Stereo Vision
Reading: Chapter 11

¢ Stereo matching computes depth from two or moeges
e Subproblems:
— Calibrating camera positions.

— Finding all corresponding points (hardest part)
— Computing depth or surfaces.

Slide credits for this chapter: David Jacobs, FréeKaert, Octavia Camps, Steve Seitz

Stereo vision

Triangulate on two images of the
same point to recover depth.

deppth — Feature matching across viewy
— Calibrated cameras
baseline

Left Right

Matching correlation
windows across scan lines

Simplest Case: Rectified Images

« Image planes of cameras are parallel.
» Focal points are at same height.
» Focal lengths same.

« Then, epipolar lines fall along the horizontalrstiaes of
the images

* We will assume images have beentified so that epipolar
lines correspond to scan lines

— Simplifies algorithms
— Improves efficiency

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

The epipolar constraint

epipolar line epipolar line

« Epipolar Constraint
— Matching points lie along corresponding epipolaes
— Reduces correspondence problem to 1D search along
conjugate epipolar lines
— Greatly reduces cost and ambiguity of matching

Slide credit: Steve Seitz

We can always achieve this
geometry with image rectification

« Image Reprojection

— reproject image planes onto col

plane parallel to line between optical
centers

* Notice, only focal point of camera really
matters

(Seitz)




Basic Stereo Derivations

Disparity: B
d=UL—UR=f? = Z=/f=

Correspondence

* It is fundamentally ambiguous, even with sterepstints

Ordering constraint... ...and its failure

Correspondence: What should we match?

* Objects?

« Edges?

* Pixels?

» Collections of pixels?

Random dot stereograms

Julesz: showed that recognition is not needed for stereo.

Correspondence: Epipolar constraint.

The epipolar constraint helps, but much ambigwetyains.

Correspondence: Photometric constraint

¢ Same world point has same intensity in both images
— True for Lambertian surfaces

« A Lambertian surface has a brightness that is
independent of viewing angle

— Violations:
« Noise
* Specularity
« Non-Lambertian materials
« Pixels that contain multiple surfaces




Pixel matching

T HON. ABRAIL 1t of United Stafes.

For each epipolar line
For each pixel in the left image
« compare with every pixel on same epipolar line in right image
« pick pixel with minimum match cost
This leaves too much ambiguity, so:

Improvement: match windows
(Seitz)

Correspondence Using
Correlation
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SSD error
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Image Normalization

» Even when the cameras are identical models, ttarde
differences in gain and sensitivity.

« For these reason and more, it is a good ideanoalize the
pixels in each window:

Images as Vectors
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Stereo Results

Images courtesy of Point Grey Research

Window size

W=3

« Effect of window size

« Some approaches have been developed to use aivadap
window size (try multiple sizes and select bestamgt

(Seitz)

Stereo testing and comparisons

D. Scharstein and R. Szeliski. "A Taxonomy and Hatibn of Dense Two-
Frame Stereo Correspondence Algorithnhstérnational Journal of
Computer Vision, 47 (2002), pp. 7-42.
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Results with window correlation

Window-based matching Ground truth
(best window size)

(Seitz)

Results with better method

State of the art method: Graph cuts Ground truth

(Seitz)




Stereo Correspondences

Left scanline Right scanline

Stereo Correspondences

Left scanline Right scanline

Match

Match

Match

Occlusion Disocclusion

Search Over Correspondences

Occluded Pixels
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Disoccluded Pixels

Three cases:
—Sequential — add cost of match (small if intensiéigree)
—Occluded — add cost of no match (large cost)
—Disoccluded — add cost of no match (large cost)

Stereo Matching with Dynamic
Programming

Occluded Pixels

A TTTTTTTTT]

Start Left scanline

Dynamic programming yields the
optimal path through grid. This is
the best set of matches that
satisfy the ordering constraint
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Dynamic Programming

« Efficient algorithm for solving sequential decisioptimal path) problems.

t=1 t=2 t=3 t=T

How many paths through this trellis? 3"

Dynamic Programming

i=1 My,

States: =2 :22
32

i=3

thl Ct Ct+1
Suppose cost can be decomposed into stages:

M, = Costof goingfromstate tostatej




Dynamic Programming
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Ct-l Ct Cy+1
Principle of Optimality for an n-stage assignment problem:
C. (1) =min; (M +C4 (7))

Stereo Matching with Dynamic
Programming

Occluded Pixels
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Dynamic Programming
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C.(j) =min, (N, +C.,(i))
b (j) =argmin; (N if +C4 (1)

Stereo Matching with Dynamic
Programming

Occluded Pixels
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Left scanline

Scan across grid computing optimal
cost for each node given its
upper-left neighbors.
Backtrack from the terminal to
get the optimal path.

auluess ybry

Terminal
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Segmentation-based Stereo

Hai Tao and Harpreet W. Sawhney

Result using a good technique

Another Example

View Interpolation

Computing Correspondence

Another approach is to matetiges rather than windows of pixels:

-V

georCo1Ge

— Edges tend to fail in dense texture (outdoors)
— Correlation tends to fail in smooth featurelessaar

Summary of different stereo methods

« Constraints:
— Geometry, epipolar constraint.

— Photometric: Brightness constancy, only partlgiru
— Ordering: only partly true.

— Smoothness of objects: only partly true.
¢ Algorithms:

— What you compare: points, regions, features?
How you optimize:

— Local greedy matches.

— 1D search.
— 2D search.




