Recurrence Relations

Jonathan Backer backer@cs.ubc.ca

Department of Computer Science University of British Columbia

May 28, 2007

Introduction

Reading:

- ► CLRS: "Recurrences" 4.1-4.2
- ► GT: "Divide-and-Conquer" 5.2.1 (not Master Theorem)

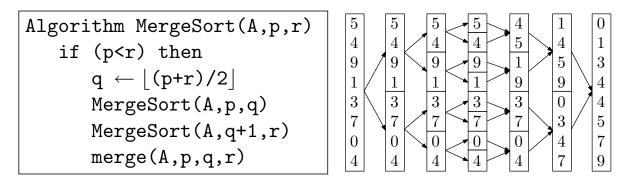
We analysed the running time of iterative algorithms. Some algorithms are inherently recursive and we need new techniques to deal with them.

MergeSort

MergeSort uses an approach called "divide-and-conquer".

- Divide the problem into smaller subproblems.
- Solves the subproblems recursively.
- Combines the solutions of the subproblems to solve the initial problem.

Introduction (cont'd)



Let T(n) be the run-time on an input of size n. Then

$$T(n) = \begin{cases} b & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + dn & \text{if } n \ge 2 \end{cases}$$

For some $b, d \in \mathbb{Z}^+$.

Ignoring Discontinuities

- ▶ [] and [] often necessary to define recurrence.
- Tedious to analyse because of discontinuity.
- Recurrences with both are often worse because the discontinuities are out of sync.
- Ignore the problem:
 - Solve T(n) when n is a power of 2.
 - Then $\lfloor n/2 \rfloor = \lceil n/2 \rceil = n/2$.
 - Not a true asymptotic bound, but result often generalizes.

$$T(n) = \begin{cases} b & \text{if } n = 1\\ 2T(n/2) + dn & \text{if } n \ge 2 \end{cases}$$

Guess and Test: Inductive Step

Induction Step:

$$T(n) = 2T(n/2) + dn$$

$$\leq 2[c(n/2)\log(n/2)] + dn$$

$$\leq cn\log(n/2) + dn$$

$$\leq cn[\log n - \log 2] + dn$$

$$\leq cn\log n - cn\log 2 + dn$$

$$\leq cn\log n \text{ if } cn\log 2 \ge dn$$

Induction step goes through if $c \ge d/\log 2$.

Guess and Test: Base Case

Guess
$$T(n) \leq cn \log n$$
, for $n = 2^k$

Base case:

• $n = 2^0$: Doesn't work because $T(1) = b \ge 0 = cn \log n$.

Carefully choose n_0 .

n = 2¹: Refers to *T*(1). Must iterate recursion.

$$T(2) = 2T(1) + 2d$$

= 2b + 2d
 $\leq c \cdot 2 \log 2$ herefore $c \geq \frac{b+d}{\log 2}$

Base case and inductive step restrict c. Take the maximum to satisfy both.

Hence, $T(n) \leq \frac{b+d}{\log 2} \cdot n \log n$, for $n = 2^k$ and $k \geq 1$.

Handling Discontinuities

Squeeze T(n) between two functions $m(n) \leq T(n) \leq M(n)$.

- $T(n) \in \Omega(m(n))$ and $T(n) \in O(M(n))$.
- Trade-off between
 - proving $m(n) \leq T(n) \leq M(n)$ and
 - solving for m(n) and M(n).

$$m(n) = \begin{cases} b & \text{if } n = 1\\ 2m(\lfloor n/2 \rfloor) + dn & \text{if } n \ge 2 \end{cases}$$
$$M(n) = \begin{cases} b & \text{if } n = 1\\ 2M(\lceil n/2 \rceil) + dn & \text{if } n \ge 2 \end{cases}$$

Prove Inequality: $T(n) \leq M(n)$.

