
Course Review

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science
University of British Columbia

July 23, 2007

Introduction

I Asymptotic notation

I Sorting

I Divide-and-conquer algorithms

I Greedy algorithms

I Dynamic programming

I Data structures

I Complexity theory

Big-O Notation

Asymptotic notation focuses on behaviour in the limit.

Definition

Let f , g : N→ R. Then f ∈ O (g (n)) if and only if ∃c ∈ R+ and
n0 ∈ N such that f (n) ≤ c · g(n), ∀n ≥ n0.

n0

f (n)

c · g(n)

Other Asymptotic Notations

There is an intuitive correspondence:
< ≤ = ≥ >

o O θ Ω ω

Except that not every pair of functions is comparable.

f (n)

g(n)

Limits

Let f , g : N→ R+. Suppose that

L = lim
n→∞

f (n)

g(n)

exists. Then

I if L = 0, then f (n) ∈ o(g(n));

I if L ∈ R+, then f (n) ∈ Θ(g(n)); and

I if L =∞, then f (n) ∈ ω(g(n)).

lim
n→∞

√
n

log n
=
∞
∞

so use L’Hopital’s Rule

= lim
n→∞

1
2n−

1
2

n−1
= lim

n→∞

1

2

√
n =∞

So
√

n ∈ ω(log n).

The Master Method

Theorem

Let a ≥ 1, b > 1 be constants and f (n) : N→ R+. Let T (n) be
defined by T (n) = aT (n/b) + f (n), where T (n) = Θ(1) for small
n and n/b is either bn/bc or dn/be. Then

1. T (n) ∈ Θ(nlogb a), if f (n) ∈ O
(
n(logb a)−ε

)
, for some ε > 0.

2. T (n) ∈ Θ(nlogb a log n), if f (n) ∈ Θ
(
nlogb a

)
.

3. T (n) ∈ Θ(f (n)), if f (n) ∈ Ω
(
n(logb a)+ε

)
, for some ε > 0, and

af (n/b) ≤ δf (n), for some δ < 1 and n sufficiently large.

Example: Binary Search

T (n) = T (dn/2e) + 1. Case 2 because 1 ∈ Θ
(
nlg 1

)
= Θ(n0). So

T (n) ∈ Θ
(
n0 · log n

)
= Θ(log n).

Decision Tree

I Represents every
sequence of
comparisons that an
algorithm might make
on an input of size n.

I Nodes annotated with
the orderings
consistent with the
comparisons made so
far.

I Edges denote the
result of a single
comparison.

I Total order at leaves.

abc, bca,
acb, cab,
bac, cba

bac,
bca,
cba

abc,
acb,
cab

a<c

bca,
cba

bac

cba bca
b<c

b<c

a<bF T

F T F T

abc

cab acb

acb,
cab

a<cF T F Tb<cF T a<cF T

Algorithm: Insertion sort.
Instance (n = 3): the numbers a, b, c.

Bucket Sort (Counting Sort)

Assume keys are integers in ranging from 0 to N − 1.

I One bucket per possible key.

Algorithm BucketSort(A,N)
Let S be an empty list
Let B[0. . .N-1] be an array of empty lists
for i ← 0 to A.length-1 do

append A[i] to B[A[i].key]
for j ← 0 to N-1 do

for each element x of B[j] do // in order
append x to S

return S

Time Complexity: Θ(n + N)

Algorithm is stable: if A[i].key = A[j].key for i < j, then
A[i] comes before A[j] in S

Order statistics

Definition

The ith order statistic of a set with n elements is the ith element
of the set in sorted order: the 1st order statistic is the minimum
and the nth order statistic is the maximum.

Divide-and-conquer

Algorithm QuickSort(A,p,r)
if p < r then

q ← Partition(A,p,r);
QuickSort(A,p,q − 1)
QuickSort(A,q + 1,r)

Why sort the redundant
partition?

≤ = ≥

p q r

ith order statistic is in exactly one of the boxes

Order statistics (cont’d)

I A “good” pivot is close to the centre.
I A random pivot gives an average case Θ(n) solution.

I High probability that a random pivot is good.

I The median of medians as a pivot gives a O(n) solution.
I Median of medians is a good pivot and is cheap to compute.

medians

I Faster in balanced binary search trees because good pivoting
is Θ(1).

Closest pair of points

Divide-and-conquer on x-median.

I Find closest pair on left, closest pair on right, and closest pair
between left and right.

δ δ

δl

δr

Closest pair of points (cont’d)

I At most Θ(1) points on the right could be closest to one
point on the left.

I Only takes Θ(log n) to find points on the right and test them.

I So testing gray zone is just Θ(n log n).

δ

2δ
p q

I Recurrence is T (n) = 2T (n/2) + Θ(n log n).

I Resolves to T (n) = n log2 n by Master Theorem.

Activity selection

Choose the next non-conflicting activity that ends the earliest to
leave as much of the rest of the day available as possible.

Algorithm ActivitySelect(A)
S ← ∅
sort A by increasing right endpoints
for j ← 1 to A.length do

if A[j].left ≥ maxRightEndPoint(S)
S ← S ∪ A[j]

return S

a

b c d

e f

We can implement this so that the comparison takes Θ(1) time.
So the algorithm runs in Θ(n log n) time.

Minimum spanning trees

Problem

We are given a connected, undirected graph G (V ,E) with edge
weights w : E → R≥0.

Find a spanning tree T (V ,E ′) with the smallest total weight∑
e∈E ′ w(e).

