
Recurrence Relations

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science
University of British Columbia

May 28, 2007



Introduction

Reading:

I CLRS: “Recurrences” 4.1-4.2

I GT: “Divide-and-Conquer” 5.2.1 (not Master Theorem)

We analysed the running time of iterative algorithms. Some
algorithms are inherently recursive and we need new techniques to
deal with them.

MergeSort

MergeSort uses an approach called “divide-and-conquer”.

I Divide the problem into smaller subproblems.

I Solves the subproblems recursively.

I Combines the solutions of the subproblems to solve the initial
problem.



Introduction (cont’d)

Algorithm MergeSort(A,p,r)
if (p<r) then

q ← b(p+r)/2c
MergeSort(A,p,q)
MergeSort(A,q+1,r)
merge(A,p,q,r)

5
4
9
1
3
7
0
4

5
4
9
1
3
7
0
4

5
4
9
1
3
7
0
4

5
4
9
1
3
7
0
4

4
5
1
9
3
7
0
4

1
4
5
9
0
3
4
7

0
1
3
4
4
5
7
9

Let T (n) be the run-time on an input of size n. Then

T (n) =

{
b if n = 1
T (dn/2e) + T (bn/2c) + dn if n ≥ 2

For some b, d ∈ Z+.



Ignoring Discontinuities

I bc and de often necessary to define recurrence.

I Tedious to analyse because of discontinuity.

I Recurrences with both are often worse because the
discontinuities are out of sync.

I Ignore the problem:
I Solve T (n) when n is a power of 2.
I Then bn/2c = dn/2e = n/2.
I Not a true asymptotic bound, but result often generalizes.

T (n) =

{
b if n = 1
2T (n/2) + dn if n ≥ 2



Guess and Test: Inductive Step

Guess T (n) ≤ cn log n, for n = 2k .

Induction Step:

T (n) = 2T (n/2) + dn

≤ 2[c(n/2) log(n/2)] + dn

≤ cn log(n/2) + dn

≤ cn[log n − log 2] + dn

≤ cn log n − cn log 2 + dn

≤ cn log n if cn log 2 ≥ dn

Induction step goes through if c ≥ d/ log 2.



Guess and Test: Base Case

Guess T (n) ≤ cn log n, for n = 2k .
Base case:

I n = 20: Doesn’t work because
T (1) = b ≥ 0 = cn log n.

I n = 21: Refers to T (1). Must iterate
recursion.

Carefully choose n0.

T (2) = 2T (1) + 2d
= 2b + 2d
≤ c · 2 log 2

 need c ≥ b + d

log 2

Base case and inductive step restrict c . Take the maximum to
satisfy both.

Hence, T (n) ≤ b+d
log 2 · n log n, for n = 2k and k ≥ 1.



Handling Discontinuities

Squeeze T (n) between two functions m(n) ≤ T (n) ≤ M(n).

I T (n) ∈ Ω(m(n)) and T (n) ∈ O(M(n)).
I Trade-off between

I proving m(n) ≤ T (n) ≤ M(n) and
I solving for m(n) and M(n).

m(n) =

{
b if n = 1
2m(bn/2c) + dn if n ≥ 2

M(n) =

{
b if n = 1
2M(dn/2e) + dn if n ≥ 2



Prove Inequality: T (n) ≤ M(n).

Base Case: T (1) = b = M(n). Inductive Step:

T (n) = T (dn/2e) + T (bn/2c) + dn

≤ M(dn/2e) + M(bn/2c) + dn induction hypothesis

≤ M(dn/2e) + M(dn/2e) + dn if M non-decreasing

= M(n)

M(n) is non-decreasing if M(n) ≤ M(n + 1).

Base Case: M(1) = b ≤ 2b + dn = M(2). Inductive Step: If n is
even,

M(n) = 2M(dn/2e) + dn

≤ 2M(d(n + 1)/2e) + dn induction hypothesis

= M(n + 1)

If n is odd, dn/2e = d(n + 1)/2e. So M(n) = M(n + 1).



Solve Recurrence: Inductive Step

Guess M(n) ≤ cn log n

Inductive Step:

M(n) = 2M(dn/2e) + dn

≤ 2c (dn/2e logdn/2e) + dn induction hypothesis

≤ 2c([n + 1]/2) · log([n + 1]/2) + dn rounding up

= c[n + 1] log([n + 1]/2) + dn

= [cn + c] log([n + 1]/2) + dn

= cn log([n + 1]/2) + c log([n + 1]/2) + dn

≤ cn log([n + 1]/2) + c log([n + n]/2) + dn

≤ cn log([n + 1]/2) + c log n + dn



Solve Recurrence: Inductive Step (cont’d)

Guess M(n) ≤ cn log n (cont’d)

M(n) ≤ cn log([n + 1]/2) + c log n + dn

= cn[log(n + 1)− log 2] + c log n + dn

= cn log(n + 1)− cn log 2 + c log n + dn

≤ cn(log n + 1/n)− cn log 2 + c log n + dn sublinear

≤ cn log n + c − cn log 2 + c log n + dn

≤ cn log n + dn − cf (n), f (n) = n log 2− log n − 1

≤ cn log n, if cf (n) ≥ dn

Can we choose c large enough? Depends on f (n).

By inspection, f (n) ∈ Θ(n). Consider n0 and e such that
f (n) ≥ en, for n ≥ n0. Then cf (n) ≥ cen ≥ dn, if c ≥ d/e and
n ≥ n0.



Solve Recurrence: Base Case

Guess M(n) ≤ cn log n

I Inductive step only worked for n ≥ n0.

