Longest Common Subsequence and Global Sequence Alignment

Jonathan Backer backer@cs.ubc.ca

Department of Computer Science University of British Columbia

July 5, 2007

Introduction

Reading:

- ▶ "Longest Common Subsequence", 15.4 CLRS
- "Text Similarity Testing", 9.4 GT

Look at two dynamic programming algorithms that measure the similarity of two sequences.

Longest common subsequence

Definition

Given a sequence of values (a_1, a_2, \ldots, a_m) , a subsequence is a sequence $(a_{i_1}, a_{i_2}, \ldots, a_{i_t})$ where $1 \leq i_1 < i_2 < \ldots i_t \leq m$.

Alternatively,

- () is a subsequence of every sequence.
- ▶ $(b_1, ..., b_t)$ is a subsequence of $(a_1, ..., a_m)$ if there is some i such that $b_t = a_i$ and $(b_1, ..., b_{t-1})$ is a subsequence of $(a_1, ..., a_{i-1})$.

Problem

Given sequences (a_1, a_2, \ldots, a_m) and (b_1, b_2, \ldots, b_n) , find the longest subsequence that is common to both sequences.

Example

The LCS of (1, 1, 2, 3, 4, 5) and (5, 2, 3, 4, 1, 1) is (2, 3, 4).

Optimal substructure

Lemma

Let (x_1,\ldots,x_t) be a LCS of (a_1,\ldots,a_m) and (b_1,\ldots,b_n) . Then there is some i,j such that $x_t=a_i=b_j$ and (x_1,\ldots,x_{t-1}) is a LCS of (a_1,\ldots,a_{i-1}) and (b_1,\ldots,b_{j-1}) .

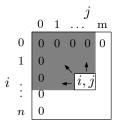
Proof

By definition, there must be some i,j such that $x_t = a_i = b_j$ and (x_1, \ldots, x_{t-1}) is a subsequence of (a_1, \ldots, a_{i-1}) and (b_1, \ldots, b_{j-1}) . If some (w_1, \ldots, w_s) is a longer subsequence of (a_1, \ldots, a_{i-1}) and (b_1, \ldots, b_{j-1}) than (x_1, \ldots, x_{t-1}) , then (w_1, \ldots, w_s, x_t) is a longer common subsequence of (a_1, \ldots, a_m) and (b_1, \ldots, b_n) than (x_1, \ldots, x_t) , a contradiction.

Data structure

Let L[i,j] be the length of the LCS of (a_1,\ldots,a_i) and (b_1,\ldots,b_j) . Then

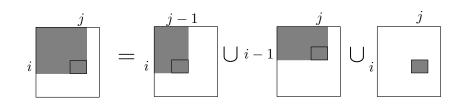
$$L[i,j] = \max_{r \leq i,s \leq j} \left\{ egin{array}{ll} 0 & ext{if } r=0 ext{ or } s=0 \ L[r-1,s-1]+1 & ext{if } a_r=b_s \ 0 & ext{otherwise} \end{array}
ight.$$



L[i,j] depends on the values of all of the cells in the shaded region. So fill each row from left-to-right, starting with the top row and proceeding to the bottom.

Each cell in L takes O(nm) time to fill. There are O(nm) cells. So the total runtime is $O(n^2m^2)$.

Redundancy



The region being maximized over can be represented by three smaller regions. The maximization of two of the regions are subproblems stored in the table. So

$$L[i,j] = \left\{ egin{array}{ll} 0 & ext{if } r = 0 ext{ or } s = 0 \ \max \left\{ egin{array}{ll} L[i-1,j-1]+1, \ L[i-1,j], L[i,j-1] \end{array}
ight\} & ext{if } a_i = b_j \ \max \{ L[i-1,j], L[i,j-1] \} & ext{otherwise} \end{array}
ight.$$

Initialization

- zero the left column and bottom row
- ► lcs[i,j] depends on values left and above, so fill each row left-to-right starting from the top going towards the bottom

```
Algorithm LCS(A,B)  \begin{array}{ll} & \text{int} & \textit{lcs}[A.\text{length}+1,B.\text{length}+1] \\ & \text{char} & \textit{backtrack}[A.\text{length}+1,B.\text{length}+1] \\ & \text{for} & \textit{i} \leftarrow 0 \text{ to } \textit{A}.\text{length do} \\ & \textit{lcs}[\textit{i},0] \leftarrow 0 \\ & \text{for} & \textit{j} \leftarrow 0 \text{ to } \textit{B}.\text{length do} \\ & \textit{lcs}[0,\textit{j}] \leftarrow 0 \end{array}
```

Main loop

for
$$i \leftarrow 1$$
 to n do

for $j \leftarrow 1$ to m do

 $lcs[i,j] \leftarrow lcs[i-1,j]$
 $backtrack[i,j] \leftarrow `\uparrow'$

if $lcs[i,j-1] > lcs[i,j]$ then

 $lcs[i,j] \leftarrow lcs[i,j-1]$
 $backtrack[i,j] \leftarrow `\leftarrow'$

if $a_i = b_j$ and

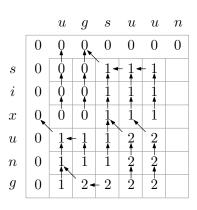
 $lcs[i-1,j-1] + 1 > lcs[i,j]$

then

 $lcs[i,j] \leftarrow lcs[i-1,j-1] + 1$
 $backtrack[i,j] \leftarrow `\uparrow'$

Example

Find the longest common subsequence of (s, i, x, u, n, g) and (u, g, s, u, u, n).



