Matlab

(see Homework 1: Intro to Matlab)

Starting Matlab from Unix:

- matlab \& OR
- matlab-nodisplay

Image representations in Matlab:

- Unsigned 8bit values (when first read) - Values in range [0, 255], $0=$ black, $255=$ white
- Double precision floating point
- By convention, values in range [0.0, 1.0]; $0.0=$ black; $1.0=$ white
- Colour images have 3 values at each pixel: RGB
- [0.0 0.00 .0] = black; [1.0 1.01 .0$]=$ white; [1.0 0.00 .0$]=$ red
- Sometimes accessed through a colour map (lookup table)

Linear Filters

(Reading: 7.1, 7.5-7.7)

- Linear filtering:

- Form a new image whose pixels are a weighted sum of the original pixel values, using the same set of weights at each point

Correlation compared to Convolution

Definition: Correlation

$$
I^{\prime}(X, Y)=\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X+i, Y+j)
$$

Definition: Convolution

$$
\begin{aligned}
I^{\prime}(X, Y) & =\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i, j) I(X-i, Y-j) \\
& =\sum_{j=-k}^{k} \sum_{i=-k}^{k} F(-i,-j) I(X+i, Y+j)
\end{aligned}
$$

NOTE: If $F(X, Y)=F(-X,-Y)$ then correlation \equiv convolution

Linear Filtering (warm-up slide)

Original

?

Image, \boldsymbol{R}, resulting from convolution of \boldsymbol{F} with image \boldsymbol{H}, where u,v range over kernel pixels (in 1D):
$R_{i j}=\sum_{u, v} H_{i-u, j-v} F_{u v}$

- Same as correlation, but with kernel reversed
- Represent the linear weights as an image, \boldsymbol{F}
- \boldsymbol{F} is called the kernel
- Center origin of the kernel F at each pixel location
- Multiply weights by corresponding pixels
- Set resulting value for

Warning: the textbook mixes up each pixel
H and F

Convolution

$\frac{\mathbf{1}}{\mathbf{9}}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Linear Filtering

Average filter (box filter)

- Mask with positive entries, that sum to 1.
- Replaces each pixel with an average of its neighborhood.
- If all weights are equal,
 it is called a box filter.

Smoothing with a Gaussian

- Smoothing with a box actually doesn't compare at all well with a defocussed lens
- Most obvious difference is that a single point of light viewed in a defocussed lens looks like a fuzzy blob; but the box filter would give a little square.

- A Gaussian gives a good model of a fuzzy blob
- It closely models many physical processes (the sum of many small effects)

Gaussian Kernel

- Idea: Weight contributions of neighboring pixels by nearness

- Constant factor at front makes volume sum to 1 (can be ignored, as we should re-normalize weights to sum to 1 in any case).

Efficient Implementation

- Both the BOX filter and the Gaussian filter are separable into two 1D convolutions:
- First convolve each row with a 1D filter
- Then convolve each column with a 1D filter.
- (or vice-versa)

Separability of the Gaussian filter
For example, recall the 2D Gaussian

$$
\begin{aligned}
\mathcal{G}_{\sigma}(x, y) & =\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{x^{2}}{2 \sigma^{2}}}\right)\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right)
\end{aligned}
$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Differentiation and convolution

- Recall, for 2D function, $\mathrm{f}(\mathrm{x}, \mathrm{y})$:
$\frac{\partial f}{\partial x}=\lim _{\varepsilon \rightarrow 0}\left(\frac{f(x+\varepsilon, y)}{\varepsilon}-\frac{f(x, y)}{\varepsilon}\right)$
- This is linear and shift invariant, so must be the result of a convolution.
- We could approximate this as
$\frac{\partial f}{\partial x} \approx \frac{f\left(x_{n+1}, y\right)-f\left(x_{n}, y\right)}{\Delta x}$
(which is obviously a convolution)

Filters are templates

- Applying a filter at some point
- Insight
can be seen as taking a dot-
product between the image and some vector
- filters look like the effects they are intended to find
- Filtering the image is a set of dot products
- filters find effects they look like

Normalized correlation

- Think of filters as a dot product of the filter vector with the image region
- Now measure the angle between the vectors $a \cdot b=|a \| b| \cos \theta$
- Angle (similarity) between vectors can be measured by normalizing length of each vector to 1 .
- Normalized correlation: divide each correlation by square root of sum of squared values (length)

Aliasing

- We can't shrink an image by taking every second pixel
- If we do, characteristic errors appear
- Examples shown in next few slides
- Typically, small phenomena look bigger; fast phenomena can look slower
- Common examples
- Checkerboard patterns misrepresented in video games
- Striped shirts look funny on colour television
- Wagon wheels rolling the wrong way in movies

We need scaled representations

- Find template matches at all scales
- e.g., when finding hands or faces, we don't know what size they will be in a particular image
- Template size is constant, but image size changes
- Efficient search for correspondence
- look at coarse scales, then refine with finer scales
- much less cost, but may miss best match
- Examining all levels of detail
- Find edges with different amounts of blur
- Find textures with different spatial frequencies (levels of detail)

Resampling with prior smoothing

Forsyth \& Ponce Figures 7.12-7.14 (top rows)

The Gaussian pyramid

- Create each level from previous one:
- smooth and sample
- Smooth with Gaussians, in part because
- a Gaussian*Gaussian $=$ another Gaussian
$-\mathrm{G}(\mathrm{x}) * \mathrm{G}(\mathrm{y})=\mathrm{G}\left(\operatorname{sqrt}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right)$
- Gaussians are low pass filters, so the representation is redundant once smoothing has been performed
- There is no need to store smoothed images at the full original resolution

Summary of Linear Filters

- Linear filtering:
- Form a new image whose pixels are a weighted sum of original pixel values
- Properties
- Output is a shift-invariant function of the input (same at each image location)

Examples:

- Smoothing with a box filter
- Smoothing with a Gaussian
- Finding a derivative
- Searching for a template

Pyramid representations

- Important for describing and searching an image at all scales

