Stereo Vision
 Reading: Chapter 11

- Stereo matching computes depth from two or more images
- Subproblems:
- Calibrating camera positions.
- Finding all corresponding points (hardest part)
- Computing depth or surfaces.

Simplest Case: Rectified Images

- Image planes of cameras are parallel.
- Focal points are at same height.
- Focal lengths same.
- Then, epipolar lines fall along the horizontal scan lines of the images
- We will assume images have been rectified so that epipolar lines correspond to scan lines
- Simplifies algorithms
- Improves efficiency

The epipolar constraint

- Epipolar Constraint
- Matching points lie along corresponding epipolar lines
- Reduces correspondence problem to 1D search along conjugate epipolar lines
- Greatly reduces cost and ambiguity of matching

Correspondence: What should we match?

- Objects?
- Edges?
- Pixels?
- Collections of pixels?

Correspondence

- It is fundamentally ambiguous, even with stereo constraints

Ordering constraint...

...and its failure

Correspondence: Photometric constraint

- Same world point has same intensity in both images.
- True for Lambertian surfaces
- A Lambertian surface has a brightness that is independent of viewing angle
- Violations:
- Noise
- Specularity
- Non-Lambertian materials
- Pixels that contain multiple surfaces

Image Normalization

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- For these reason and more, it is a good idea to normalize the pixels in each window:
$\bar{I}=\frac{1}{\left|W_{m}(x, y)\right|} \sum_{(u, v) \in W} I(u, v) \quad$ Average pixel
$\|I\|_{W_{m}(x, y)}=\sqrt{\sum_{(u, v) \in W_{m}(x, y)}[I(u, v)]^{2}} \quad$ Window magnitude
$\hat{I}(x, y)=\frac{I(x, y)-I}{\|I-\bar{I}\|_{W_{m}(x, y)}} \quad \quad$ Normalized pixel
w_{L} and w_{R} are corresponding m by m windows of pixels.
We define the window function :
$W_{m}(x, y)=\left\{u, v \left\lvert\, x-\frac{m}{2} \leq u \leq x+\frac{m}{2}\right., y-\frac{m}{2} \leq v \leq y+\frac{m}{2}\right\}$
The SSD cost measures the intensity difference as a function of disparity:

$$
C_{r}(x, y, d)=\sum_{(u, v) \in W_{m}(x, y)}\left[I_{L}(u, v)-I_{R}(u-d, v)\right]^{2}
$$

Image Metrics

(Normalized) Sum of Squared Differences
$C_{\mathrm{SSD}}(d)=\sum_{(u, v) \in W_{m}(x, y)}\left[\hat{I}_{L}(u, v)-\hat{I}_{R}(u-d, v)\right]^{2}$

$$
=\left\|w_{L}-w_{R}(d)\right\|^{2}
$$

Normalized Correlation
$\left.C_{\mathrm{NC}}(d)=\sum_{(u, v) \in W_{m}} \hat{I}_{L}(x, y), v\right) \hat{I}_{R}(u-d, v)$
$=w_{L} \cdot w_{R}(d)=\cos \theta$
$d^{*}=\arg \min _{d}\left\|w_{L}-w_{R}(d)\right\|^{2}=\arg \max _{d} w_{L} \cdot w_{R}(d)$

- Effect of window size
- Some approaches have been developed to use an adaptive window size (try multiple sizes and select best match)
(Seitz)

Results with better method

State of the art method: Graph cuts
Ground truth
(Seitz)

Dynamic Programming

- Efficient algorithm for solving sequential decision (optimal path) problems.

How many paths through this trellis? 3^{T}

Dynamic Programming

| $i=1$ | 1 | Π_{12} | 1 | $\boxed{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Suppose cost can be decomposed into stages:
$\Pi_{i j}=$ Cost of going from state i to state j

Dynamic Programming

Principle of Optimality for an n-stage assignment problem:
$C_{t}(j)=\min _{i}\left(\Pi_{i j}+C_{t-1}(i)\right)$

Dynamic Programming

$$
\begin{array}{ccc}
i=1 & 1 & \boxed{1} \\
i=2 & 2 & \\
i=3 & & \\
& & \\
& & \\
& b_{t-1}(2)=2 & \\
& \begin{array}{l}
2 \\
C_{t}(j)=\min _{i}\left(\Pi_{i j}+C_{t-1}(i)\right) \\
\\
b_{t}(j)=\arg \min _{i}\left(\Pi_{i j}+C_{t-1}(i)\right)
\end{array}
\end{array}
$$

Stereo Matching with Dynamic
Programming
Occluded Pixels

View Interpolation

Computing Correspondence
Summary of different stereo methods

- Constraints:
- Geometry, epipolar constraint.
- Photometric: Brightness constancy, only partly true.
- Ordering: only partly true.
- Smoothness of objects: only partly true.
- Algorithms:
- What you compare: points, regions, features?
- How you optimize:
- Local greedy matches.
- 1D search.
- 2D search.

