
Longest Common Subsequence and
Global Sequence Alignment

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science
University of British Columbia

July 5, 2007

Introduction

Reading:

I “Longest Common Subsequence”, 15.4 CLRS

I “Text Similarity Testing”, 9.4 GT

Look at two dynamic programming algorithms that measure the
similarity of two sequences.

Longest common subsequence

Definition

Given a sequence of values (a1, a2, . . . , am), a subsequence is a
sequence (ai1 , ai2 , . . . , ait) where 1 ≤ i1 < i2 < . . . it ≤ m.

Alternatively,

I () is a subsequence of every sequence.

I (b1, . . . , bt) is a subsequence of (a1, . . . , am) if there is some i
such that bt = ai and (b1, . . . , bt−1) is a subsequence of
(a1, . . . , ai−1).

Problem

Given sequences (a1, a2, . . . , am) and (b1, b2, . . . , bn), find the
longest subsequence that is common to both sequences.

Example

The LCS of (1, 1, 2, 3, 4, 5) and (5, 2, 3, 4, 1, 1) is (2, 3, 4).

Optimal substructure

Lemma

Let (x1, . . . , xt) be a LCS of (a1, . . . , am) and (b1, . . . , bn). Then
there is some i , j such that xt = ai = bj and (x1, . . . , xt−1) is a
LCS of (a1, . . . , ai−1) and (b1, . . . , bj−1).

Proof

By definition, there must be some i , j such that xt = ai = bj and
(x1, . . . , xt−1) is a subsequence of (a1, . . . , ai−1) and
(b1, . . . , bj−1). If some (w1, . . . ,ws) is a longer subsequence of
(a1, . . . , ai−1) and (b1, . . . , bj−1) than (x1, . . . , xt−1), then
(w1, . . . ,ws , xt) is a longer common subsequence of (a1, . . . , am)
and (b1, . . . , bn) than (x1, . . . , xt), a contradiction.

Data structure

Let L[i , j] be the length of the LCS of (a1, . . . , ai) and (b1, . . . , bj).
Then

L[i , j] = max
r≤i ,s≤j


0 if r = 0 or s = 0
L[r − 1, s − 1] + 1 if ar = bs

0 otherwise

0

0

0

0

0

000 00

1

..

.

n

0 1 . . . m

i

j

i, j

L[i , j] depends on the values of all of the
cells in the shaded region. So fill each
row from left-to-right, starting with the
top row and proceeding to the bottom.

Each cell in L takes O(nm) time to fill. There are O(nm) cells. So
the total runtime is O(n2m2).

Redundancy

= ∪ ∪
i

j

i

j − 1

i

j

i− 1

j

The region being maximized over can be represented by three
smaller regions. The maximization of two of the regions are
subproblems stored in the table. So

L[i , j] =


0 if r = 0 or s = 0

max

{
L[i − 1, j − 1] + 1,
L[i − 1, j], L[i , j − 1]

}
if ai = bj

max{L[i − 1, j], L[i , j − 1]} otherwise

Initialization

I zero the left column and bottom row

I lcs[i , j] depends on values left and
above, so fill each row left-to-right
starting from the top going towards
the bottom

00

0

00

0

0

0

0

j = 0 1 . . . n

i=0

1

..

.
m

Algorithm LCS(A,B)
int lcs[A.length+1,B.length+1]
char backtrack[A.length+1,B.length+1]

for i ← 0 to A.length do
lcs[i , 0]← 0

for j ← 0 to B.length do
lcs[0, j]← 0

Main loop

for i ← 1 to n do
for j ← 1 to m do

lcs[i , j]← lcs[i − 1, j]
backtrack[i , j]←‘↑’
if lcs[i , j − 1] > lcs[i , j] then

lcs[i , j]← lcs[i , j − 1]
backtrack[i , j]← ‘←’

if ai = bj and
lcs[i − 1, j − 1] + 1 > lcs[i , j]

then
lcs[i , j]← lcs[i − 1, j − 1] + 1
backtrack[i , j]← ‘↖’

Example

Find the longest common
subsequence of (s, i , x , u, n, g) and
(u, g , s, u, u, n).

s

i

x

u

n

g

u g s u u n

0

000000 0

0

0

0

0

0 0

0

1

1

1

0

0

0

0

1

1

2

1

1

1

1

1

2

1

1

1

2

2

2

1

1

1

2

2

2

Global sequence alignment

Given two sequences X = (a1, . . . , am) and Y = (b1, . . . , bn), we
want to figure out how similar they are.

