All Pairs Shortest Path:
Reading:

e “The Floyd-Warshall algorithm” 25.2 CLRS

e “All Pairs Shortest-Paths” 7.2 GT
When we looked at greedy algorithms, we saw Dijkstra’s algorithm, which found all shortest paths from a
single source vertex in O ([|V| + | E|]log |V|) time. To find the shortest path between every pair of vertices,

we could run Dijkstra’s algorithm once from every vertex. If the graph is dense (i.e. |E| € © (|V|?)), then
the runtime of this approach is

VI x O ([IVI+VP]log|[V]) = O (JVI*log |V])

We now look at a clever dynamic programming solution that solves this problem for the general case where
there are negative edge weights, but no negative cost cycles. Its beauty is its simplicity: The algorithm is
one “if” statement nested within three “for” loops. Plus, it has a runtime of just O (\V\g’)

Preliminaries:

To simplify our presentation, we assume that the vertices are labelled from 1...n. Any order of the vertices
will do. We also assume that the graph is represented with a n x n adjacency matrix M such that

Mli, j] 00 if there is no edge from i to j
i,j] = .) . .
J weight of the edge from 7 to j otherwise

Example:

B8 =

o[Q8| b0 —

=888 |~

Q| DN =

The key to creating a dynamic programming algorithm is observing some optimal substructure. Recall the
Bellman-Ford algorithm: The shortest u, w-path using k edges is a shortest path using k — 1 edges plus one
other edge.

<
Consider the 1,4-path (1,2,3,4) above. We call the vertices of the path other than the endpoints internal
vertices (vertices 2 and 3 are internal). Without negative cost cycles, there is a shortest u, v-path where every
vertex occurs at most once (i.e. we can prune cycles because they do not make the path shorter). Using this
observation, we split such a path at its greatest internal vertex k.

The maximum internal node on the u, k-subpath is less than k. Similarly for the k, v-subpath. This breaks
the path into “smaller” subpaths.

Aol

Let Dy, [4, j] be the length of the shortest ¢, j-path with internal vertices in the range of 1...k. Then

o D c—1 [Z7])
Dy [i, 5] = max{ Dy [i,l/::} + Djk—l [, J] }

because the shortest i, j-path with internal vertices from 1...k either does not go through k (first case) or it
does not (second case). Our base case is Dy = M.

Notice that Dy only depends on Dj_1, so0 we can save space by using one matrix for all D;.

Algorithm Floyd-Warshall(M ,n)
D—M

for k1 to n do
for 1«1 to n do
for j« 1 to n do

D[z’,j}<—max{ Dli.gl, }

return D

Example:

S

3| oo | o0 | oo

D,

3| oo | o0 | oo

x| 0| X

Dy

3| o©

Dy

x| 0| XX

D3

