Course Review

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science E_P__E
University of British Columbia B

July 23, 2007

Introduction

Asymptotic notation

Sorting

Divide-and-conquer algorithms
Greedy algorithms

Dynamic programming

Data structures

vV vV vV V. VvV Vv Y

Complexity theory

Big-O Notation

Asymptotic notation focuses on behaviour in the limit.

Let f,g: N — R. Then f € O(g(n)) if and only if 3c € R and
no € N such that f(n) < c- g(n), ¥Yn > ng.

A : c-g(n)

Other Asymptotic Notations

There is an intuitive correspondence:

<
o| O] 80

Qv

Except that not every pair of functions is comparable.

A

Limits
Let f,g : N — R™. Suppose that

. f(n)
L= nan;o g(n)
exists. Then
» if L =0, then f(n) € o(g(n));
» if L€ RT, then f(n) € ©(g(n)); and
w(g(n)).

» if L =00, then f(n) €

— so use L'Hopital's Rule
So v/n € w(log n).

_n
lim =
n—oo log n o0
1 -1
=n 2
2 = lim ,\f o0

= |lim — =
n—oo n— n—oo

The Master Method

Theorem

Let a>1,b > 1 be constants and f(n) : N — R™. Let T(n) be
defined by T(n) = aT(n/b) + f(n), where T(n) = ©(1) for small
n and n/b is either |n/b| or [n/b]. Then
1. T(n) € ©(n'°8:2), if f(n) € O (n('°gba)_€), for some € > 0.
2. T(n) € ©(n'es7log n), if f(n) € © (n'°8s7).
3. T(n) € ©(f(n)), if f(n) € Q (n(°8s2)%€), for some e > 0, and
af(n/b) < 6f(n), for some 6 < 1 and n sufficiently large.

Example: Binary Search

T(n) = T([n/2]) + 1. Case 2 because 1 € © (n'81) = ©(n°). So
T(n) € © (n° - log n) = ©(log n).

Decision Tree

> Represents every Algorithm: Insertion sort.
sequence of Instance (n = 3): the numbers a, b, c.

comparisons that an r—
algorithm might make ach, cab,
on an input of size n. bac, cba

» Nodes annotated with E~7a<b \T

the orderings bac, abe,
consistent with the bea, ach,
. cba cab
comparisons made so
far. A T F%& T
» Edges denote the bea, ac ach,
. cbha cab
result of a single
comparison. F,/b<c\‘ T F'A&T
‘Cba‘ ‘bca‘ ‘cab‘ ‘acb‘

» Total order at leaves.

Bucket Sort (Counting Sort)

Assume keys are integers in ranging from 0 to N — 1.

» One bucket per possible key.

Algorithm BucketSort(A,N)
Let S be an empty list
Let B[0...N-1] be an array of empty lists
for i «+ 0 to A.length-1 do
append A[i] to B[A[i].key]
for j «— 0 to N-1 do
for each element x of B[j] do // in order
append x to S
return S

Time Complexity: ©(n+ N)
Algorithm is stable: if A[i] .key = A[j].key for i < j, then
A[i] comes before A[j] in S

Order statistics
Definition
The ith order statistic of a set with n elements is the /ith element

of the set in sorted order: the 1st order statistic is the minimum
and the nth order statistic is the maximum.

Divide-and-conquer

Algorithm QuickSort(A,p,r)
if p<r then

g — Partition(A,p,r); Why sort the redundant

S
QuickSort(A,p,q — 1) partition
QuickSort(A,q+1,r)
p q 7
< = >

ith order statistic is in exactly one of the boxes

Order statistics (cont'd)

» A “good” pivot is close to the centre.
» A random pivot gives an average case ©(n) solution.
» High probability that a random pivot is good.
» The median of medians as a pivot gives a O(n) solution.
» Median of medians is a good pivot and is cheap to compute.

medians e o O e o

» Faster in balanced binary search trees because good pivoting

is ©(1).

Closest pair of points

Divide-and-conquer on x-median.

» Find closest pair on left, closest pair on right, and closest pair
between left and right.

Closest pair of points (cont'd)

» At most ©(1) points on the right could be closest to one
point on the left.
» Only takes ©(log n) to find points on the right and test them.

» So testing gray zone is just ©(nlog n).

o o
Cox

e
.oxq

» Recurrence is T(n) =2T(n/2) + ©(nlog n).
> Resolves to T(n) = nlog? n by Master Theorem.

Activity selection

Choose the next non-conflicting activity that ends the earliest to
leave as much of the rest of the day available as possible.

Algorithm ActivitySelect(A)
S «— 0
sort A by increasing right endpoints
for j «— 1 to A.length do
if A[j].left > maxRightEndPoint(S)
S « S u A[]]

return S

We can implement this so that the comparison takes ©(1) time.
So the algorithm runs in ©(nlog n) time.

Minimum spanning trees

Problem

We are given a connected, undirected graph G(V/, E) with edge
weights w : E — R20,

Find a spanning tree T(V/, E’) with the smallest total weight

2ecer w(e).

Prim's algorithm (sketch)

» Start from a fixed vertex (v1)

» lteratively add the vertex that is cheapest to reach from the
vertices that we have spanned so far.

