Texture
Reading: Chapter 9 (skip 9.4)

 Keyissue: How do we represent texture?
e Topics.

— Texture segmentation

— Texture-based matching

— Texture synthesis

e Can be based on simpler representations than
analysis

— Shape from texture (we will skip)



ODbjectives: 1) Discrimination/Analysis

The Goal of Texture Analysis

Iﬂpur image

“dilferent™

ANALYSIH “Same” or

True ( nﬁnfr) texture generated image

Compare textures and decide if they’re made of the
same “‘stuff”.

Slide credit: Freeman



2) Synthesis

The Goal of Texture Synthesis

Inpur image

True (infinite) texture — generated image

Slide credit: Freeman



Representing textures

Observation: textures are made up of subelemeagsated
over a region with similar statistical properties

Texturerepresentation:
— find the subelements, and represent their stisti
* What filters can find the subelements?

— Human vision suggests spots and oriented filteas a
variety of different scales

 What statistics?
— Mean of each filter response over region
— Other statistics can also be useful



Human texture perception
Bergen and Adelson, Nature 1988

Learn size-tuned filter responses.
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Derivative of Gaussian Filters

Measure the image gradient and its direction &t chht
scales (use a pyramid).
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Add more oriented filters
(Malik & Perona, 1990)







Alternative: Gabor filters

[] u] M[I Gabor filters: Product of a
Gaussian with sine or cosine

Top row shows anti-symmetric
(or odd) filters, bottom row the
symmetric (or even) filters.

No obvious advantage to any
one type of oriented filters.



The Laplacian Pyramid

e Building a Laplacian pyramid:
— Create a Gaussian pyramid

— Take the difference between one Gaussian pyramid
level and the next (before subsampling)

* Properties
— Also known as the difference-of-Gaussian function,
which is a close approximation to the Laplacian

— Itis a band pass filter - each level represenmliff@rent
band of spatial frequencies

* Reconstructing theoriginal image:
— Reconstruct the Gaussian pyramid starting ataper|
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Oriented pyramids

o Laplacian pyramid is orientation independent

« Apply an oriented filter to determine orientatiatseach
layer

— This represents image information at a particsdate
and orientation.

— We will not study details in this course.



Filter Kernels
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Reprinted from “Shiftable MultiScale Transforms,” byn#ncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE
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Final texturerepresentation

Form a Laplacian and oriented pyramid (or equivaset
of responses to filters at different scales andmations).

Square the output (makes values positive)

Average responses over a neighborhood by blumitga
Gaussian

Take statistics of responses
— Mean of each filter output
— Possibly standard deviation of each filter output



Application: Texture-based | mage Matching

Decreasing
response
vector
similarity

Query image

Ordered list of
best matches
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from Forsyth & Ponce




Thetexture synthesis problem

Generate new examples of a texture.

e Original approach: Use the same representation for
analysis and synthesis

— This can produce good results for random textumess,
fails to account for some regularities

e Recent approach: Use an image of the texture as the
source of a probability model

— This draws samples directly from the actual textsp
can account for more types of structure

— Very simple to implement

— However, depends on choosing a correct distance
parameter



Efros and Leung




Thisislike copying, but not just repetition
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Efrosand L eung method
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* For each new pixad (selectp on boundary of texture):

— Match a window aroung to sample texture, and select
several closest matches

e Matching minimizes sum of squared differences of
each pixel in the window (Gaussian weighted)

e Give zero weight to empty pixels in the window

— Select one of the closest matches at random aniisus
center value fop



Initial conditionsfor growing texture

 If no initial conditions are specified, just piakpatch from
the texture at random

e Tofill in an empty region within an existing texe:

— Grow away from pixels that are on the boundarthef
existing texture



Window size parameter
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Increasing window size
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Image Extrapolation
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Further issuesin texture synthess

 How to improve efficiency
— Use fast nearest-neighbor search
 How to select region size automatically

 How to edit textures to modify them in natural
ways