I Must consider every n < n0 a base case.

I Choose

c >
M(n)

n log n
, for 1 < n < n0

May be many base
cases.

I Make sure c > d/e as well

I Then base cases and inductive step go through.

I Proves M(n) ∈ O(n log n).



Guess and Test (cont’d)

Recurrence: T (n) = 2T (bn/2c) + n with T (1) = 1

Guess T (n) ≤ cn

Inductive Step:

T (n) = 2T (bn/2c) + n
≤ 2cbn/2c+ n induction hypothesis
≤ 2cn

2 + n = (c + 1)n

So T (n) ≤ dn, but d 6= c .

Only allowed to choose c once!



Guess and Test (cont’d)

Recurrence: T (n) = T (bn/2c) + T (dn/2e) + 1 with T (1) = 1

Guess T (n) ≤ cn

Inductive Step

T (n) = T (bn/2c) + T (dn/2e) + 1
≤ cbn/2c+ cdn/2e+ 1 induction hypothesis
= cn + 1

Sometimes a stronger guess makes the math work.



Guess and Test (cont’d)

Revised Guess: T (n) ≤ cn − 1

Inductive Step

T (n) = T (bn/2c) + T (dn/2e) + 1
≤ (cbn/2c − 1) + (cdn/2e − 1) + 1 induction hypothesis
= c(bn/2c+ dn/2e)− 1
= cn − 1

So the inductive step holds for all c .

Base case (n = 1):

I Want T (1) = 1 ≤ c − 1

I Satisfied for c ≥ 2.

So the proof works for c ≥ 2.



Iteration

I A tree represents the recursion.

I Add the costs for each level of the tree.

I The sums and the tree height bound the running time

I Used to generate guess, if accounting is sloppy.

I Assume n is appropriate power.



Internal Nodes Dominate

T (n) =

{
3T (bn/4c) + cn2 n ≥ 4
b n ≤ 4

c
(

n
4

)2

c
(

n
16

)2
c
(

n
16

)2
c
(

n
16

)2

c
(

n
4

)2

c
(

n
16

)2
c
(

n
16

)2
c
(

n
16

)2

c
(

n
4

)2

c
(

n
16

)2
c
(

n
16

)2
c
(

n
16

)2

cn2

3
16cn2

(
3
16

)2
cn2

cn2



Internal Nodes Dominate (cont’d)

So we have

internal nodes leaves

T (n) ≤ cn2
[
1 + 3

16 +
(

3
16

)2
+ . . . +

(
3
16

)log4 n
]

+b · 3log4 n

≤ cn2
[
1 + 3

16 +
(

3
16

)2
+ . . .

]
+b · nlog4 3

The infinite series
∑

i (3/16)i converges to a constant d , so

T (n) ≤ cdn2 + bnlog4 3 ∈ O(n2)



Leaves Dominate

T (n) = 3T (bn/2c) + c with T (1) = d

c

3c

32c

c

c

c ccc cc

c

c ccc cc

c

c ccc cc

So we have

internal nodes leaves
T (n) = c + 3c + . . . + 3log2 nc +d3log2 n

= c
∑log2 n

i=0 3i +dnlog2 3



Leaves Dominate (cont’d)

Recall that
∑k

i=0 ai = ak+1−1
a−1 . So

log2 n∑
i=0

3i =
3(log2 n)+1 − 1

3− 1

≤ 3(log2 n)+1

3− 1

≤ 3(log2 n)+1

≤ 3 · 3log2 n

≤ 3 · nlog2 3

Therefore,

T (n) ≤ 3cnlog2 3 + d log2 3 ∈ O(nlog2 3)



Unbalanced Trees

T (n) = T (bn/3c) + T (b2n/3c) + cn with T (1) = T (2) = 1.

c
(

4n
9

)
c
(

2n
9

)
c
(

2n
3

)
c
(

n
3

)
c
(

2n
9

)
c
(

n
9

)

cn ≤ cn

≤ cn

≤ cn

The leftmost branch is shorter
than the rightmost branch.

So
internal nodes leaves

T (n) ≤ cn log 3
2
n +2

log 3
2

n

= cn log 3
2
n +n

log 3
2

2



Unbalanced Trees (cont’d)

I Leaf estimate assumes that the last level is full.

I Try node bound as a guess: T (n) ≤ dn log n.

Inductive Hypothesis:

T (n) = T
(⌊

n
3

⌋)
+ T

(⌊
2n
3

⌋)
+ cn

≤ d
⌊

n
3

⌋
log

⌊
n
3

⌋
+ d

⌊
2n
3

⌋
log

⌊
2n
3

⌋
+ cn

≤ d
(

n
3

)
log

(
n
3

)
+ d

(
2n
3

)
log

(
2n
3

)
+ cn

≤ d
(

n
3

)
[log n − log 3] + d

(
2n
3

)
[log n + log 2− log 3] + cn

= d
(

n
3 + 2n

3

)
log n − d

(
n
3 + 2n

3

)
log 3 + d

(
2n
3

)
log 2 + cn

= dn log n − dn log 3 + d
(

2n
3

)
log 2 + cn

= dn log n + n
[
−d log 3 + d

(
2
3

)
log 2 + c

]



Unbalanced Trees (cont’d)

Inductive Step:

T (n) ≤ dn log n + n [−d log 3 + 2d/3 · log 2 + c]

I Fortunately, log 3 > 2/3 · log 2.

I Can make d large enough to cancel c .

Base Cases:
I Does not hold for n = 1 because log 1 = 0.

I So n0 = 2.
I Every T (i) referring to T (1) must be a base case.


