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Introduction

Reading:

I CLRS: “Sorting in Linear Time” 8

I GT: “Sorting, Sets, and Selection” 4.4-4.5

Motivation:

I Insertion sort is worst-case O(n2).
I Other algorithms are worst-case Θ(n log n).

I e.g. mergesort and heapsort

I Can we do better?
I Use decision trees to model sorting algorithms.
I Decisions trees have worst-case Ω(n log n).
I Go outside decision tree model to do better (Θ(n)).



Comparison Sorts

Recall: Sorting

I Input: A sequence of n values a1, a2, . . . , an.

I Output: A permutation b1, b2, . . . , bn of a1, a2, . . . , an such
that b1 ≤ b2 ≤ . . . ≤ bn.

I Instance: 3, 8, 2, 5.

In a comparison sort algorithm, the sorted order is determined by a
sequence of comparisons between pairs of elements.

I Insertion sort, selection sort, bubble sort, quicksort, mergesort,
and heapsort are comparison sorts.

Using a decision tree, we show that every comparison sort requires
Ω(n log n) comparisons in the worst-case.



Decision Tree

I Represents every
sequence of
comparisons that an
algorithm might make
on an input of size n.

I Nodes annotated with
the orderings
consistent with the
comparisons made so
far.

I Edges denote the
result of a single
comparison.

I Total order at leaves.
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Algorithm: Insertion sort.
Instance (n = 3): the numbers a, b, c.



Lower Bound

Claim

The depth of a decision tree for a given value of n is Ω(n log n).

Proof.

There are n! leaves. A tree of height h has at most 2h+1 nodes. So

2h+1 ≥ n!

h + 1 ≥ log2 n! = log2(1 · 2 · . . . · n)

= log2 1 + log2 2 + . . . + log2 n

> (n/2) log2(n/2)

h ∈ Ω(n log n)



Lower Bound (cont’d)

Theorem

Every comparison sort requires Ω(n log n) comparisons in the
worst-case.

Proof.

Given a comparison sort, we look at the decision tree it generates
on a inputs of size n.

I Each path from root to leaf is one possible sequence of
comparisons.

I Length of the path is the number of comparisons for that
instance.

I Height of the tree is the worst-case path length (number of
comparisons).

Height of the tree is Ω(n log n) by the previous claim. Hence, every
comparison sort requires Ω(n log n) comparisons.



Transitivity: Indirect Comparisons

I If a < b and b < c , we indirectly know that a < c .
I Quicksort splits instance into sets A,C based on a pivot b.

I A is such that a ≤ b, for a ∈ A.
I C is such that b ≤ c , for c ∈ C .
I So a ≤ c , for a ∈ A and c ∈ C by transitivity.

I Algorithms doing better than Ω(n log n) in the worst-case
I Do not pivot on an element of the instance.

I Escapes decision tree model.

I Use knowledge of problem domain to choose pivot independent
of particular instance.



Bucket Sort (Counting Sort)

Assume keys are integers in ranging from 0 to N − 1.

I Pivots are 0, 1, . . . ,N − 1.

I One set (bucket) per possible key.

Algorithm BucketSort(A,N)
Let S be an empty list
Let B[0. . .N-1] be an array of empty lists
for i ← 0 to A.length-1 do

append A[i] to B[A[i].key]
for j ← 0 to N-1 do

for each element x of B[j] do // in order
append x to S

return S

Time Complexity: Θ(n + N)



Bucket Sort (cont’d)

I In practice, we compact B[0],. . .,B[N-1] in one array by
I precomputing their maximum sizes (offsets) and
I using an array of their current lengths.

I Bucket sort is stable:
I if i < j and A[i].key = A[j].key

then A[i] comes before A[j] in S

I Stable sorts can sort a class list in two passes.
I Sort the list by first name.
I Then sort the list by last name.

I Which algorithms are stable?



Radix Sort

Intuitively, we sort n integers with at most d-digits by

I binning according to their most significant digit,
I sorting each pile recursively, and

I i.e. split on the 2nd most significant digit, then 3rd most, etc.

I merging the results.

Too slow because there are too many piles.
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Radix Sort (cont’d)
Instead, we use a stable sort to get rid of the piles.

I Sort digit by digit, from the least significant digit to the most
significant digit.

Algorithm RadixSort(A,d)
for i ← 0 to d-1 do

sort A on digit i using BucketSort
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Radix Sort Correctness

Claim

After the ith iteration, the values are sorted by their last i digits.

Proof.

Induct on i . Trivially true when i = 1. So consider i > 1. Let x
and y be numbers such that the

I the last i digits xi , xi−1, . . . , x2, x1 of x are less than

I the last i digits yi , yi−1, . . . , y2, y1 of y .

We need to show that x comes before y .

I If xi = yi , then xi−1, . . . , x2, x1 < yi−1, . . . , y2, y1. So x is
ordered before y on the (i − 1)th iteration. BucketSort
preserves this order because it is stable.

I If xi < yi then BucketSort orders x and y correctly on this
iteration.



Radix Sort Complexity

We call BucketSort d times.

I BucketSort takes Θ(n + N) time.

So the complexity of RadixSort is Θ(d(n + N)).
I RadixSort is O(n), if the range of values is small

I i.e. d is constant and N ∈ O(n)


