Lecture 25: Classification
Menu for Today (Nov. 17, 2021)

Topics:
— Naive Bayes Classifier
— Bayes' Risk
— Error Measures, Cross Validation
— Nearest Neighbor Classifiers

Readings:
— Today's Lecture: Forsyth & Ponce (2nd ed.) 15.1, 15.2
— Next Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

Reminders:
— Assignment 5 due Nov 22
Quiz 5 on Nov 23
Practice Quiz opens Friday Nov 19 12am, closes Nov 22 1159pm
A **classifier** is a procedure that accepts as input a set of features and outputs a class **label**.

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a **training set** of labelled examples \(\{(x_i, y_i)\} \) where each \(x_i \) is a feature vector and each \(y_i \) is a class label.

Given a previously unseen observation, we use the classifier to predict its class label.
Let c be the class label and let x be the measurement (i.e., evidence).

The Bayes Rule (Review and Definitions) is given by:

$$ P(c|x) = \frac{P(x|c)p(c)}{P(x)} $$

Where:
- $P(c|x)$ is the posterior probability (a.k.a. posterior class-conditional probability).
- $P(x|c)$ is the class-conditional probability (a.k.a. likelihood).
- $p(c)$ is the prior probability (a.k.a. unconditional probability).
- $P(x)$ is the unconditional probability (a.k.a. marginal likelihood).
Bayes Rule (Review and Definitions)

Let c be the **class label** and let x be the **measurement** (i.e., evidence)

Simple case:
— binary classification; i.e., $c \in \{1, 2\}$
— features are 1D; i.e., $x \in \mathbb{R}$

$$P(c|x) = \frac{P(x|c)p(c)}{P(x)}$$

General case:
— multi-class; i.e., $c \in \{1, \ldots, 1000\}$
— features are high-dimensional; i.e., $x \in \mathbb{R}^{2,000+}$

Classify x as
1 if $p(1|x) > p(2|x)
2$ if $p(1|x) < p(2|x)$
Bayes Rule (Review and Definitions)

Let \(c \) be the **class label** and let \(x \) be the **measurement** (i.e., evidence)

Simple case:
- binary classification; i.e., \(c \in \{1, 2\} \)
- features are 1D; i.e., \(x \in \mathbb{R} \)

\[
P(c|x) = \frac{P(x|c)p(c)}{P(x)}
\]

Classify \(x \) as

1. if \(p(1|x) > p(2|x) \)
2. if \(p(1|x) < p(2|x) \)
Example: 2D Bayes Classifier

\[
p(green | \triangle) \propto \mathcal{N}(\triangle; \mu_{green}, \Sigma_{green}) p(green)
\]

\[
p(blue | \triangle) \propto \mathcal{N}(\triangle; \mu_{blue}, \Sigma_{blue}) p(blue)
\]

\[
p(blue) = \frac{17}{17 + 15}
\]

\[
p(green) = \frac{15}{17 + 15}
\]

\[
p(\cdot | green) = \mathcal{N}(\mu_{green}, \Sigma_{green})
\]

\[
p(\cdot | blue) = \mathcal{N}(\mu_{blue}, \Sigma_{blue})
\]
Bayes’ Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the **Bayes’ risk**

Forsyth & Ponce (2nd ed.) Figure 15.1
Discriminative vs. Generative

Finding a **decision boundary** is not the same as modeling a **conditional density** — while a normal density here is a poor fit to $P(1|x)$, the quality of the classifier depends only on how well the boundary is positioned.

Forsyth & Ponce (2nd ed.) Figure 15.5
Loss Functions and Classifiers

Loss

— Some errors may be more expensive than others

Example: A fatal disease that is easily cured by a cheap medicine with no side-effects. Here, false positives in diagnosis are better than false negatives

— We discuss two class classification:

 \[L(1 \rightarrow 2) \] is the loss caused by calling 1 a 2

Total risk of using classifier \(s \) is

\[
R(s) = \Pr\{1 \rightarrow 2 \mid \text{using } s\} \cdot L(1 \rightarrow 2) + \Pr\{2 \rightarrow 1 \mid \text{using } s\} \cdot L(2 \rightarrow 1)
\]
Two Class Classification

Generally, we should classify as 1 if the expected loss of classifying as 1 is less than for 2

Classify x as

1. if $p(1|x) L(1 \rightarrow 2) > p(2|x) L(2 \rightarrow 1)$

2. if $p(1|x) L(1 \rightarrow 2) < p(2|x) L(2 \rightarrow 1)$

Decision boundary: points where the loss is the same for either class.
Training error, **Testing** error, and Overfitting

Training error is the error a classifier makes on the training set.

We want to minimize the **testing error** – the error the classifier makes on an unseen testing set.

Classifiers that have small training error may not necessarily have small testing error.

The phenomenon that causes testing error to be worse than training error is called **overfitting**.
Training Error, Testing Error, and **Overfitting**

Underfitting: model is too simple to represent all the relevant class characteristics
Training Error, Testing Error, and **Overfitting**

Underfitting: model is too simple to represent all the relevant class characteristics

Overfitting: model is too complex and fits irrelevant characteristics (noise) in the data
Training Error, Testing Error, and **Overfitting**

Underfitting: model is too simple to represent all the relevant class characteristics

Overfitting: model is too complex and fits irrelevant characteristics (noise) in the data
Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set.

