Stereo Vision Reading: Chapter 11

• Stereo matching computes depth from two or more images

• Subproblems:

- Calibrating camera positions.
- Finding all corresponding points (hardest part)
- Computing depth or surfaces.

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Stereo vision

Triangulate on two images of the same point to recover depth.

- Feature matching across views
- Calibrated cameras

Matching correlation windows across scan lines

The epipolar constraint

- Epipolar Constraint
 - Matching points lie along corresponding epipolar lines
 - Reduces correspondence problem to 1D search along conjugate epipolar lines
 - Greatly reduces cost and ambiguity of matching

Simplest Case: Rectified Images

- Image planes of cameras are parallel.
- Focal points are at same height.
- Focal lengths same.
- Then, epipolar lines fall along the horizontal scan lines of the images
- We will assume images have been *rectified* so that epipolar lines correspond to scan lines
 - Simplifies algorithms
 - Improves efficiency

We can always achieve this geometry with image rectification

- Image Reprojection
 - reproject image planes onto common plane parallel to line between optical centers

(Seitz)

• Notice, only focal point of camera really matters

Basic Stereo Derivations

Correspondence

• It is fundamentally ambiguous, even with stereo constraints

Ordering constraint...

...and its failure

Correspondence: What should we match?

- Objects?
- Edges?
- Pixels?
- Collections of pixels?

Random dot stereograms

Julesz: showed that recognition is not needed for stereo.

Correspondence: Epipolar constraint.

The epipolar constraint helps, but much ambiguity remains.

Correspondence: Photometric constraint

- Same world point has same intensity in both images.
 - True for Lambertian surfaces
 - A Lambertian surface has a brightness that is independent of viewing angle
 - Violations:
 - Noise
 - Specularity
 - Non-Lambertian materials
 - Pixels that contain multiple surfaces

Pixel matching

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

This leaves too much ambiguity, so:

Improvement: match windows

(Seitz)

Correspondence Using Correlation

Left

Right

disparity

Sum of Squared (Pixel) Differences

Left	Right			
		W_L	W_R	
		m		
	I I II R	<i>m</i> •	•	
		(x_L, y_L)	$(x_L - d, y)$	_L)
1 _L	I_R			

 w_L and w_R are corresponding *m* by *m* windows of pixels. We define the window function :

$$W_m(x, y) = \{u, v \mid x - \frac{m}{2} \le u \le x + \frac{m}{2}, y - \frac{m}{2} \le v \le y + \frac{m}{2}\}$$

The SSD cost measures the intensity difference as a function of disparity :

$$C_{r}(x, y, d) = \sum_{(u,v) \in W_{m}(x,y)} [I_{L}(u,v) - I_{R}(u-d,v)]^{2}$$

Image Normalization

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- For these reason and more, it is a good idea to normalize the pixels in each window:

$$\bar{I} = \frac{1}{|W_m(x,y)|} \sum_{(u,v) \in W_m(x,y)} I(u,v)$$
Average pixel
$$\|I\|_{W_m(x,y)} = \sqrt{\sum_{(u,v) \in W_m(x,y)} [I(u,v)]^2}$$
Window magnitude
$$\hat{I}(x,y) = \frac{I(x,y) - \bar{I}}{\|I - \bar{I}\|_{W_m(x,y)}}$$
Normalized pixel

Images as Vectors

Image Metrics

 w_L $w_R(d)$

(Normalized) Sum of Squared Differences

$$C_{\text{SSD}}(d) = \sum_{(u,v) \in W_m(x,y)} [\hat{I}_L(u,v) - \hat{I}_R(u-d,v)]^2$$
$$= \|w_L - w_R(d)\|^2$$

Normalized Correlation

$$C_{\rm NC}(d) = \sum_{(u,v)\in W_m(x,y)} \hat{I}_L(u,v) \hat{I}_R(u-d,v)$$
$$= w_L \cdot w_R(d) = \cos\theta$$

$$d^* = \arg \min_d ||w_L - w_R(d)||^2 = \arg \max_d w_L \cdot w_R(d)$$

Stereo Results

Images courtesy of Point Grey Research

Window size

W = 20

- Effect of window size
- Some approaches have been developed to use an adaptive window size (try multiple sizes and select best match)

(Seitz)

Stereo testing and comparisons

D. Scharstein and R. Szeliski. "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms," *International Journal of Computer Vision*, 47 (2002), pp. 7-42.