Example

4

1

6

3

4

8

5

2

6

1

3

4 5

2

Prim’s algorithm (sketch)

I Start from a fixed vertex (v1)

I Iteratively add the vertex that is cheapest to reach from the
vertices that we have spanned so far.

Algorithm Prim(V , E, w)
T ← ∅
S ← {v1}
while S 6= V do

find e = {u, v} of minimum weight such that
u ∈ S and v ∈ V \ S

T ← T ∪ {e}
S ← S ∪ {v}

return T

I An O (|V | × |E |) runtime complexity as written.

I Use a priority queue (heap) to make the find step fast!

Single source shortest paths

Problem

Given a weighted (directed) graph G and a source vertex s, find
the shortest paths from s to every other vertex of G .

Important properties:

I No vertex is visited twice on a shortest path.

I The prefix of a shortest path is a shortest path.

Outline of Dijkstra’s algorithm:

I Grow a shortest path tree rooted at s and directed from s

I Track the cost of the shortest path to other vertices using just
vertices in tree (plus the destination).

I Repeatedly add the vertex that is cheapest to reach from the
tree.

Bellman-Ford algorithm

I Works with negative edge weights!
I Our first dynamic programming algorithm.

I Divide-and-conquer breaks problems into subproblems
(top-down).

I Dynamic programming combines subproblems into problems
(bottom-up).

I If there is an negative cost cycle, there is no shortest path.
I If no negative cost cycles, a shortest path visits each vertex.

I Each shortest path uses at most |V | − 1 edges.

I Bellman-Ford iteratively finds shortest paths using at most
1, 2, 3, . . . , |V | − 1 edges.

Optimal substructure

Both Dijkstra’s and Bellman-Ford’s algorithms work because you
can extend the optimal solution of a subproblem.

Definition

A problem has optimal substructure if some optimal solution is

I an optimal solution to a subproblem combined with

I an optimal choice.

I Often don’t know which choice to make, so try them all.
I May be efficient if subproblems overlap

I |V | paths to extend in Bellman-Ford (subproblems)
I |E | edges to extend with (choices)

Making change with coins

Problem

Given: Coin values c1, c2, . . . , ct with which to make change and
the amount of change to be made n.

Wanted: The minimum number of coins necessary to make n
cents change.

Denominations chosen so that greedy algorithm works, but not
true in general.

Example

Coins: 1¢, 3¢, and 4¢
Change to make: 6¢

Greedy → 4¢, 1¢, and 1¢
Optimal → 3¢ and 3¢

Exhaustive coin changing

Algorithm TryEmAll(C,n)

if (n = 0) then
return 0

int coins←∞
for i ← 0 to C.length−1 do

if (n ≥ C [i]) then
subprob ← TryEmAll(C,n − C [i])
coins← min{subprob+1,coins}

return coins

Recursion tree for TryEmAll

This is inefficient because it recomputes the same subproblems
over and over again.

TryEmAll([1,3,4],90)

88 86 85 86 84 83 85 83 82

89 87 86

90

A better idea:

I Construct a table to store the optimal solution for each
subproblem.

I Compute it recursively the first time, look it up every other
time.

Memoization

int coins[0 . . . n]←∞

Algorithm TryEmAllAgain(C,n)

if (n = 0) then
return 0

if (coins[n] 6=∞) then
return coins[n]

for i ← 0 to C.length−1 do
if (n ≥ C [i]) then

subprob ← TryEmAll(C,n − C [i])
coins[n]← min{subprob+1,coins[n]}

return coins[n]

Dynamic programming solution

We can eliminate the explicit recursion:

Algorithm DPCoinChange(C,n)

int coins[0 . . . n]

coins[0]← 0

for nn← 1 to n do
coins[nn]←∞
for i ← 0 to C.length−1 do

if nn ≥ C [i] then
coins[nn]←

min{coins[nn],coins[nn − C [i]] + 1}

return coins[n]

Run-time is Θ(nt).

Weighted activity selection

Problem

Given a set of activities represented as intervals
A = {[a1, b1]] , . . . , [an, bn]]} and a positive weight function
w : A→ R+ find a subset S ⊆ A such that

I the activities don’t overlap (i.e. s ∩ t = ∅, for s, t ∈ S), and

I the sum
∑

s∈S w(s) is maximum

Example

Optimal answer is solid intervals, which simple greedy schemes
don’t select.

2

1

5

4

Weighted activity selection: optimal substructure

A

Al Ar

s

Suppose that some optimal solution S contains s

I s divides A in two: Al completely to the left of s and Ar

completely to the right of s

I S ∩ Al is optimal solution to subproblem restricted to Al

I If Sl is an optimal solution to Al , (S \ Al) ∪ Sl is optimal!

Weighted activity selection: divide-and-conquer

Algorithm MaxActivitySelect(A)
S ← ∅
max ← −∞
for each [x , y] ∈ A do

Al ← {[a, b] ∈ A : b < x}
Ar ← {[a, b] ∈ A : y > a}
Sl ← MaxActivitySelect(Al)
Sr ← MaxActivitySelect(Ar)

if max <
∑

s∈Sl
w(s) +

∑
s∈Sr

w(s) + w([x , y]) then
S ← Sl ∪ Sr ∪ {[x , y]}
max ←

∑
s∈S w(s)

return S

Weighted activity select: memoization

I Cache so that we don’t recompute common subproblems

I Cannot index by all subsets A′ ⊆ A because there are 2n

I Showed that all subproblems were of the form
{[a, b] ∈ A : β < a and b < α} where

I β = −∞ or bi and
I α =∞ or aj ,

for some i , j

I So only O
(
n2

)
subproblems...

