Matlab

(see Homework 1: Intro to Matlab)

Starting Matlab from Unix:

- matlab &
- matlab –nodisplay

Image representations in Matlab:

OR

- Unsigned 8bit values (when first read)
 Values in range [0, 255], 0 = black, 255 = white
- Double precision floating point

 By convention, values in range [0.0, 1.0]; 0.0 = black; 1.0 = white
- Colour images have 3 values at each pixel: RGB

 [0.0 0.0 0.0] = black; [1.0 1.0 1.0] = white; [1.0 0.0 0.0] = red
 - Sometimes accessed through a colour map (lookup table)

Linear Filters (Reading: 7.1, 7.5-7.7) • Linear filtering: – Form a new image whose pixels are a weighted sum of the original pixel values, using the same set of weights at each point

1

Average filter (box filter) • Mask with positive entries, that sum to 1. • Replaces each pixel with an average of its neighborhood. • If all weights are equal, it is called a **box** filter.

Efficient Implementation

- Both the BOX filter and the Gaussian filter are **separable** into two 1D convolutions:
 - First convolve each row with a 1D filter
 - Then convolve each column with a 1D filter.
 - (or vice-versa)

Separability of the Gaussian filter

For example, recall the 2D Gaussian

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Filters are templates

- Applying a filter at some point can be seen as taking a dotproduct between the image and some vector
- Filtering the image is a set of dot products

Insight

Normalized correlation

- Think of filters as a dot product of the filter vector with the image region
 - Now measure the angle between the vectors $a \cdot b = |a| |b| \cos \theta$
 - Angle (similarity) between vectors can be measured by normalizing length of each vector to 1.
 - Normalized correlation: divide each correlation by square root of sum of squared values (length)

We need scaled representations

- · Find template matches at all scales
 - e.g., when finding hands or faces, we don't know what size they will be in a particular image
 - Template size is constant, but image size changes
- Efficient search for correspondence
 - look at coarse scales, then refine with finer scales
 - much less cost, but may miss best match
- Examining all levels of detail
 - Find edges with different amounts of blur
 - Find textures with different spatial frequencies (levels of detail)

Aliasing We can't shrink an image by taking every second pixel If we do, characteristic errors appear Examples shown in next few slides Typically, small phenomena look bigger; fast phenomena can look slower Common examples Checkerboard patterns misrepresented in video games Striped shirts look funny on colour television Wagon wheels rolling the wrong way in movies

Summary of Linear Filters

Linear filtering:

 Form a new image whose pixels are a weighted sum of original pixel values

Properties

 Output is a shift-invariant function of the input (same at each image location)

Examples:

Smoothing with a box filter

• Smoothing with a Gaussian

- Finding a derivative
- · Searching for a template

Pyramid representations

• Important for describing and searching an image at all scales