Sorting

Jonathan Backer backer@cs.ubc.ca

Department of Computer Science University of British Columbia

May 28, 2007

Introduction

Reading:

- CLRS: "Sorting in Linear Time" 8
- ► GT: "Sorting, Sets, and Selection" 4.4-4.5

Motivation:

- Insertion sort is worst-case $O(n^2)$.
- Other algorithms are worst-case $\Theta(n \log n)$.
 - e.g. mergesort and heapsort
- Can we do better?
 - Use decision trees to model sorting algorithms.
 - Decisions trees have worst-case $\Omega(n \log n)$.
 - Go outside decision tree model to do better $(\Theta(n))$.

Comparison Sorts

Recall: Sorting

- ▶ Input: A sequence of *n* values a_1, a_2, \ldots, a_n .
- Output: A permutation b_1, b_2, \ldots, b_n of a_1, a_2, \ldots, a_n such that $b_1 \leq b_2 \leq \ldots \leq b_n$.
- ▶ Instance: 3, 8, 2, 5.

In a comparison sort algorithm, the sorted order is determined by a sequence of comparisons between pairs of elements.

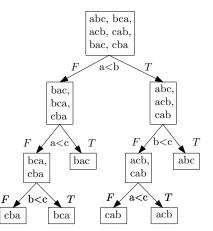
Insertion sort, selection sort, bubble sort, quicksort, mergesort, and heapsort are comparison sorts.

Using a decision tree, we show that *every* comparison sort requires $\Omega(n \log n)$ comparisons in the worst-case.

Decision Tree

- Represents every sequence of comparisons that an algorithm might make on an input of size n.
- Nodes annotated with the orderings consistent with the comparisons made so far.
- Edges denote the result of a single comparison.
- Total order at leaves.

Algorithm: Insertion sort. Instance (n = 3): the numbers a, b, c.



Lower Bound

Claim

The depth of a decision tree for a given value of n is $\Omega(n \log n)$.

Proof.

There are n! leaves. A tree of height h has at most 2^{h+1} nodes. So

$$\begin{array}{rcl} 2^{h+1} & \geq & n! \\ h+1 & \geq & \log_2 n! = \log_2(1 \cdot 2 \cdot \ldots \cdot n) \\ & = & \log_2 1 + \log_2 2 + \ldots + \log_2 n \\ & > & (n/2) \log_2(n/2) \\ h & \in & \Omega(n \log n) \end{array}$$

Lower Bound (cont'd)

Theorem

Every comparison sort requires $\Omega(n \log n)$ comparisons in the worst-case.

Proof.

Given a comparison sort, we look at the decision tree it generates on a inputs of size n.

- Each path from root to leaf is one possible sequence of comparisons.
- Length of the path is the number of comparisons for that instance.
- Height of the tree is the worst-case path length (number of comparisons).

Height of the tree is $\Omega(n \log n)$ by the previous claim. Hence, every comparison sort requires $\Omega(n \log n)$ comparisons.

Transitivity: Indirect Comparisons

- If a < b and b < c, we indirectly know that a < c.
- Quicksort splits instance into sets A, C based on a pivot b.
 - A is such that $a \leq b$, for $a \in A$.
 - C is such that $b \leq c$, for $c \in C$.
 - So $a \leq c$, for $a \in A$ and $c \in C$ by transitivity.
- Algorithms doing better than $\Omega(n \log n)$ in the worst-case
 - Do not pivot on an element of the instance.
 - Escapes decision tree model.
 - Use knowledge of problem domain to choose pivot independent of particular instance.

Bucket Sort (Counting Sort)

Assume keys are integers in ranging from 0 to N-1.

- ▶ Pivots are 0, 1, ..., *N* − 1.
- One set (bucket) per possible key.

```
Algorithm BucketSort(A,N)
Let S be an empty list
Let B[0...N-1] be an array of empty lists
for i ← 0 to A.length-1 do
    append A[i] to B[A[i].key]
for j ← 0 to N-1 do
    for each element x of B[j] do // in order
        append x to S
return S
```

Time Complexity: $\Theta(n + N)$

Bucket Sort (cont'd)

▶ In practice, we compact B[0],...,B[N-1] in one array by

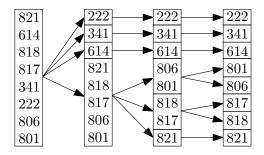
- precomputing their maximum sizes (offsets) and
- using an array of their current lengths.
- Bucket sort is stable:
 - if i < j and A[i].key = A[j].key
 then A[i] comes before A[j] in S</pre>
- Stable sorts can sort a class list in two passes.
 - Sort the list by first name.
 - Then sort the list by last name.
- Which algorithms are stable?

Radix Sort

Intuitively, we sort n integers with at most d-digits by

- binning according to their most significant digit,
- sorting each pile recursively, and
 - i.e. split on the 2nd most significant digit, then 3rd most, etc.
- merging the results.

Too slow because there are too many piles.

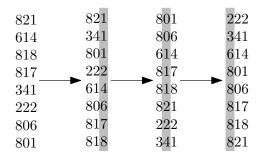


Radix Sort (cont'd)

Instead, we use a stable sort to get rid of the piles.

 Sort digit by digit, from the least significant digit to the most significant digit.

Algorithm RadixSort(A,d)
for i ← 0 to d-1 do
 sort A on digit i using BucketSort



Radix Sort Correctness

Claim

After the *i*th iteration, the values are sorted by their last *i* digits.

Proof.

Induct on *i*. Trivially true when i = 1. So consider i > 1. Let x and y be numbers such that the

- the last *i* digits $x_i, x_{i-1}, \ldots, x_2, x_1$ of *x* are less than
- the last *i* digits $y_i, y_{i-1}, \ldots, y_2, y_1$ of *y*.

We need to show that x comes before y.

- ► If x_i = y_i, then x_{i-1},..., x₂, x₁ < y_{i-1},..., y₂, y₁. So x is ordered before y on the (i − 1)th iteration. BucketSort preserves this order because it is stable.
- ▶ If x_i < y_i then BucketSort orders x and y correctly on this iteration.

Radix Sort Complexity

We call BucketSort d times.

• BucketSort takes $\Theta(n + N)$ time.

So the complexity of RadixSort is $\Theta(d(n + N))$.

- RadixSort is O(n), if the range of values is small
 - i.e. *d* is constant and $N \in O(n)$