching
(best window size)

Ground truth

(Seitz)



Results with better method

State of the art method: Graph cuts Ground truth

(Seitz)



Stereo Correspondences

… …
Left scanline Right scanline



Stereo Correspondences

… …
Left scanline Right scanline
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Search Over Correspondences

Three cases:
– Sequential – add cost of match (small if intensities agree)
– Occluded – add cost of no match (large cost)
– Disoccluded – add cost of no match (large cost)

Left scanline

Right scanline

Occluded Pixels

Disoccluded Pixels



Stereo Matching with Dynamic 
Programming

Dynamic programming yields the 
optimal path through grid. This is 
the best set of matches that 
satisfy the ordering constraint

Occluded Pixels
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Dynamic Programming

• Efficient algorithm for solving sequential decision (optimal path) problems.
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming
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Stereo Matching with Dynamic 
Programming

Scan across grid computing optimal 
cost for each node given its 
upper-left neighbors.
Backtrack from the terminal to 
get the optimal path.

Occluded Pixels
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Stereo Matching with Dynamic 
Programming

Scan across grid computing optimal 
cost for each node given its 
upper-left neighbors.
Backtrack from the terminal to 
get the optimal path.
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Stereo Matching with Dynamic 
Programming

Scan across grid computing optimal 
cost for each node given its 
upper-left neighbors.
Backtrack from the terminal to 
get the optimal path.
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Scharstein and Szeliski



Segmentation-based Stereo

Hai Tao and Harpreet W. Sawhney



Another Example



Result using a good technique

Right ImageLeft ImageDisparity



View Interpolation



Computing Correspondence

• Another approach is to match edges rather than windows of pixels:

• Which method is better?

– Edges tend to fail in dense texture (outdoors)

– Correlation tends to fail in smooth featureless areas



Summary of different stereo methods

• Constraints:
– Geometry, epipolar constraint.
– Photometric: Brightness constancy, only partly true.
– Ordering: only partly true.
– Smoothness of objects: only partly true.

• Algorithms: 
– What you compare: points, regions, features?

• How you optimize:
– Local greedy matches.
– 1D search.
– 2D search.


