Course Review

Jonathan Backer backer@cs.ubc.ca

Department of Computer Science University of British Columbia

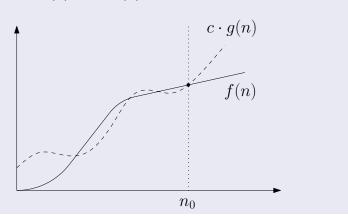
July 23, 2007

Big-O Notation

Asymptotic notation focuses on behaviour in the limit.

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$. Then $f \in O(g(n))$ if and only if $\exists c \in \mathbb{R}^+$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$, $\forall n \geq n_0$.



Introduction

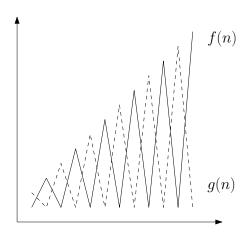
- ► Asymptotic notation
- Sorting
- ▶ Divide-and-conquer algorithms
- ► Greedy algorithms
- ► Dynamic programming
- Data structures
- Complexity theory

Other Asymptotic Notations

There is an intuitive correspondence:

<	\leq	=	<u> </u>	>
0	0	θ	Ω	ω

Except that not every pair of functions is comparable.



Limits

Let $f, g : \mathbb{N} \to \mathbb{R}^+$. Suppose that

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

exists. Then

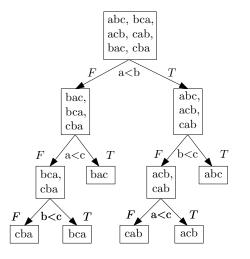
- ▶ if L = 0, then $f(n) \in o(g(n))$;
- ▶ if $L \in \mathbb{R}^+$, then $f(n) \in \Theta(g(n))$; and
- ▶ if $L = \infty$, then $f(n) \in \omega(g(n))$.

$$\lim_{n\to\infty}\frac{\sqrt{n}}{\log n} = \frac{\infty}{\infty} \text{ so use L'Hopital's Rule}$$
 So $\sqrt{n}\in\omega(\log n)$.
$$= \lim_{n\to\infty}\frac{\frac{1}{2}n^{-\frac{1}{2}}}{n^{-1}} = \lim_{n\to\infty}\frac{1}{2}\sqrt{n} = \infty$$

Decision Tree

- ▶ Represents every sequence of comparisons that an algorithm might make on an input of size *n*.
- Nodes annotated with the orderings consistent with the comparisons made so far.
- ► Edges denote the result of a single comparison.
- ► Total order at leaves.

Algorithm: Insertion sort. Instance (n = 3): the numbers a, b, c.



The Master Method

Theorem

Let $a \ge 1, b > 1$ be constants and $f(n) : \mathbb{N} \to \mathbb{R}^+$. Let T(n) be defined by T(n) = aT(n/b) + f(n), where $T(n) = \Theta(1)$ for small n and n/b is either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then

- 1. $T(n) \in \Theta(n^{\log_b a})$, if $f(n) \in O(n^{(\log_b a) \epsilon})$, for some $\epsilon > 0$.
- 2. $T(n) \in \Theta(n^{\log_b a} \log n)$, if $f(n) \in \Theta(n^{\log_b a})$.
- 3. $T(n) \in \Theta(f(n))$, if $f(n) \in \Omega\left(n^{(\log_b a) + \epsilon}\right)$, for some $\epsilon > 0$, and $af(n/b) \le \delta f(n)$, for some $\delta < 1$ and n sufficiently large.

Example: Binary Search

 $T(n) = T(\lceil n/2 \rceil) + 1$. Case 2 because $1 \in \Theta\left(n^{\lg 1}\right) = \Theta(n^0)$. So $T(n) \in \Theta\left(n^0 \cdot \log n\right) = \Theta(\log n)$.

Bucket Sort (Counting Sort)

Assume keys are integers in ranging from 0 to N-1.

One bucket per possible key.

```
Algorithm BucketSort(A,N)

Let S be an empty list

Let B[0...N-1] be an array of empty lists

for i ← 0 to A.length-1 do

append A[i] to B[A[i].key]

for j ← 0 to N-1 do

for each element x of B[j] do // in order

append x to S

return S
```

Time Complexity: $\Theta(n + N)$

Algorithm is stable: if A[i].key = A[j].key for i < j, then A[i] comes before A[j] in S

Order statistics

Definition

The ith order statistic of a set with n elements is the ith element of the set in sorted order: the 1st order statistic is the minimum and the nth order statistic is the maximum.

Divide-and-conquer

Algorithm QuickSort(A, p, r)

if p < r then $q \leftarrow \text{Partition}(A, p, r);$ QuickSort(A, p, q - 1)
QuickSort(A, q + 1, r)

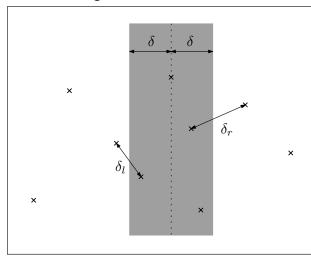
Why sort the redundant partition?

ith order statistic is in exactly one of the boxes

Closest pair of points

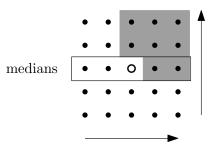
Divide-and-conquer on x-median.

