
Minimum Spanning Trees

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science
University of British Columbia

June 24, 2007

Introduction

Reading:

I CLRS: “Graph Representations”, 22.1
CLRS: “Minimum Spanning Trees”, 23

I GT: “Graphs”, 6.1-6.2
GT: “Minimum Spanning Trees”, 7.3

We will minimize the cost of connecting a set of objects together.
Typical examples include wiring a network and building roads.

Prim’s algorithm is a prime example of a greedy algorithm and we
will use the same style of argument to prove it’s correctness.

Graphs

Definition

A graph G (V ,E) is a set of vertices V that are joined by edges
E ⊆ V × V . The vertices represent objects and edges represent a
binary relation.

We assume that V is finite, every edge from a vertex leads to a
different vertex (no loops), and there is at most one edge from one
vertex to another vertex (no multiple edges).

Example: Heredity

Vertices are people and an edge
from u to v denotes that u is a
child of v .

Earl
Martha

Suzy

Debra
Hank

Jill

What properties do heredity graphs have?

Adjacency lists

I Each edge has pointers to its endpoints.

I Each vertex has a list of pointers to incident edges.

Example

a

b

c

d

a :

b :
c :

d :

[a, b]
[a, c]

[b, c]
[b, d]

I Easy to find neighbours of a vertex.

I Takes O(|V |+ |E |) space.

I Testing if two vertices are joined takes O(|V |) time.

Adjacency matrices

I Each edge has pointers to endpoints.
I A |V | × |V | matrix A refers to edges:

I A[u][v] points to the edge from u to v .

Example

a

b

c

d

[a, b]
[a, c]

[b, c]
[b, d]

a

b

c

d

a b c d

I Testing if u and v are joined takes Θ(1).

I Finding all neighbours takes O(|V |) time.

I Requires O(|V |2) space.

Connectivity

I A path from u to v is a sequence of vertices
u = x0, x1, . . . , xt = v where consecutive vertices are adjacent.

I A cycle is a path that starts and ends at the same vertex.

I An undirected graph is connected if there is path between
every pair of distinct vertices.

I A tree is a connected, undirected graph with no cycles.

I A spanning tree of a graph G (V ,E) is a tree T (V ,E ′) where
E ′ ⊆ E .

Example

connected graph path cycle spanning tree

Minimum spanning trees

Problem

We are given a connected, undirected graph G (V ,E) with edge
weights w : E → R≥0.

Find a spanning tree T (V ,E ′) with the smallest total weight∑
e∈E ′ w(e).

Example

4

1

6

3

4

8

5

2

6

1

3

4 5

2

Prim’s algorithm (sketch)

I Start from a fixed vertex (v1)

I Iteratively add the vertex that is cheapest to reach from the
vertices that we have spanned so far.

Algorithm Prim(V , E, w)
T ← ∅
S ← {v1}
while S 6= V do

find e = {u, v} of minimum weight such that
u ∈ S and v ∈ V \ S

T ← T ∪ {e}
S ← S ∪ {v}

return T

I An O (|V | × |E |) runtime complexity as written.

I Use a priority queue (heap) to make the find step fast!

Initialization

I cost is the current cheapest cost of adding the vertex to the
MST using an edge with one endpoint already spanned

I prev is the other endpoint of the edge that gives us the lowest
cost

Algorithm Prim(V , E, w)
cost[v1]← 0
prev [v1]← ∅
spanned [v1]← false
Q.add(v1,0)

for i ← 2 to n do
cost[vi]←∞
prev [vi]← ∅
spanned [vi]← false
Q.add(vi,∞)

Main loop

// greedy loop
for i ← 1 to |V | do

v ← Q.deleteMin()
spanned [v]← true
if prev [v] 6= ∅ then

add {v , prev [v]} to the MST
for each neighbour n of v do

if spanned [n] = false and
w({n, v}) < cost[n] then

cost[n]← w({n, v})
prev [n]← v
Q.updatePriority(n,cost[n])

Runtime complexity

Focus on priority queue operations:

I each vertex added to the queue once:
|V | × O (log |V |) = O (|V | log |V |)

I each vertex removed from the queue once:
|V | × O(log |V |) = O (|V | log |V |)

I priority update at most once for every edge:
|E | × O (log |V |) = O (|E | log |V |)

Total cost: O ([|V |+ |E |] log |V |)

Correctness

Theorem

Prim’s algorithm correctly computes a minimum spanning tree.

Proof

Let T (k) be the tree constructed after adding k edges. Our proof
is inductive on k. We maintain the property that T (k) can be
extended into a MST. The tree T (0) can trivially be extended into
an MST.

Assume that T (k − 1) is a subtree of some MST R. We use R to
construct a MST S such that T (k) is a subtree of S . Let e be the
edge added to T (k − 1) to get T (k). If e ∈ R, then R is the
desired S . So suppose not.

Now U ∪ {e} has a cycle because e 6∈ R. Some edge f of this cycle
(other than e) leaves T (k − 1).

Prim’s correctness (cont’d)

Proof

Removing f breaks R into two trees P and Q. One of these trees
(say P) contains T (k − 1).

x y

f

e

P
Q

T (k − 1)

Let S = (R \ {f }) ∪ {e}. It has |V | − 1 edges. We now argue that
it is connected to prove that it is a tree. Consider u, v ∈ V .

Case 1: If the u, v -path in R doesn’t use f , then it is a path in U.

Prim’s correctness (cont’d)

Proof

Case 2: Otherwise assume without loss of generality that u ∈ P
and v ∈ Q. Let e = {x , y} where x ∈ T (k − 1). Then there is a
u, x-path in P and a y , v -path in Q that we can bridge with e to
get a u, v -path in S .

So S is a tree. Moreover w(e) ≤ w(f) because e has the smallest
weight of all edges leaving T (k − 1). So the total weight of S is
no greater than the weight of R. Hence S is a MST containing
T (k).

