Classifiersfor Recognition
Reading: Chapter 22 (skip 22.3)

e Examine each window of
an image

« Classify object class
within each window based
on atraining set images

Slide credits for this chapter:
Frank Dellaert, Forsyth & Ponce, Paul Viola, Clodier Rasmussen



Example: A Classification Problem

Categorize images of fish—say,
“Atlantic salmon” vs. “Pacific salmon”

Use features such as length, width,
lightness, fin shape & number, mouth
position, etc.

Steps

1. Preprocessing (e.g., background
subtraction)

2. Feature extraction
3. Classification

example from Duda & Hart



Bayes Risk

Some errors may be inevitable: the minimum
risk (shaded area) is called the Bayes risk

Decision Boundary Decision Boundary
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Discriminative vs Generative Models

Finding a decision boundary is not the same as
modeling a conditional density.
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| oss functionsin classifiers

e Loss
— some errors may be more expensive than others

» e.g. a fatal disease that is easily cured by aghe
medicine with no side-effects -> false positives in
diagnosis are better than false negatives

— We discuss two class classification: L(1->2) i lkbss
caused by calling 1 a2

e Total risk of using classifier s
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Histogram based classifiers

Use a histogram to represent the class-conditideasities
— (i.e. p(x|1), p(x|2), etc)

Advantage: Estimates converge towards correcisl
with enough data

Disadvantage: Histogram becomes big with high
dimension so requires too much data

— but maybe we can assume feature independence?



Example Histograms

Histogram 10 bins
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Kernel Density Estimation

« Parzen windows. Approximate probability density by estimating
local density of points (same idea as a histogram)

— Convolve points with window/kernel function (e.@aussian)
using scale parameter (e.g., sigma)

from Hastie et al.



Density Estimation at Different Scales

Example: Density estimates for 5 data points wifferently-
scaled kernels

Scale influences accuracy vs. generality (overfit
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Example: Kernel Density Estimation
Decision Boundaries

from Duda et al.

Smaller Larger



Application: Skin Colour Histograms

o Skin has a very small range of (intensity indeerip
colours, and little texture

— Compute colour measure, check if colour is in this
range, check if there is little texture (mediatefi)

— Get class conditional densities (histograms),rpriimm
data (counting)

» Classifier is
e if p(skin|x) > 0, classify as skin

e if p(skin|@x) < @, classify as not skin



Skin Colour Models
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Skin Colour Classification

For every pixel p, in I,
* Determine the chrominance values (a,b,) of I (p;)

» Lookup the skin likelihood for (a,b.) using the skin
chrominance model.

* Assign this likelithood to 1, (p;)

l courtesy 49

of G. Loy

skin



Results

Figure from “Statistical color models with applicat to skin
detection,” M.J. Jones and J. Rehg, Proc. CompugoiVand
Pattern Recognition, 1999 copyright 1999, IEEE



ROC Curves

(Receiver
operating
characteristics)

Plots trade-off
between false
positives and
false negatives
for different
values of a
threshold

Prabablty of comadct daleachon

ROC curves on test sel shawing affect of increased bin size
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Figure from “Statistical color models with appliicat to skin
detection,” M.J. Jones and J. Rehg, Proc. ComputoiVand
Pattern Recognition, 1999 copyright 1999, IEEE
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Nearest Neighbor Classifier

* Assign label of nearest training data point tohet@st data
point

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2-D and 3-D data



K-Nearest Neighbors

For a new point, find the k closest points froairimg data
Labels of the k points “vote” to classify

Avoids fixed scale choice—uses data itself (candry
Important in practice)

Simple method that works well if the distance nueas
correctly weights the various dimensions

from
X, Duda et al.

k=5 Example density estimate




Neural networks

« Compose layered classifiers

— Use a weighted sum of elements at the previows lay
compute results at next layer

— Apply a smooth threshold function from each lager
the next (introduces non-linearity)

— Initialize the network with small random weights

— Learn all the weights by performing gradient desce
(i.e., perform small adjustments to improve regults






Traning

Adjust parameters to minimize error on training se

Perform gradient descent, making small changésan
direction of the derivative of error with respecteach
parameter

