
Shortest Paths

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science
University of British Columbia

June 24, 2007

Introduction

Reading:

I CLRS: “Single-Source Shortest Paths” 24 (except 24.4)

I GT: “Single-Source Shortest Paths” 7.1

Given a weighted graph, we define the cost of a path as the sum of
weights between consecutive path vertices. We explore two
different approaches to finding all of the shortest paths from a
given source vertex.

The first algorithm is similar to Prim’s algorithm and is greedy.
The second algorithm uses dynamic programming algorithm (our
next topic).

Directed graphs

Edges of a directed graph have direction and can only be traversed
one way.

I An edge (u, v) ∈ E from u to v is an ordered pair.

I In particular, (u, v) 6= (v , u).

A path from u to v is a sequence of vertices u = x0, x1, . . . , xt = v
where (xi−1, xi) ∈ E , for 1 ≤ i ≤ t.

Example

s

a

b

c d

2 6

8

3

6

4

Vertices are intersections and edges
are one-way streets. The weight of
an edge is the street length or the
expected travel time.

What are the shortest paths from s?

Directed vs. undirected graphs
Every undirected graph has a directed counterpart.

Problems differ on directed graphs

I Cycle guarantees connectivity in directed graphs.

I Tree guarantees connectivity in undirected graphs.

The solution to the directed counterpart is not necessarily a
solution to the undirected original.

Single source shortest paths

Problem

Given a weighted (directed) graph G and a source vertex s, find
the shortest paths from s to every other vertex of G .

Important properties:

I No vertex is visited twice on a shortest path.

I The prefix of a shortest path is a shortest path.

Outline of Dijkstra’s algorithm:

I Grow a shortest path tree rooted at s and directed from s

I Track the cost of the shortest path to other vertices using just
vertices in tree (plus the destination).

I Repeatedly add the vertex that is cheapest to reach from the
tree.

Dijkstra’s example

20

5
20

50

100

10

1030

10

db

c a

s

vertex s a b c d Tree

costs 0 ∞ ∞ ∞ ∞ ∅
- 10,s ∞ 30,s 100,s {s}
- - ∞ 30,s 20,a {s, a}
- - 40,d 30,s - {s, a, d}
- - 35,c - - {s, a, c , d}

Efficient cost update

How do we update the costs once we add a vertex to the shortest
path tree?

s

u

w

v

T (k − 1) N(u) \ T (k − 1)

x

y

Suppose u is added to get
T (k).

I Is it cheaper to reach
vertices outside of
T (k − 1) by going
through u?

I Update neighbours of
u that aren’t in
T (k − 1)
(e.g. v and w).

I Other vertices are unaffected (e.g. x and y).

To find u efficiently, we keep V \ T (k − 1) in a heap.

Initialization

I cost[v] is the cost of the shortest path from s to v .

I prev [v] is used for path recovery — it indicates what edge was
used to get the minimum cost[v].

Algorithm Dijkstra(V , E, s)
for v ∈ V do

tree[v]← false

if (v = s) then
cost[v] = 0

else
cost[v] =∞

Q.insert(v,cost[v])
prev [v] = ∅

Dijkstra’s algorithm: greedy loop

for k ← 1 to |V | do
v ← Q.deleteMin()
tree[v]← true

if v = s then
T ← ∅

else
T ← T ∪ {(v , prev [v])}

for each (v ,w) ∈ E do
if tree[w] = false and

cost[w] > cost[v] + w((v ,w))
then

prev [w]← v
cost[w]← cost[v] + w((v ,w))
Q.updatePriority(w,cost[w])

Run-time complexity

We count the priority queue operations because they are inside
each loop and are the only non-constant time operations.

I Adding vertices to the queue:
|V | × O (log |V |) = O (|V | log |V |)

I Removing the minimum vertex from the queue:
|V | × O (log |V |) = O (|V | log |V |)

I Updating the priority of a vertex in the queue (at most once
for each edge):
|E | × O (log |V |) = O (|E | log |V |)

Total cost: O ([|V |+ |E |] log |V |)

Another example

Find the shortest paths from d .

c

e

f

a

b

d

1

2

3

4
3

3

1

5

6

4

3

Notation

Let T (k) be the shortest path tree with k vertices built after k
adding k vertices.

