
Range Queries

Today we will examine at a data structure that quickly answers range queries on one dimensional data.
The tree that we construct is a balanced binary tree, where each node represents a subrange of the data.
For simplicity, we are going to start with a complex solution to a simple problem, and then we see how the
techniques apply to a more di�cult problems.

Problem: You are given a sequence of integers x1, x2, . . . , xn. Quickly answer queries of the form �What is
the sum of xi + xi+1 + . . . + xj?�, for any i ≤ j.

Simple Solution: Create an array S[0 . . . n] where S[i] =
∑i

k=1 xk = S[i − 1] + xi. Then given a query

return S[j] − S[i − 1] =
∑j

k=1 xk −
∑i−1

k=1 xk =
∑j

k=i xk. Preprocessing takes Θ(n) time and
space. Queries are answered in Θ(1) time.

Complex Solution: Partition the range xi, xi+1, . . . , xj into subranges for which we have precomputed
sums. Return the sum of the subrange sums.

In this example, we start with the sum of the entire sequence at the
top. In each successive level, we split each range in half, until we end
up with ranges containing single elements.

When answering a query, we carefully choose how we partition
the query range into our subranges: we select subranges contained in
the query range (light gray); we only choose such subranges that are
not contained in any other such subrange (dark gray).

x1 x2 x8. . .

1 2 9 8

3 17

20

1 100 −2

sum from x2 to x6

-3 5 2 7

Why do we use this more complicated solution? Because we can answer other types of queries as well: For
example, we can �nd the maximum of a query range.

x1 x2 x8. . .

1 5 7 10

5 10

10

100 −2

max from x1 to x5

-3 5 2 71

How do we represent, construct, and query such a data structure?
Recursively! First we start with the representation. Each subrange
has a start and end, can be re�ned into two subranges, and has a
representative value.

type Range {

Real value;

Integer start, end;

Range left←nil,right←nil;

}

We construct the data structure recursively.

Algorithm QueryTreeInit(X,start,end)

Range r
r.start←start

r.end←end

if (start = end) then

r.value← X[start]
else

mid← b(start+end) /2c
r.left← QueryTreeInit(X, start, mid)
r.right← QueryTreeInit(X, mid + 1, right)
r.value← r.left.value + r.right.value

return r

1



2

What is the runtime of this construction? Let n = start − end + 1 = size of range. Then the following
recurrence describes the runtime:

T (n) = T (bn/2c) + T (dn/2e) + Θ(1)
= 2T (n/2) + Θ(1) for powers of 2

This recurrence is case 1 of the master theorem, so T (n) ∈ Θ(n). The same recurrence describes the number
of ranges constructed. So the query tree can be constructed in Θ(n) time and space, which is competitive
with the simple solution we outlined earlier.

Algorithm QueryTreeSum(T,start,end)
if (T.end < start) or (T.start > end) then

return 0

if (start < T.start) and (T.end < end) then

return T.value
mid← b(start+end) /2c
return QueryTreeSum(T.left,start,mid)+

QueryTreeSum(T.right,mid+1,end)

What is the runtime of a query? Rather than using a recurrence relation, we use a counting argument
based on a simple observation: in order to spawn a recursive call, the range must intersect the query range but
must not be contained in the query range. How many such ranges are there per level? As the two recursive
calls are written, one of the query range endpoints (either mid or mid+1) is a child subrange endpoint. The
other query range endpoints (start and end) are endpoints of an original query. The condition for spawning
recursive calls (intersecting but not being contained) is only satis�ed if one (but not both) of the original
query endpoints is contained in the subrange. There are at most two such intervals per level. Hence, there are
at most four recursive calls per level. Using the recursive calls are a barometer, the runtime of this algorithm
is O(h), where h is the height of the query tree.

What is the height of the query tree? It satis�es this recurrence:

h(n) = max {h(dn/2e), h (bn/2c)}+ 1
= h(dn/2e) + 1 assuming that h(n) is non-decreasing

This recurrence satis�es case 2 of the master theorem. So h(n) ∈ Θ(log n). Thus, queries are not as fast as
the simple solution that we identi�ed at the beginning but they are close.

We now look at a di�erent problem that can be solved with the same technique:

Problem: Given points x1 < x2 < . . . < xn answer queries of the form �How many points are contained in
the interval [a, b]?�

Simple Solution: Binary search for the earliest point xi such that a < xi. Binary search for the last point
xj such that xj < b. Return j − i + 1.

Complex Solution: Same general idea. We create subranges, and for each subrange count the number of
points within it. For each query, �nd a representative set of subranges and add up the totals of
the subranges.

1 1 1 1 1 1 1 1

2 2 2 2

4 4

8

x1 x2 x8. . .

count the number of points in this range

The construction is similar.



3

Algorithm QueryTreeInit(X,i,j)
Range r
r.start←X[i]
r.end← X[j]
if (i = j) then

r.value← 1
else

mid← b(i + j) /2c
r.left← QueryTreeInit(X, i, mid)
r.right← QueryTreeInit(X, mid + 1, j)
r.value← r.left.value + r.right.value

return r

Practice: Write the QueryTreeCount(T,a,b).