► Find closest pair on left, closest pair on right, and closest pair between left and right.



Order statistics (cont'd)

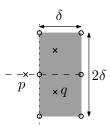
- ▶ A "good" pivot is close to the centre.
- ▶ A random pivot gives an average case $\Theta(n)$ solution.
 - ▶ High probability that a random pivot is good.
- ▶ The median of medians as a pivot gives a O(n) solution.
 - ▶ Median of medians is a good pivot and is cheap to compute.



▶ Faster in balanced binary search trees because good pivoting is $\Theta(1)$.

Closest pair of points (cont'd)

- At most $\Theta(1)$ points on the right could be closest to one point on the left.
- ▶ Only takes $\Theta(\log n)$ to find points on the right and test them.
- ▶ So testing gray zone is just $\Theta(n \log n)$.

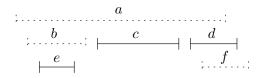


- ▶ Recurrence is $T(n) = 2T(n/2) + \Theta(n \log n)$.
- ▶ Resolves to $T(n) = n \log^2 n$ by Master Theorem.

Activity selection

Choose the next non-conflicting activity that ends the earliest to leave as much of the rest of the day available as possible.

```
Algorithm ActivitySelect(A)
S \leftarrow \emptyset
sort A by increasing right endpoints
for j \leftarrow 1 to A.length do
if A[j].left \geq \max \text{RightEndPoint}(S)
S \leftarrow S \cup A[j]
return S
```



We can implement this so that the comparison takes $\Theta(1)$ time. So the algorithm runs in $\Theta(n \log n)$ time.

Prim's algorithm (sketch)

- ▶ Start from a fixed vertex (v_1)
- ▶ Iteratively add the vertex that is cheapest to reach from the vertices that we have spanned so far.

```
Algorithm \operatorname{Prim}(V, E, w)
T \leftarrow \emptyset
S \leftarrow \{v_1\}
while S \neq V do
find e = \{u, v\} of minimum weight such that
u \in S and v \in V \setminus S
T \leftarrow T \cup \{e\}
S \leftarrow S \cup \{v\}
return T
```

- ▶ An $O(|V| \times |E|)$ runtime complexity as written.
- ▶ Use a priority queue (heap) to make the find step fast!

Minimum spanning trees

Problem

We are given a connected, undirected graph G(V, E) with edge weights $w: E \to \mathbb{R}^{\geq 0}$.

Find a spanning tree T(V, E') with the smallest total weight $\sum_{e \in E'} w(e)$.

Example



Single source shortest paths

Problem

Given a weighted (directed) graph G and a source vertex s, find the shortest paths from s to every other vertex of G.

Important properties:

- ▶ No vertex is visited twice on a shortest path.
- ▶ The prefix of a shortest path is a shortest path.

Outline of **Dijkstra's** algorithm:

- ▶ Grow a shortest path tree rooted at s and directed from s
- ► Track the cost of the shortest path to other vertices using just vertices in tree (plus the destination).
- ▶ Repeatedly add the vertex that is cheapest to reach from the tree.

Bellman-Ford algorithm

- ▶ Works with negative edge weights!
- ▶ Our first dynamic programming algorithm.
 - ► Divide-and-conquer breaks problems into subproblems (top-down).
 - Dynamic programming combines subproblems into problems (bottom-up).
- ▶ If there is an negative cost cycle, there is no shortest path.
- ▶ If no negative cost cycles, a shortest path visits each vertex.
 - Each shortest path uses at most |V| 1 edges.
- ▶ Bellman-Ford iteratively finds shortest paths using at most 1, 2, 3, ..., |V| 1 edges.

Optimal substructure

Both Dijkstra's and Bellman-Ford's algorithms work because you can extend the optimal solution of a subproblem.

Definition

A problem has optimal substructure if some optimal solution is

- ▶ an optimal solution to a subproblem combined with
- ▶ an optimal choice.
- ▶ Often don't know which choice to make, so try them all.
- ▶ May be efficient if subproblems overlap
 - ightharpoonup |V| paths to extend in Bellman-Ford (subproblems)
 - ► |*E*| edges to extend with (choices)

Making change with coins

Problem

Given: Coin values c_1, c_2, \ldots, c_t with which to make change and the amount of change to be made n.

Wanted: The minimum number of coins necessary to make n cents change.

Denominations chosen so that greedy algorithm works, but not true in general.