Let SP(T , v) be the shortest cost path from s to v in the
subgraph T of G .

I We explicitly allow v 6∈ T .

I In this case, we include the edges of G from T to v .

Example

c

1

3

6

2

a

b

c

s

Let T be the tree with the solid edges.
Then

I SP(T , a) = 1,

I SP(T , c) = 4, and

I SP(T , b) =∞.

Correctness

Proof

We inductively prove the following about cost after k iterations.

cost[v] =

{
SP(G , v) if v ∈ T (k)
SP(T (k), v) otherwise

Base case (k=1): Result of initialization

cost[v] =

{
0 = SP(G , v) if v = s
∞ = SP(T (k), v) otherwise

Induction step:

Assume that the hypothesis holds after k iterations. Suppose u is
added on the (k + 1)th iteration. We now look at cost[v] for every
v ∈ V after the updates.

Correctness (cont’d)

Proof (cont’d)

1. v ∈ T (k)

After the kth iteration, cost[v] = SP(G , v). It is unchanged
by the (k + 1)th iteration.

2. v 6∈ T (k) and v 6= u

If (u, v) ∈ E , then cost[v] is properly updated and equals
SP(T (k + 1), v). Otherwise cost[v] is not updated, which is
correct because SP(T (k), v) = SP(T (k + 1), v).

3. v 6∈ T (k) and v = u

Then cost[u] is not updated, so it suffices to show that
SP(T (k), u) = SP(G , u).

Correctness (cont’d)

Proof (cont’d)

Let s = x1, x2, . . . , xi = u be a shortest s, u-path in G . Consider
the smallest j such that xj 6∈ T (k). If j = i , then
SP(T (k), u) = SP(G , u).

s

u

Tk−1

xj

So suppose i 6= j . Then by the greedy
choice of u instead of xj

SP(T (k), u) ≤ SP(T (k), xj)

= SP(G , xj).

But SP(G , xj) ≤ SP(G , u).

Hence SP(T (k), u) ≤ SP(G , u) by
transitivity.

Bellman-Ford algorithm

I Works with negative edge weights!
I Our first dynamic programming algorithm.

I Divide-and-conquer breaks problems into subproblems
(top-down).

I Dynamic programming combines subproblems into problems
(bottom-up).

I If there is an negative cost cycle, there is no shortest path.
I If no negative cost cycles, a shortest path visits each vertex.

I Each shortest path uses at most |V | − 1 edges.

I Bellman-Ford iteratively finds shortest paths using at most
1, 2, 3, . . . , |V | − 1 edges.

Pseudo-code

Algorithm Bellman-Ford(V , E, s)
for v ∈ V do

if (v = s) then cost[v] = 0
else cost[v] =∞
prev [v] = ∅

for k ← 1 to |V | − 1 do
for (u, v) ∈ E do

if cost[u] 6=∞ and
cost[v] > cost[u] + w ((u, v))

then
cost[v]← cost[u] + w ((u, v))
prev [v]← u

for (u, v) ∈ E do
if cost[u] 6=∞ and

cost[v] > cost[u] + w ((u, v))
then throw new Exception("negative cycle!")

Correctness

Proof

Clearly the algorithm finds paths and calculates their costs
correctly.

To prove correctness, we argue inductively that after the kth
iteration of the “for k” loop that

I cost[v] is no larger than the length of the shortest s, v -path
that has at most k edges.

Base case (k=0): We can only reach s. Property holds by
initialization.

Inductive step: Assume that it holds for k. The shortest s, v -path
using at most (k + 1) edges must have been a shortest s, u-path
using at most k edges plus a shortest u, v -path using 1 edge, for
some u. After considering every edge, we have found u and
updated cost[v] and prev [v] accordingly.