Base Case: T(1) = b = M(n). Inductive Step:

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + dn$$

$$\leq M(\lceil n/2 \rceil) + M(\lfloor n/2 \rfloor) + dn \text{ induction hypothesis}$$

$$\leq M(\lceil n/2 \rceil) + M(\lceil n/2 \rceil) + dn \text{ if } M \text{ non-decreasing}$$

$$= M(n)$$

M(n) is non-decreasing if $M(n) \le M(n+1)$. Base Case: $M(1) = b \le 2b + dn = M(2)$. Inductive Step: If n is even,

$$M(n) = 2M(\lceil n/2 \rceil) + dn$$

$$\leq 2M(\lceil (n+1)/2 \rceil) + dn \text{ induction hypothesis}$$

$$= M(n+1)$$

If n is odd, $\lceil n/2 \rceil = \lceil (n+1)/2 \rceil$. So M(n) = M(n+1).

Solve Recurrence: Inductive Step

Guess $M(n) \leq cn \log n$

Inductive Step:

Solve Recurrence: Inductive Step (cont'd)

Guess $M(n) \leq cn \log n$ (cont'd)

$$M(n) \leq cn \log([n+1]/2) + c \log n + dn$$

- $= cn[\log(n+1) \log 2] + c\log n + dn$
- $= cn\log(n+1) cn\log 2 + c\log n + dn$
- $\leq cn(\log n + 1/n) cn\log 2 + c\log n + dn$ sublinear
- $\leq cn \log n + c cn \log 2 + c \log n + dn$
- $\leq cn \log n + dn cf(n), f(n) = n \log 2 \log n 1$
- \leq cn log n, if cf(n) \geq dn

Can we choose c large enough? Depends on f(n). By inspection, $f(n) \in \Theta(n)$. Consider n_0 and e such that $f(n) \ge en$, for $n \ge n_0$. Then $cf(n) \ge cen \ge dn$, if $c \ge d/e$ and $n \ge n_0$.

Solve Recurrence: Base Case

Guess $M(n) \leq cn \log n$

- Inductive step only worked for $n \ge n_0$.
- Must consider every $n < n_0$ a base case.
- Choose

$$c > rac{M(n)}{n \log n}, ext{ for } 1 < n < n_0$$

May be many base cases.

- Make sure c > d/e as well
- Then base cases and inductive step go through.
- ▶ Proves $M(n) \in O(n \log n)$.

Guess and Test (cont'd)

Recurrence: $T(n) = 2T(\lfloor n/2 \rfloor) + n$ with T(1) = 1

Guess $T(n) \leq cn$

Inductive Step:

So $T(n) \leq dn$, but $d \neq c$.

Only allowed to choose c once!

Guess and Test (cont'd)

Recurrence: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$ with T(1) = 1

Guess $T(n) \leq cn$

Inductive Step

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\leq c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

$$= cn + 1$$

induction hypothesis

Sometimes a stronger guess makes the math work.

Guess and Test (cont'd)

Revised Guess: $T(n) \leq cn - 1$

Inductive Step

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\leq (c \lfloor n/2 \rfloor - 1) + (c \lceil n/2 \rceil - 1) + 1 \text{ induction hypothesis}$$

$$= c(\lfloor n/2 \rfloor + \lceil n/2 \rceil) - 1$$

$$= cn - 1$$

So the inductive step holds for all c.

Base case (n = 1):

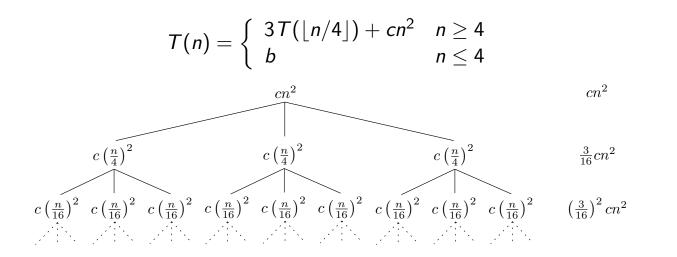
- Want $T(1) = 1 \le c 1$
- Satisfied for $c \geq 2$.

So the proof works for $c \geq 2$.

Iteration

- A tree represents the recursion.
- Add the costs for each level of the tree.
- The sums and the tree height bound the running time
- Used to generate guess, if accounting is sloppy.
- Assume *n* is appropriate power.

