
All Pairs Shortest Path:

Reading:

• �The Floyd-Warshall algorithm� 25.2 CLRS

• �All Pairs Shortest-Paths� 7.2 GT

When we looked at greedy algorithms, we saw Dijkstra's algorithm, which found all shortest paths from a
single source vertex in O ([|V |+ |E|] log |V |) time. To �nd the shortest path between every pair of vertices,
we could run Dijkstra's algorithm once from every vertex. If the graph is dense (i.e. |E| ∈ Θ

(
|V |2

)
), then

the runtime of this approach is

|V | ×O
([
|V |+ |V |2

]
log |V |

)
= O

(
|V |3 log |V |

)
We now look at a clever dynamic programming solution that solves this problem for the general case where
there are negative edge weights, but no negative cost cycles. Its beauty is its simplicity: The algorithm is
one �if� statement nested within three �for� loops. Plus, it has a runtime of just O

(
|V |3

)
.

Preliminaries:

To simplify our presentation, we assume that the vertices are labelled from 1 . . . n. Any order of the vertices
will do. We also assume that the graph is represented with a n× n adjacency matrix M such that

M [i, j] =

{
∞ if there is no edge from i to j

weight of the edge from i to j otherwise

Example:

1

2

3

4

1

1

1

3

1 2

M j

i

1 2 3 4

1 ∞ 1 3

2 ∞ ∞ 1

3 ∞ ∞ ∞
4 1 2 ∞

The key to creating a dynamic programming algorithm is observing some optimal substructure. Recall the
Bellman-Ford algorithm: The shortest u, w-path using k edges is a shortest path using k − 1 edges plus one
other edge.

1

k − 1

k

u v w

1

2

3

4

Consider the 1, 4-path 〈1, 2, 3, 4〉 above. We call the vertices of the path other than the endpoints internal

vertices (vertices 2 and 3 are internal). Without negative cost cycles, there is a shortest u, v-path where every
vertex occurs at most once (i.e. we can prune cycles because they do not make the path shorter). Using this
observation, we split such a path at its greatest internal vertex k.

u k v

The maximum internal node on the u, k-subpath is less than k. Similarly for the k, v-subpath. This breaks
the path into �smaller� subpaths.

⇒1

2

3

4 ⇒
1

2

3

41

2

3

4

Let Dk [i, j] be the length of the shortest i, j-path with internal vertices in the range of 1 . . . k. Then

Dk [i, j] = max
{

Dk−1 [i, j] ,
Dk−1 [i, k] + Dk−1 [k, j]

}
because the shortest i, j-path with internal vertices from 1 . . . k either does not go through k (�rst case) or it
does not (second case). Our base case is D0 = M .

Notice that Dk only depends on Dk−1, so we can save space by using one matrix for all Di.

Algorithm Floyd-Warshall(M,n)
D ←M

for k ← 1 to n do

for i← 1 to n do

for j ← 1 to n do

D[i, j]← max
{

D[i, j],
D[i, k] + D[k, j]

}
return D

2

Example:

1

2

3

4

1

1

1

3

1 2

D0 j

i

1 2 3 4

1 ∞ 1 3 ∞
2 ∞ ∞ 1 ∞
3 ∞ ∞ ∞ 1

4 1 2 ∞ ∞

D1 j

i

1 2 3 4

1 ∞ 1 3 ∞
2 ∞ ∞ 1 ∞
3 ∞ ∞ ∞ 1

4 1 ∞

D2 j

i

1 2 3 4

1 ∞ 1 ∞
2 ∞ ∞ 1 ∞
3 ∞ ∞ ∞ 1

4 1 2 ∞

D3 j

i

1 2 3 4

1 ∞ 1 2

2 ∞ ∞ 1

3 ∞ ∞ ∞ 1

4 1 2 3 ∞

D4 j

i

1 2 3 4

1 1 2 3

2 1 2

3 1

4 1 2 3 ∞

3

