Sorting

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science Eé‘g
University of British Columbia W

S
1

May 28, 2007

Introduction

Reading:
» CLRS: “Sorting in Linear Time" 8
» GT: “Sorting, Sets, and Selection” 4.4-4.5

Motivation:

» Insertion sort is worst-case O(n?).

» Other algorithms are worst-case ©(nlog n).

» e.g. mergesort and heapsort
» Can we do better?

» Use decision trees to model sorting algorithms.

» Decisions trees have worst-case Q(nlog n).

» Go outside decision tree model to do better (©(n)).

Comparison Sorts

Recall: Sorting

> Input: A sequence of n values aj,a; ..., an.

» Output: A permutation by, bo,..., b, of a1, a2, ..., a, such
that by < b, < ... < b,,.

» Instance: 3,8,2,5.

In a comparison sort algorithm, the sorted order is determined by a
sequence of comparisons between pairs of elements.

» Insertion sort, selection sort, bubble sort, quicksort, mergesort,
and heapsort are comparison sorts.

Using a decision tree, we show that every comparison sort requires
Q(nlog n) comparisons in the worst-case.

Decision Tree

> Represents every Algorithm: Insertion sort.
sequence of Instance (n = 3): the numbers a, b, c.
comparisons that an abe, bea,
algorithm might make ach, cab,
on an input of size n. bac, cba

» Nodes annotated with E~a<h NI
the orderings bac, abc,
consistent with the bea, ach,

cba cab

comparisons made so
far. /<\‘ T

F@T

E

» Edges denote the bea, ac

cbha

result of a single
comparison. A

ach,

cab

L

cba ‘ ‘

‘acb‘

» Total order at leaves.




Lower Bound

The depth of a decision tree for a given value of n is Q(nlogn).

There are n! leaves. A tree of height h has at most 2"+ nodes. So

ohtl >
h+1 > logyn! =logy(1-2-...-n)
= logy1+logy2+...4+logyn
> (n/2)logy(n/2)
h € Q(nlogn)

Lower Bound (cont'd)

Every comparison sort requires S(nlog n) comparisons in the
worst-case.

Proof.
Given a comparison sort, we look at the decision tree it generates
on a inputs of size n.
» Each path from root to leaf is one possible sequence of
comparisons.
» Length of the path is the number of comparisons for that
Instance.
> Height of the tree is the worst-case path length (number of
comparisons).
Height of the tree is Q(nlog n) by the previous claim. Hence, every
comparison sort requires (nlog n) comparisons. (]

Transitivity: Indirect Comparisons

» If a < band b < ¢, we indirectly know that a < c.
» Quicksort splits instance into sets A, C based on a pivot b.
» A s such that a < b, for a € A.
» Cissuchthat b<c, force C.
» So a<c, fora€ Aand c € C by transitivity.
» Algorithms doing better than Q(nlog n) in the worst-case
» Do not pivot on an element of the instance.
> Escapes decision tree model.
» Use knowledge of problem domain to choose pivot independent
of particular instance.

Bucket Sort (Counting Sort)

Assume keys are integers in ranging from 0 to N — 1.
» Pivots are 0,1,..., N — 1.
> One set (bucket) per possible key.

Algorithm BucketSort(A,N)
Let S be an empty list
Let B[0...N-1] be an array of empty lists
for i «+ 0 to A.length-1 do
append A[i] to B[A[i].key]
for j « 0 to N-1 do
for each element x of B[j] do
append x to S
return S

// in order

Time Complexity: ©(n+ N)




Bucket Sort (cont'd)

» In practice, we compact B[0],...,B[N-1] in one array by
» precomputing their maximum sizes (offsets) and
» using an array of their current lengths.

» Bucket sort is stable:
» if i < jand A[i]l.key = A[j].key
then A[i] comes before A[j] in S
» Stable sorts can sort a class list in two passes.
» Sort the list by first name.
» Then sort the list by last name.

» Which algorithms are stable?

Radix Sort

Intuitively, we sort n integers with at most d-digits by
» binning according to their most significant digit,
» sorting each pile recursively, and
> i.e. split on the 2nd most significant digit, then 3rd most, etc.

» merging the results.

Too slow because there are too many piles.

821 9921 w222} »{222
614 31— w341 »{341
818 614—»{614—»{614
817 821 806 801
341 818 801 — 806
9222 817 818 817
806 806 817<: 318
801 801 81— »821

Radix Sort (cont'd)

Instead, we use a stable sort to get rid of the piles.

» Sort digit by digit, from the least significant digit to the most
significant digit.

Algorithm RadixSort(A,d)
for i «+ 0 to d-1 do
sort A on digit i using BucketSort

821 821 801 992
614 341 806 341
818 801 614 614
817 292 817 801
341 T 614 T 818 " 806
992 806 821 817
806 817 999 8183
801 818 341 821

Radix Sort Correctness

After the ith iteration, the values are sorted by their last / digits.

Proof.

Induct on /. Trivially true when i = 1. So consider i > 1. Let x
and y be numbers such that the

» the last / digits x;, xj_1, ..., X2, x3 of x are less than
» the last / digits yj, ¥i—1,..., Y2, y1 of y.
We need to show that x comes before y.

> If x; =y, then x;_1,...,x0,x1 < ¥j_1,...,¥2,¥1. SO x is
ordered before y on the (i — 1)th iteration. BucketSort
preserves this order because it is stable.

» If x; < y; then BucketSort orders x and y correctly on this
iteration.




Radix Sort Complexity

We call BucketSort d times.
» BucketSort takes ©(n+ N) time.

So the complexity of RadixSort is ©(d(n+ N)).
» RadixSort is O(n), if the range of values is small
» i.e. dis constant and N € O(n)