Example

Exhaustive coin changing

```
Algorithm TryEmAll(C,n)

if (n = 0) then
	return 0

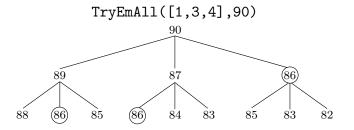
int coins\leftarrow \infty

for i \leftarrow 0 to C.length-1 do
	if (n \geq C[i]) then
	subprob \leftarrow TryEmAll(C,n - C[i])
	coins\leftarrow min\{subprob+1,coins\}

return coins
```

Recursion tree for TryEmAll

This is inefficient because it recomputes the same subproblems over and over again.



A better idea:

- Construct a table to store the optimal solution for each subproblem.
- ► Compute it recursively the first time, look it up every other time.

Memoization

```
\begin{aligned} & \text{int } \operatorname{coins}[0\dots n] \leftarrow \infty \\ & \text{Algorithm } \operatorname{TryEmAllAgain}(C,n) \\ & \text{if } (n=0) \text{ then} \\ & \text{return } 0 \\ & \text{if } (\operatorname{coins}[n] \neq \infty) \text{ then} \\ & \text{return } \operatorname{coins}[n] \\ & \text{for } i \leftarrow 0 \text{ to } C.\operatorname{length}-1 \text{ do} \\ & \text{if } (n \geq C[i]) \text{ then} \\ & \text{subprob } \leftarrow \operatorname{TryEmAll}(C,n-C[i]) \\ & \text{coins}[n] \leftarrow \min\{\operatorname{subprob}+1,\operatorname{coins}[n]\} \\ & \text{return } \operatorname{coins}[n] \end{aligned}
```

Dynamic programming solution

We can eliminate the explicit recursion:

```
\begin{split} & \text{Algorithm DPCoinChange}(\textit{C},\textit{n}) \\ & \text{int coins}[0...\textit{n}] \\ & \text{coins}[0] \leftarrow 0 \\ & \text{for } \textit{nn} \leftarrow 1 \text{ to } \textit{n} \text{ do} \\ & \text{coins}[\textit{nn}] \leftarrow \infty \\ & \text{for } \textit{i} \leftarrow 0 \text{ to } \textit{C}.\text{length}{-}1 \text{ do} \\ & \text{if } \textit{nn} \geq \textit{C}[\textit{i}] \text{ then} \\ & \text{coins}[\textit{nn}] \leftarrow \\ & \text{min}\{\text{coins}[\textit{nn}],\text{coins}[\textit{nn}-\textit{C}[\textit{i}]]+1\} \end{split}
```

Run-time is $\Theta(nt)$.

Weighted activity selection

Problem

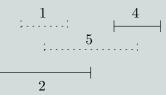
Given a set of activities represented as intervals

 $A = \{[a_1, b_1], \dots, [a_n, b_n]\}$ and a positive weight function $w : A \to \mathbb{R}^+$ find a subset $S \subseteq A$ such that

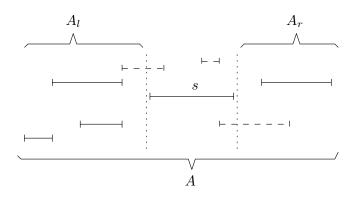
- ▶ the activities don't overlap (i.e. $s \cap t = \emptyset$, for $s, t \in S$), and
- ▶ the sum $\sum_{s \in S} w(s)$ is maximum

Example

Optimal answer is solid intervals, which simple greedy schemes don't select.



Weighted activity selection: optimal substructure



Suppose that some optimal solution S contains s

- ▶ s divides A in two: A₁ completely to the left of s and A₂ completely to the right of s
- ▶ $S \cap A_I$ is optimal solution to subproblem restricted to A_I
- ▶ If S_l is an optimal solution to A_l , $(S \setminus A_l) \cup S_l$ is optimal!

Weighted activity select: memoization

- ► Cache so that we don't recompute common subproblems
- ▶ Cannot index by all subsets $A' \subseteq A$ because there are 2^n
- ▶ Showed that all subproblems were of the form $\{[a,b] \in A : \beta < a \text{ and } b < \alpha\}$ where
 - ▶ $\beta = -\infty$ or b_i and
 - $\qquad \qquad \alpha = \infty \text{ or } a_j,$

for some i, j

▶ So only $O(n^2)$ subproblems...

Weighted activity selection: divide-and-conquer

```
Algorithm MaxActivitySelect(A)
S \leftarrow \emptyset
max \leftarrow -\infty
for each [x,y] \in A do
A_l \leftarrow \{[a,b] \in A: b < x\}
A_r \leftarrow \{[a,b] \in A: y > a\}
S_l \leftarrow \text{MaxActivitySelect}(A_l)
S_r \leftarrow \text{MaxActivitySelect}(A_r)
if \ max < \sum_{s \in S_l} w(s) + \sum_{s \in S_r} w(s) + w([x,y]) \text{ then}
S \leftarrow S_l \cup S_r \cup \{[x,y]\}
max \leftarrow \sum_{s \in S} w(s)
return \ S
```