A bit similar to longest common sequence, but:

I we may want to match 2 different letters

e.g. AACCATGTC
AAGCATATC

I we may want to allow gaps (i.e. insertions or deletions)

e.g. AGCCGCT CC
AGC CTGCC

Application: DNA sequence alignment

Matching two pieces of DNA

I evolution may have inserted/removed pieces

I some bases (i.e. the letters) may have mutated

Formalization

Definition

A pairwise sequence alignment of X ,Y is a pair of sequences
X ′,Y ′, possibly containing gaps (“-”) such that

I X ′ minus the gaps is X ,

I Y ′ minus the gaps is Y ,

I |X ′| = |Y ′|, and

I X ′
i = Y ′

i =“-” never happens

The score of the alignment X ′,Y ′ is

|X ′|∑
i=1

s(X ′
i ,Y

′
i),

where s is a score function defined by biologists to tell us how
good/bad a mismatch is.

I e.g. s(A,A) = 8, s(∗,−) = −δ (gap penalty), etc.

Optimal substructure

Call the prefix of a sequence everything but the last element. Let
X ′,Y ′ be an optimal sequence alignment. Then X ′ ends in either
am or − and Y ′ ends in either bn or −.

So four cases to consider:

1. X ′ ends in am and Y ′ ends in bn: then the prefixes of X ′,Y ′

are an optimal alignment of the prefixes of X ,Y .

2. X ′ ends in am and Y ′ ends in −: then the prefixes of X ′,Y ′

are an optimal alignment of the prefix of X and the whole of
Y .

3. X ′ ends in − and Y ′ ends in bn: then the prefixes of X ′,Y ′

are an optimal alignment of the whole of X and the prefix of
Y .

4. X ′ and Y ′ cannot both end in −

Data structure

Let gsa[i , j] be the score of the optimal sequence alignment of
(a1, . . . , ai) and (b1, . . . , bj). Then

gsa[i , j] =



0 if i = j = 0
−iδ if i > 0, j = 0
−jδ if i = 0, j > 0

max


gsa[i − 1, j − 1]+

s(ai , bj),
gsa[i − 1, j]− δ,
gsa[i , j − 1]− δ

 if i > 0, j > 0

by the optimal substructure, where δ is the gap penalty. We can fill
in the table the same way as for the longest common subsequence.

Initialization

Algorithm Smith-Wasserman(X,Y)
int gsa[X.length+1,Y .length+1]
string backtrack[X.length+1,Y .length+1]

for i ← 1 to m do
gsa[i , 0]← −iδ
backtrack[i , 0]←‘gap in X’

for j ← 1 to n do
gsa[0, j]← −jδ
backtrack[i , 0]←‘gap in Y’

Main loop

for i ← 1 to m do
for j ← 1 to n do

mscore ← gsa[i − 1, j − 1] + s(ai , bj)
xscore ← gsa[i − 1, j]− δ
yscore ← gsa[i , j − 1]− δ
if mscore ≥ xscore and mscore ≥ yscore then

gsa[i , j]← mscore
backtrack[i , j]← ‘match’

else if xscore ≥ yscore then
gsa[i , j]← xscore
backtrack[i , j]←‘gap in X’

else
gsa[i , j]← yscore
backtrack[i , j]←‘gap in Y’

Path recovery

X ′ ←‘’
Y ′ ←‘’
i ← m
j ← n
while i > 0 or j > 0 do

if backtrack[i , j] =‘match’ then
X ′ ← ai + X ′

Y ′ ← bj + Y ′

else if backtrack[i , j] =’gap in X’ then
X ′ ←‘-’+X ′

Y ′ ← bj + Y ′

else
X ′ ← ai + X ′

Y ′ ←‘-’+Y ′

return X ′,Y ′, gsa[m, n]

Example

Let X = GGCAC and Y = GTCCTC. Let

score(x , y) =


5 if x = y
−1 if x 6= y , but both x , y ∈ {A,T} or

both x , y ∈ {G ,C}
−3 otherwise

with a gap penalty of −2

G T C C T C

G

G

C

A

C

−12

−10

−8

−6

−4

−2
0 −10−8−6−4−2

5 3 1 −1 −3 −5

3 2 2 0 −2 −4

1 0 7 7 5 3
−1 0 5 5 6
−3 −2 5 10