Ground truth

Scene

True disparities

19 - Belief propagation

 $11 - \mathrm{GC} + \mathrm{occlusions}$

20 - Layered stereo

10 - Graph cuts

*4 - Graph cuts

13 - Genetic algorithm

6 – Max flow

12 - Compact windows

9 - Cooperative alg.

15 - Stochastic diffusion

*2 - Dynamic progr.

14 – Realtime SAD

*3 – Scanline opt.

7 - Pixel-to-pixel stereo

*1 - SSD + MF

Scharstein and Szeliski

Results with window correlation

Window-based matching (best window size)

Ground truth

(Seitz)

Results with better method

State of the art method: Graph cuts

Ground truth

(Seitz)

Stereo Correspondences

Stereo Correspondences

Search Over Correspondences

Disoccluded Pixels

Three cases:

- Sequential add cost of match (small if intensities agree)
- Occluded add cost of no match (large cost)
- Disoccluded add cost of no match (large cost)

Occluded Pixels

Left scanline

Right scanline

Dis-occluded Pixels

Dynamic programming yields the optimal path through grid. This is the best set of matches that satisfy the ordering constraint

• Efficient algorithm for solving sequential decision (optimal path) problems.

How many paths through this trellis? 3^T

Suppose cost can be decomposed into stages:

 Π_{ii} = Cost of going from state *i* to state *j*

i = 1 Π_{12} 1 Π_{22} *j* = 2 2 i = 22 2 Π_{32} *i* = 3 3 3 3 C_{t} C_{t+1} C_{t-1}

Principle of Optimality for an n-stage assignment problem:

 $C_t(j) = \min_i (\Pi_{ij} + C_{t-1}(i))$

Occluded Pixels

Left scanline

Scan across grid computing optimal cost for each node given its upper-left neighbors. Backtrack from the terminal to get the optimal path.

Occluded Pixels

Dis-occluded Pixels

Scan across grid computing optimal cost for each node given its upper-left neighbors. Backtrack from the terminal to get the optimal path.

Occluded Pixels

Dis-occluded Pixels

Left scanline

Scan accost f
upper
Backt
get th

Terminal

Scan across grid computing optimal cost for each node given its upper-left neighbors. Backtrack from the terminal to get the optimal path.

True disparities

19 - Belief propagation

 $11 - \mathrm{GC} + \mathrm{occlusions}$

20 - Layered stereo

10 - Graph cuts

*4 - Graph cuts

13 - Genetic algorithm

6 – Max flow

12 - Compact windows

9 - Cooperative alg.

15 - Stochastic diffusion

*2 - Dynamic progr.

14 – Realtime SAD

*3 – Scanline opt.

7 - Pixel-to-pixel stereo

*1 - SSD + MF

Scharstein and Szeliski

Segmentation-based Stereo

Hai Tao and Harpreet W. Sawhney

Another Example

Result using a good technique

Rigfstplandge

View Interpolation

Computing Correspondence

• Another approach is to match *edges* rather than windows of pixels:

- Edges tend to fail in dense texture (outdoors)
- Correlation tends to fail in smooth featureless areas

Summary of different stereo methods

• Constraints:

- Geometry, epipolar constraint.
- Photometric: Brightness constancy, only partly true.
- Ordering: only partly true.
- Smoothness of objects: only partly true.

• Algorithms:

– What you compare: points, regions, features?

• How you optimize:

- Local greedy matches.
- 1D search.
- 2D search.