AMgorithm Prim(V, E, w)

T—10

S—{wn}

while S # V do
find e = {u,v} of minimum weight such that

ueS and ve V\S

T — TuU{e}
S—Su{v}

return T

» An O (|V]| x |E|) runtime complexity as written.

» Use a priority queue (heap) to make the find step fast!

Single source shortest paths

Problem

Given a weighted (directed) graph G and a source vertex s, find
the shortest paths from s to every other vertex of G.

Important properties:
» No vertex is visited twice on a shortest path.

» The prefix of a shortest path is a shortest path.

Outline of Dijkstra’s algorithm:
» Grow a shortest path tree rooted at s and directed from s

» Track the cost of the shortest path to other vertices using just
vertices in tree (plus the destination).

» Repeatedly add the vertex that is cheapest to reach from the
tree.

Bellman-Ford algorithm

v

Works with negative edge weights!

v

Our first dynamic programming algorithm.

» Divide-and-conquer breaks problems into subproblems
(top-down).

» Dynamic programming combines subproblems into problems
(bottom-up).

v

If there is an negative cost cycle, there is no shortest path.

v

If no negative cost cycles, a shortest path visits each vertex.
» Each shortest path uses at most |V| — 1 edges.

v

Bellman-Ford iteratively finds shortest paths using at most
1,2,3,...,|V|—1 edges.

Optimal substructure

Both Dijkstra's and Bellman-Ford's algorithms work because you
can extend the optimal solution of a subproblem.

Definition

A problem has optimal substructure if some optimal solution is
» an optimal solution to a subproblem combined with

» an optimal choice.

» Often don't know which choice to make, so try them all.
» May be efficient if subproblems overlap

» |V/] paths to extend in Bellman-Ford (subproblems)
> |E| edges to extend with (choices)

Making change with coins

Problem

Given: Coin values ¢y, ¢, . .., ¢ with which to make change and
the amount of change to be made n.

Wanted: The minimum number of coins necessary to make n
cents change.

Denominations chosen so that greedy algorithm works, but not
true in general.

Example

Coins: 1¢, 3¢, and 4¢ Greedy — 4¢, 1¢, and 1¢
Change to make: 6¢ Optimal — 3¢ and 3¢

Exhaustive coin changing

Algorithm TryEmA11(C,n)
if (n=0) then
return 0
int coins« o0
for i <0 to C.length—1 do
if (n> C[i]) then
subprob « TryEmAl1(C,n— C[i])
coins« min{subprob+1,coins}

return coins

Recursion tree for TryEmAl1l

This is inefficient because it recomputes the same subproblems
over and over again.

TryEmA11([1,3,4]1,90)
90

89 87 ®6)

88 (6 8 (6 84 8 85 83 82

A better idea:
» Construct a table to store the optimal solution for each
subproblem.
» Compute it recursively the first time, look it up every other
time.

Memoization

int coins|0...n] « oo

Algorithm TryEmAllAgain(C,n)
if (n=0) then
return 0
if (coins[n| # oc) then
return coins[n]
for i <0 to C.length—1 do
if (n> C[i]) then
subprob « TryEmA11(C,n— C[i])
coins[n] < min{subprob+1,coins|[n]}

return coins|n]

Dynamic programming solution

We can eliminate the explicit recursion:

Algorithm DPCoinChange(C,n)

int coins|0...n]
coins[0] < 0

for nn—1 to n do
coins[nn] « oo
for i« 0 to C.length—1 do
if nn > C[i] then
coins[nn] «
min{coins[nn|,coins[nn — C[i]] + 1}

return coins|n]

Run-time is ©(nt).

Weighted activity selection

Problem

Given a set of activities represented as intervals
A ={[a1,b1]],-..,[an, bn]]} and a positive weight function
w: A — Rt find a subset S C A such that

» the activities don't overlap (i.e. sNt =1, for s,t € S), and

> the sum) s w(s) is maximum

Example

Optimal answer is solid intervals, which simple greedy schemes
don’t select.

.................

Weighted activity selection: optimal substructure

A A,
: s
- - :
. s T
‘}—{‘
— bomm oo
—e
A

Suppose that some optimal solution S contains s

» s divides A in two: A; completely to the left of s and A,
completely to the right of s

» SN A, is optimal solution to subproblem restricted to A
» If S; is an optimal solution to A, (S\ A/) US; is optimal!

Weighted activity selection: divide-and-conquer

Algorithm MaxActivitySelect(A)
S0
max «— —oo
for each [x,y] € A do
A —{la,b] € A: b< x}
Ar —{[a,b] € A:y > a}
S; + MaxActivitySelect(A))
S, «— MaxActivitySelect(A,)

if max <) o5 w(S) + D ges, w(s) + w([x,y]) then
S —SUS U{[x,yl}

max «— 3 ses w(s)

return S

Weighted activity select: memoization

» Cache so that we don't recompute common subproblems

» Cannot index by all subsets A’ C A because there are 2"

» Showed that all subproblems were of the form
{la,b] € A: B < aand b < a} where

» 3= —o00 or b; and
> a =00 or aj,

for some i,

» Soonly O (n2) subproblems...