Internal Nodes Dominate



Internal Nodes Dominate (cont'd)

So we have

 $T(n) \leq cn^{2} \begin{bmatrix} 1 + \frac{3}{16} + \left(\frac{3}{16}\right)^{2} + \ldots + \left(\frac{3}{16}\right)^{\log_{4} n} \end{bmatrix} + b \cdot 3^{\log_{4} n} \\ \leq cn^{2} \begin{bmatrix} 1 + \frac{3}{16} + \left(\frac{3}{16}\right)^{2} + \ldots \end{bmatrix} + b \cdot n^{\log_{4} 3}$

The infinite series $\sum_{i}(3/16)^{i}$ converges to a constant d, so

$$T(n) \leq cdn^2 + bn^{\log_4 3} \in O(n^2)$$

Leaves Dominate T(n) = 3T(|n/2|) + c with T(1) = dccccc3ccccС cccc 3^2c So we have internal nodes leaves $T(n) = c + 3c + \ldots + 3^{\log_2 n}c + d3^{\log_2 n}$ $= c \sum_{i=0}^{\log_2 n} 3^i$ $+dn^{\log_2 3}$

Leaves Dominate (cont'd)

Recall that
$$\sum_{i=0}^{k} a^i = \frac{a^{k+1}-1}{a-1}$$
. So

$$\sum_{i=0}^{\log_2 n} 3^i = \frac{3^{(\log_2 n)+1} - 1}{3-1}$$

$$\leq \frac{3^{(\log_2 n)+1}}{3-1}$$

$$\leq 3^{(\log_2 n)+1}$$

$$\leq 3 \cdot 3^{\log_2 n}$$

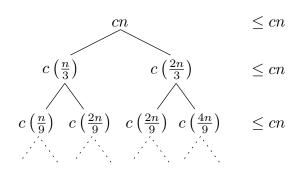
$$\leq 3 \cdot n^{\log_2 3}$$

Therefore,

$$T(n) \leq 3cn^{\log_2 3} + d^{\log_2 3} \in O(n^{\log_2 3})$$

Unbalanced Trees

$$T(n) = T(\lfloor n/3 \rfloor) + T(\lfloor 2n/3 \rfloor) + cn$$
 with $T(1) = T(2) = 1$.



The leftmost branch is shorter than the rightmost branch.

So

$$T(n) \leq cn \log_{\frac{3}{2}} n + 2^{\log_{\frac{3}{2}} n} \\ = cn \log_{\frac{3}{2}} n + n^{\log_{\frac{3}{2}} 2}$$

Unbalanced Trees (cont'd)

- Leaf estimate assumes that the last level is full.
- Try node bound as a guess: $T(n) \leq dn \log n$.

Inductive Hypothesis:

$$T(n) = T\left(\left\lfloor \frac{n}{3} \right\rfloor\right) + T\left(\left\lfloor \frac{2n}{3} \right\rfloor\right) + cn$$

$$\leq d\left\lfloor \frac{n}{3} \right\rfloor \log\left\lfloor \frac{n}{3} \right\rfloor + d\left\lfloor \frac{2n}{3} \right\rfloor \log\left\lfloor \frac{2n}{3} \right\rfloor + cn$$

$$\leq d\left(\frac{n}{3}\right) \log\left(\frac{n}{3}\right) + d\left(\frac{2n}{3}\right) \log\left(\frac{2n}{3}\right) + cn$$

$$\leq d\left(\frac{n}{3}\right) \left[\log n - \log 3\right] + d\left(\frac{2n}{3}\right) \left[\log n + \log 2 - \log 3\right] + cn$$

$$= d\left(\frac{n}{3} + \frac{2n}{3}\right) \log n - d\left(\frac{n}{3} + \frac{2n}{3}\right) \log 3 + d\left(\frac{2n}{3}\right) \log 2 + cn$$

$$= dn \log n - dn \log 3 + d\left(\frac{2n}{3}\right) \log 2 + cn$$

$$= dn \log n + n \left[-d \log 3 + d\left(\frac{2}{3}\right) \log 2 + c\right]$$

Unbalanced Trees (cont'd)

Inductive Step:

$$T(n) \leq dn \log n + n \left[-d \log 3 + 2d/3 \cdot \log 2 + c\right]$$

- Fortunately, $\log 3 > 2/3 \cdot \log 2$.
- Can make *d* large enough to cancel *c*.

Base Cases:

- ▶ Does not hold for n = 1 because $\log 1 = 0$.
 - So $n_0 = 2$.
 - Every T(i) referring to T(1) must be a base case.