Master Method

Jonathan Backer backer@cs.ubc.ca

Department of Computer Science University of British Columbia

May 28, 2007

Introduction

Reading:

- ► CLRS "Recurrences" 4.3
- ▶ GT "Divide-and-conquer" 5.2.1, 5.2.2

We state the Master Theorem, which gives a tight asymptotic bound on a large class of recurrence relations of the form T(n) = aT(n/b) + f(n).

Then we quickly analyse the run-time of two arithmetic operations.

The Master Method

$\mathsf{Theorem}$

Let $a \ge 1, b > 1$ be constants. Let T(n) be defined by T(n) = aT(n/b) + f(n), where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then

- 1. If $f(n) \in O\left(n^{(\log_b a) \epsilon}\right)$ for some $\epsilon > 0$, then $T(n) \in \Theta\left(n^{\log_b a}\right)$.
- 2. If $f(n) \in \Theta(n^{\log_b a})$, then $T(n) \in \Theta(n^{\log_b a} \cdot \log n)$.
- 3. If $f(n) \in \Omega\left(n^{(\log_b a) + \epsilon}\right)$ for some $\epsilon > 0$ and $af(n/b) \le \delta f(n)$ for some $\delta < 1$ and n sufficiently large, then $T(n) \in \Theta(f(n))$.

Intuitively,

- 1. Leaves dominate.
- 2. Costs are balanced.
- 3. Internal nodes dominate, but do not explode.

Multiplying Large Integers

Problem

Given two k-digit integers in base 10 (or 2^i), compute their product.

Method 1: Long multiplication

Method 2: Divide-and-conquer

Divide each number into two numbers with at most $\lceil k/2 \rceil$ digits. For example,

$$n_1 = 31 \mid 28$$
 $a = 31$ $b = 28$ $n_1 = a \cdot 10^{\lfloor k/2 \rfloor} + b$ $n_2 = 17 \mid 93$ $c = 17$ $d = 93$ $n_2 = c \cdot 10^{\lfloor k/2 \rfloor} + d$

Multiplying Large Integers (cont'd)

Method 2 (cont'd)

Multiply numbers

$$n_1 \cdot n_2 = (ax + b) \cdot (cx + d)$$
, where $x = 10^{\lfloor k/2 \rfloor}$
= $acx^2 + adx + bcx + bd$
= $acx^2 + (ad + bc)x + bd$

Multiplying by x is $\Theta(k)$. Additions and subtractions are $\Theta(k)$.

$$T(k) = \begin{cases} 4T(k/2) + \Theta(k) & \text{for } k \ge 2\\ \Theta(1) & k = 1 \end{cases}$$

By the Master Theorem $T(k) \in \Theta\left(n^{\log_2 4}\right) = \Theta\left(n^2\right)$.

Multiplying Large Integers (cont'd)

Method 2 (cont'd)

Idea: Reuse ac, bd to reduce multiplication.

$$n_1 \cdot n_2 = acx^2 + (ad + bc)x + bd$$

$$= acx^2 + (ad + bc + [ac - ac] + [bd - bd])x + bd$$

$$= acx^2 + ([ad + ac] + [bc + db] - ac - bd)x + bd$$

$$= acx^2 + (a[c + d] + b[c + d] - ac - bd)x + bd$$

$$= acx^2 + ([a + b][c + d] - ac - bd)x + bd$$

Then

$$T(k) = \begin{cases} 3T(k/2) + \Theta(k) & \text{for } k \ge 2\\ \Theta(1) & k = 1 \end{cases}$$

By the Master Theorem $T(k) \in \Theta\left(n^{\log_2 3}\right) \approx \Theta\left(n^{1.585}\right)$.

Evaluating Large Exponents

Problem

Given an n-digit integer a and an integer b, compute a^b .

Method 1: Iteration

Expand a^b to $a \times a \times \ldots \times a$.

Last multiplication is $\Theta(bn)$ digits times n digits.

- ▶ Long multiplication is $O(bn^2)$.
- ► Fast multiplication is $O(b^{1.58}n^{1.58})$.

If $b \ge n$ then long multiplication is faster.

So we use long multiplication.

▶ b/2 multiplications multiply more than $b/2 \times n$ digits by a n digits number.

Running time is $\Omega(b^2n^2)$

Evaluating Large Exponents (cont'd)

Method 2: Divide-and-conquer

We compute a^b recursively

$$a^b = \left\{ egin{array}{ll} a^{\lfloor b/2
floor} imes a^{\lfloor b/2
floor} & ext{if } b ext{ is even} \ a^{\lfloor b/2
floor} imes a^{\lfloor b/2
floor} imes a & ext{if } b ext{ is odd} \end{array}
ight.$$

Each iteration multiplies bn digits by bn digits.

$$T(b) = T(b/2) + \Theta(b^{1.58}n^{1.58})$$

Case 3 of the Master Theorem because $b^{1.58} \in \Omega\left(b^{(\log_2 1) + \epsilon}\right)$. Check regularity

$$c \cdot (b/2)^{1.58} n^{1.58} < \delta \times c \cdot b^{1.58} n^{1.58}$$

So
$$T(n) \in \Theta\left(b^{1.58}n^{1.58}\right)$$