Panorama Stitching and Augmented Reality

Local feature matching with large datasets

Examples:

- Identify all panoramas and objects in an image set
- Identify all products in a supermarket
- Identify any location for robot localization or augmented reality

Matching in large unordered datasets

Matching in large unordered datasets

Nearest-neighbor matching

Solve following problem for all feature vectors, x:

$$\forall j \ NN(j) = \arg\min_{i} ||\mathbf{x}_i - \mathbf{x}_j||, \ i \neq j$$

- Nearest-neighbour matching is the major computational bottleneck
 - Linear search performs *dn*² operations for *n* features and *d* dimensions
 - No exact methods are faster than linear search for d>10
 - Approximate methods can be much faster, but at the cost of missing some correct matches. Failure rate gets worse for large datasets.

K-d tree construction

Simple 2D example

Slide credit: Anna Atramentov

K-d tree query

Slide credit: Anna Atramentov

Approximate k-d tree matching

Key idea:

- Search k-d tree bins in order of distance from query
- Requires use of a priority queue

Fraction of nearest neighbors found

100,000
uniform points
in 12
dimensions.

Results:

 Speedup by several orders of magnitude over linear search

Panorama stitching (with Matthew Brown)

Panorama stitching (with Matthew Brown)

Bundle Adjustment

New images initialised with rotation, focal length of best matching image

Bundle Adjustment

New images initialised with rotation, focal length of best matching image

Multi-band Blending

Burt & Adelson 1983

• Blend frequency bands over range $\propto \lambda$

2-band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

Multi-band Blending

• Linear blending

Multi-band blending

Automatic Straightening

Automatic Straightening

Heuristic: user does not *twist* camera relative to horizon

Up-vector perpendicular to plane of camera x vectors

$$\left(\sum_{i} \mathbf{X}_{i} \mathbf{X}_{i}^{T}\right) \mathbf{u} = \mathbf{0}$$

Automatic Straightening

Gain Compensation

• No gain compensation

Gain Compensation

• Gain compensation

- Single gain parameter g_i for each image

$$e = \sum_{i} \sum_{j} \sum_{\mathbf{u}_{i} \in \mathcal{R}(i,j)} (g_{i}I_{i}(\mathbf{u}_{i}) - g_{j}I_{j}(\mathbf{u}_{j}))^{2}$$

Panoramas from handheld consumer cameras

- Free working demo available: *Autostitch*
- Commercial products: Serif, Kolor, others coming

Show in Java applet: <u>Browser demo</u>

Autostitch usage in www.flickr.com

Over 20,000 panoramas posted by users of free Autostitch demo

Public images from Flickr

Surprise: Many users war borders to be visible

Augmented Reality

Applications:

- Film production (already in use)
- Heads-up display for cars
- Tourism
- Medicine, architecture, training

What is needed:

- Recognition of scene
- Accurate sub-pixel 3-D pose
- Real-time, low latency

- Solve for 3D structure from multiple images
- Recognize scenes and insert 3D objects

Shows one of 20 images taken with handheld camera

System overview

Bundle adjustment: an example

20 iterations: error = **0**.2 pixels

- Problems:
 - computation time increases with the number of unknown parameters
 - trouble converging if the cameras are too far apart (> 90 degrees)
- Solutions:
 - select a subset of about 4 images to construct an initial model
 - incrementally update the model by resectioning and triangulation
 - images processed in order determined by the spanning tree

3D Structure and Virtual Object Placement

- Solve for cameras and 3D points:
 - Uses bundle adjustment (solution for camera parameters and 3D point locations)
 - Initialize all cameras at the same location and points at the same depths
 - Solve depth-reversal ambiguity by trying both options
- Insert object into scene:

Set location in one image, move along epipolar in other, adjust orientation

Augmentation Example

