
Sorting

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science
University of British Columbia

May 28, 2007



Introduction

Reading:

I CLRS: “Sorting in Linear Time” 8

I GT: “Sorting, Sets, and Selection” 4.4-4.5

Motivation:

I Insertion sort is worst-case O(n2).
I Other algorithms are worst-case Θ(n log n).

I e.g. mergesort and heapsort

I Can we do better?
I Use decision trees to model sorting algorithms.
I Decisions trees have worst-case Ω(n log n).
I Go outside decision tree model to do better (Θ(n)).



Comparison Sorts

Recall: Sorting

I Input: A sequence of n values a1, a2, . . . , an.

I Output: A permutation b1, b2, . . . , bn of a1, a2, . . . , an such
that b1 ≤ b2 ≤ . . . ≤ bn.

I Instance: 3, 8, 2, 5.

In a comparison sort algorithm, the sorted order is determined by a
sequence of comparisons between pairs of elements.

I Insertion sort, selection sort, bubble sort, quicksort, mergesort,
and heapsort are comparison sorts.

Using a decision tree, we show that every comparison sort requires
Ω(n log n) comparisons in the worst-case.



Decision Tree

I Represents every
sequence of
comparisons that an
algorithm might make
on an input of size n.

I Nodes annotated with
the orderings
consistent with the
comparisons made so
far.

I Edges denote the
result of a single
comparison.

I Total order at leaves.

abc, bca,
acb, cab,
bac, cba

bac,
bca,
cba

abc,
acb,
cab

a<c

bca,
cba

bac

cba bca
b<c

b<c

a<bF T

F T F T

abc

cab acb

acb,
cab

a<cF T F Tb<cF T a<cF T

Algorithm: Insertion sort.
Instance (n = 3): the numbers a, b, c.



Lower Bound

Claim

The depth of a decision tree for a given value of n is Ω(n log n).

Proof.

There are n! leaves. A tree of height h has at most 2h+1 nodes. So

2h+1 ≥ n!

h + 1 ≥ log2 n! = log2(1 · 2 · . . . · n)

= log2 1 + log2 2 + . . . + log2 n

> (n/2) log2(n/2)

h ∈ Ω(n log n)



Lower Bound (cont’d)

Theorem

Every comparison sort requires Ω(n log n) comparisons in the
worst-case.

Proof.

Given a comparison sort, we look at the decision tree it generates
on a inputs of size n.

I Each path from root to leaf is one possible sequence of
comparisons.

I Length of the path is the number of comparisons for that
instance.

I Height of the tree is the worst-case path length (number of
comparisons).

Height of the tree is Ω(n log n) by the previous claim. Hence, every
comparison sort requires Ω(n log n) comparisons.



Transitivity: Indirect Comparisons

I If a < b and b < c , we indirectly know that a < c .
I Quicksort splits instance into sets A,C based on a pivot b.

I A is such that a ≤ b, for a ∈ A.
I C is such that b ≤ c , for c ∈ C .
I So a ≤ c , for a ∈ A and c ∈ C by transitivity.

I Algorithms doing better than Ω(n log n) in the worst-case
I Do not pivot on an element of the instance.

I Escapes decision tree model.

I Use knowledge of problem domain to choose pivot independent
of particular instance.



Bucket Sort (Counting Sort)

Assume keys are integers in ranging from 0 to N − 1.

I Pivots are 0, 1, . . . ,N − 1.

I One set (bucket) per possible key.

Algorithm BucketSort(A,N)
Let S be an empty list
Let B[0. . .N-1] be an array of empty lists
for i ← 0 to A.length-1 do

append A[i] to B[A[i].key]
for j ← 0 to N-1 do

for each element x of B[j] do // in order
append x to S

return S

Time Complexity: Θ(n + N)



Bucket Sort (cont’d)

I In practice, we compact B[0],. . .,B[N-1] in one array by
I precomputing their maximum sizes (offsets) and
I using an array of their current lengths.

I Bucket sort is stable:
I if i < j and A[i].key = A[j].key

then A[i] comes before A[j] in S

I Stable sorts can sort a class list in two passes.
I Sort the list by first name.
I Then sort the list by last name.

I Which algorithms are stable?



Radix Sort

Intuitively, we sort n integers with at most d-digits by

I binning according to their most significant digit,
I sorting each pile recursively, and

I i.e. split on the 2nd most significant digit, then 3rd most, etc.

I merging the results.

Too slow because there are too many piles.

821
614
818
817
341
222
806
801

222
341
614
821
818
817
806
801

222
341
614
806
801
818
817
821

222
341
614
801
806
817
818
821



Radix Sort (cont’d)
Instead, we use a stable sort to get rid of the piles.

I Sort digit by digit, from the least significant digit to the most
significant digit.

Algorithm RadixSort(A,d)
for i ← 0 to d-1 do

sort A on digit i using BucketSort

821
614
818
817
341
222
806
801

821
341
801
222
614
806
817
818

801
806
614
817
818
821
222
341

222
341
614
801
806
817
818
821



Radix Sort Correctness

Claim

After the ith iteration, the values are sorted by their last i digits.

Proof.

Induct on i . Trivially true when i = 1. So consider i > 1. Let x
and y be numbers such that the

I the last i digits xi , xi−1, . . . , x2, x1 of x are less than

I the last i digits yi , yi−1, . . . , y2, y1 of y .

We need to show that x comes before y .

I If xi = yi , then xi−1, . . . , x2, x1 < yi−1, . . . , y2, y1. So x is
ordered before y on the (i − 1)th iteration. BucketSort
preserves this order because it is stable.

I If xi < yi then BucketSort orders x and y correctly on this
iteration.



Radix Sort Complexity

We call BucketSort d times.

I BucketSort takes Θ(n + N) time.

So the complexity of RadixSort is Θ(d(n + N)).
I RadixSort is O(n), if the range of values is small

I i.e. d is constant and N ∈ O(n)