Global sequence alignment

Given two sequences $X=(a_1,\ldots,a_m)$ and $Y=(b_1,\ldots,b_n)$, we want to figure out how similar they are.

A bit similar to longest common sequence, but:

- ▶ we may want to match 2 different letters
 - e.g. AACCATGTC AAGCATATC
- we may want to allow gaps (i.e. insertions or deletions)
 - e.g. AGCCGCT_CC AGC CTGCC

Application: DNA sequence alignment

Matching two pieces of DNA

- evolution may have inserted/removed pieces
- ▶ some bases (i.e. the letters) may have mutated

Formalization

Definition

A pairwise sequence alignment of X, Y is a pair of sequences X', Y', possibly containing gaps ("-") such that

- \triangleright X' minus the gaps is X,
- \triangleright Y' minus the gaps is Y,
- ▶ |X'| = |Y'|, and
- $\triangleright X_i' = Y_i' =$ "-" never happens

The score of the alignment X', Y' is

$$\sum_{i=1}^{|X'|} s(X_i', Y_i'),$$

where s is a score function defined by biologists to tell us how good/bad a mismatch is.

• e.g.
$$s(A, A) = 8$$
, $s(*, -) = -\delta$ (gap penalty), etc.

Optimal substructure

Call the prefix of a sequence everything but the last element. Let X', Y' be an optimal sequence alignment. Then X' ends in either a_m or - and Y' ends in either b_n or -.

So four cases to consider:

- 1. X' ends in a_m and Y' ends in b_n : then the prefixes of X', Y' are an optimal alignment of the prefixes of X, Y.
- 2. X' ends in a_m and Y' ends in -: then the prefixes of X', Y' are an optimal alignment of the prefix of X and the whole of Y.
- 3. X' ends in and Y' ends in b_n : then the prefixes of X', Y' are an optimal alignment of the whole of X and the prefix of Y.
- 4. X' and Y' cannot both end in -

Data structure

Let gsa[i,j] be the score of the optimal sequence alignment of (a_1,\ldots,a_i) and (b_1,\ldots,b_j) . Then

$$gsa[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i = j = 0 \\ -i\delta & \text{if } i > 0, j = 0 \\ -j\delta & \text{if } i = 0, j > 0 \end{array} \right. \\ \left\{ \begin{array}{ll} gsa[i-1,j-1] + \\ s(a_i,b_j), \\ gsa[i-1,j] - \delta, \\ gsa[i,j-1] - \delta \end{array} \right\} \quad \text{if } i > 0, j > 0$$

by the optimal substructure, where δ is the gap penalty. We can fill in the table the same way as for the longest common subsequence.

Initialization

```
Algorithm Smith-Wasserman(X,Y) int gsa[X.length+1,Y.length+1] string backtrack[X.length+1,Y.length+1] for i \leftarrow 1 to m do gsa[i,0] \leftarrow -i\delta backtrack[i,0] \leftarrow \text{`gap in X'} for j \leftarrow 1 to n do gsa[0,j] \leftarrow -j\delta backtrack[i,0] \leftarrow \text{`gap in Y'}
```

Main loop

```
for i \leftarrow 1 to m do

for j \leftarrow 1 to n do

mscore \leftarrow gsa[i-1,j-1] + s(a_i,b_j)

xscore \leftarrow gsa[i-1,j] - \delta

yscore \leftarrow gsa[i,j-1] - \delta

if mscore \geq xscore and mscore \geq yscore then

gsa[i,j] \leftarrow mscore

backtrack[i,j] \leftarrow \text{`match'}

else if xscore \geq yscore then

gsa[i,j] \leftarrow xscore

backtrack[i,j] \leftarrow \text{`gap in X'}

else

gsa[i,j] \leftarrow yscore

backtrack[i,j] \leftarrow \text{`gap in Y'}
```

Path recovery

```
X' \leftarrow ``
Y' \leftarrow ``
i \leftarrow m
j \leftarrow n

while i > 0 or j > 0 do

if backtrack[i,j] = `match' then

X' \leftarrow a_i + X'
Y' \leftarrow b_j + Y'

else if backtrack[i,j] = `gap in X' then

X' \leftarrow `-` + X'
Y' \leftarrow b_j + Y'

else

X' \leftarrow a_i + X'
Y' \leftarrow a_i + X'
```

Example

Let X = GGCAC and Y = GTCCTC. Let

$$score(x,y) = \begin{cases} 5 & \text{if } x = y \\ -1 & \text{if } x \neq y, \text{ but } \text{both } x,y \in \{A,T\} \text{ or } \\ & \text{both } x,y \in \{G,C\} \end{cases}$$

with a gap penalty of -2

		G	T	C	C	T	C
	0 🔪	-2	-4	-6	-8	-10	-12
G	-2	\[5 €	3 €	1 🗲	-1•	3 👡	-5
G	-4	3	2	2	0 -	-2	-4
C	-6		0	7	⁷ ,₹	5	3
A	-8	-1	0	5	$\overline{5}$	6	
C	-10	-3	-2	5	10		