An alternative is to split some training data to form a **validation** set, then train the classifier on the rest of the data and evaluate on the validation set.
Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set. An alternative is to split some training data to form a **validation** set, then train the classifier on the rest of the data and evaluate on the validation set.
Cross-Validation

We cannot reliably estimate the error rate of the classifier using the training set.

An alternative is to split some training data to form a validation set, then train the classifier on the rest of the data and evaluate on the validation set.

Diagram:

- Train data
- Test data
- Fold 1
- Fold 2
- Fold 3
- Fold 4
- Fold 5
- Validation data

Use to tune hyperparameters; evaluate on test set ONCE at the end.
Cross-Validation

Cross-validation involves performing multiple splits and averaging the error over all splits.

![Cross-validation diagram](image)

Cycle through the choice of which fold is the validation fold, average results.
Confusion Matrix

When evaluating a multi-class classifier, it may be useful to know how often certain classes are often misclassified as others.

A **confusion matrix** is a table whose (i,j)th entry is the frequency (or proportion) an item of true class i was labelled as j by the classifier.

Forsyth & Ponce (2nd ed.) Figure 15.3. Original credit: H. Zhang et al., 2006.
Receiver Operating Characteristics (ROC)

ROC curves plot trade-off between true positive and false positive.

Figure from M. J. Jones and J. Rehg, “Statistical color models with...”
Receiver Operating Characteristics (ROC)

What is a ROC curve for a perfect classifier?

ROC curves plot trade-off between true positives and false positives.

Figure from M. J. Jones and J. Rehg, “Statistical color models with application to skin detection,” Proc. CVPR, 1999, IEEE
ROC curves plot trade-off between false positives and false negatives.

Figure from M. J. Jones and J. Rehg, “Statistical color models with application to skin detection,” Proc. CVPR, 1999, IEEE
Classifier Strategies

Classification strategies fall under two broad types: parametric and non-parametric.
Classifier Strategies

Classification strategies fall under two broad types: **parametric** and **non-parametric**.

Parametric classifiers are **model driven**. The parameters of the model are learned from training examples. New data points are classified by the learned model. — fast, compact — flexibility and accuracy depend on model assumptions
Classifier Strategies

Classification strategies fall under two broad types: parametric and non-parametric.

Parametric classifiers are model driven. The parameters of the model are learned from training examples. New data points are classified by the learned model. — fast, compact — flexibility and accuracy depend on model assumptions

Non-parametric classifiers are data driven. New data points are classified by comparing to the training examples directly. "The data is the model". — slow — highly flexible decision boundaries
Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature space.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature space.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
k-Nearest Neighbor (kNN) Classifier

We can gain some robustness to noise by voting over multiple neighbours.

Given a new data point, find the k nearest training examples. Assign the label by majority vote.

Simple method that works well if the distance measure correctly weights the various dimensions

For large data sets, as k increases kNN approaches optimality in terms of minimizing probability of error
k-Nearest Neighbor (kNN) Classifier

kNN decision boundaries respond to local clusters where one class dominates.

Figure credit: Hastie, Tibshirani & Friedman (2nd ed.)
Support Vector Machines (SVM)

Idea: Try to obtain the decision boundary directly

The decision boundary is parameterized as a *separating hyperplane* in feature space.
— e.g. a separating line in 2D

We choose the hyperplane that is as far as possible from each class - that maximizes the distance to the closest point from either class.
Linear Classifier

Defines a score function:

\[f(x_i, W, b) = Wx_i + b \]
Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
Support Vector Machines (SVM)

Learn the decision boundary

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
Support Vector Machines (SVM)

What’s the best w?
Support Vector Machines (SVM)

What’s the best \textbf{w}?
Support Vector Machines (SVM)

What's the best \(w \)?
Support Vector Machines (SVM)

What’s the best w?
Support Vector Machines (SVM)

What’s the best w?
Support Vector Machines (SVM)

What’s the best \(w \) ?

Intuitively, the line that is the farthest from all interior points

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
Support Vector Machines (SVM)

What’s the best \(w \) ?

Want a hyperplane that is far away from ‘inner points’

Slide Credit: Ioannis (Yannis) Gkioulkas (CMU)
Support Vector Machines (SVM)

Find hyperplane \mathbf{w} such that ...

the gap between parallel hyperplanes $\frac{2}{||\mathbf{w}||}$ is maximized
Support Vector Machines (SVM)

Forsyth & Ponce (2nd ed.) Figure 15.6
Example: Pedestrian Detection with SVM

Figure credit: Papageorgiou, Oren, and Poggio, 1998
Summary

A **classifier** accepts as input a set of features and outputs (predicts) a class label.

Classifiers need to take into account “loss” associated with each kind of classification error.

A Receiver Operating Characteristic (ROC) curve plots the trade-off between false negatives and false positives.

Parametric classifiers are model driven. The parameters of the model are learned from training examples.
- e.g. support vector machine, decision tree

Non-parametric classifiers are data driven. New data points are classified by comparing to the training examples directly.
- e.g. k-nearest neighbour