Stop when error is low, and hasn’t changed much

Network itself is designed by hand to suit thelglem, so
only the weights are learned



T

Derotated Correeted Histogram Heceptive Felds

Hidden Lnits

Window Lighting Eoualieed _ o
I ‘I | n
b P /
W A%
Preprocessing Dietection Netwerk Architesmore

The vertical face-finding part of Rowley, Baluja aldnade’s system

Figure from “Rotation invariant neural-network bddace detection,” H.A. Rowley,
S. Baluja and T. Kanade, Proc. Computer Vision aaiteih Recognition, 1998,
copyright 1998, IEEE



Input boage Pyosmid  Eurscied Wiondow  Hisiognon L rosd gz Uorrecwed Hislogruin Heoepiree Bields

{20 by 10 pixchs) Eepmlized Hiilden Lisns

E
B

I". -.. I"'

-L eyt
=§| | =i . |'l :___-ﬁ ﬂ\r
! & hripon
? Metwiik o f L:_’I':: ey W,
| _I::I-HI ll. I:J&I:-I:-‘:Fiﬂzg #I:
'II' r 20 by 200 '_.,g[':[:E &9
‘: ||! 3 - I"j-r_l_.:. I_-:I I-: E:, - } /
I Lol ] a
[ % =04
f ll I:-_-__.-":".- €
f I:-f.-:::-'” 4]
i .’I l | -eee
g Y g
, [T Linirs Cwipu F, ¥ W
W PP e st Ietecniim Werwerk Archieenime

Fenurer Seiwork

Architecture of the complete system: they use aratlkeural
net to estimate orientation of the face, then fedti They
search over scales to find bigger/smaller faces.

Figure from “Rotation invariant neural-network bddace detection,” H.A. Rowley, S.
Baluja and T. Kanade, Proc. Computer Vision andePatkRecognition, 1998, copyright
1998, IEEE



Face Finder: Training

* Positive examples:

— Preprocess ~1,000 example face images

iInto 20 x 20 inputs

— Generate 15 “clones” of each with small EEEHH

random rotations, scalings, translations,

reflections
* Negative examples
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— Test net on 120 known “no-face” images
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from Rowley et al.



Face Finder: Results

* 79.6% of true faces detected with few false pes#tiover complex
test set

125113512

135 true faces
125 detected
12 false positives

2615x1988
from Rowley et al.



Face Finder Results:
Examples of Misses

from Rowley et al.



Find the facel

 The human visual system needs to apply seriaitadteto
detect faces (context often helps to predict wihefeok)



Convolutional neural networks

 Template matching using NN classifiers seems ttkwo

 Low-level features are linear filters
— why not learn the filter kernels, too?
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A convolutional neural network, LeNet; the layettefi, subsample, filter,
subsample, and finally classify based on outputkiefprocess.

Figure from “Gradient-Based Learning Applied to Dowent
Recognition”, Y. Lecun et al Proc. IEEE, 1998 cogiiti1998, IEEE
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Fig. 5. Traiming and test error of LeMel-5 as a [unction of the
number of passes through the 60000 pattern training set (without
distartions), The average trmimng ermor 15 measured on-the-fly as
tramming proceeds. This explains why the raimng ecror appears (o
be larger than the test error initially. Convergence is attained after
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LeNet is used to classify handwritten digits. Netibhat the
test error rate is not the same as the trainiray eate, because
the learning “overfits” to the training data.

Figure from “Gradient-Based Learning Applied to Dowent
Recognition”, Y. Lecun et al Proc. IEEE, 1998 cogiti1998, IEEE



Support Vector Machines

* Try to obtain the decision boundary directly

— potentially easier, because we need to encodetioaly
geometry of the boundary, not any irrelevant wiggre
the posterior.

— Not all points affect the decision boundary



Support Vectors

NON-FACES







Pedestrlan Detectlon Wlth SVMs




Figure from, “A general framework for object deteat” by C. Papageorgiou, M. Oren
and T. Poggio, Proc. Int. Conf. Computer Vision989copyright 1998, IEEE
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(b) People Detection System

Figure from, “A general framework for object deteat” by C. Papageorgiou, M. Oren
and T. Poggio, Proc. Int. Conf. Computer Vision989copyright 1998, IEEE



