
Complexity Theory

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science
University of British Columbia

July 19, 2007

Introduction

Reading:

I “NP-Completeness” 34 CLRS

I “NP-Completeness” 13 GT

Focus was on designing efficient algorithms.

I Upperbounded space and time requirements.

Complexity theory tells us

I only inefficient algorithms are possible, or

I no algorithm is possible.

Asymptotic hierarchy

How “hard” is a problem?

I Θ(1): find the minimum element in a min-heap, hash-table
look-up

I Θ(log n): binary search, range tree computation, 2-3-4 tree
operations

I Θ(n): order statistics, bucket sort

I Θ(n log n): sorting, weighted activity selection, closest pair of
points

I Θ(n2): longest common subsequence

I Θ(n2 log n): Prim’s and Dijkstra’s algorithms

I Θ(n3): Bellman-Ford algorithm
...

Complexity hierarchy

I NP-hard: No efficient (polynomially bounded time) algorithm
exists.

Colour vertices with the least
number of colours so that
adjacent vertices have different
colours.

...

I PSPACE-hard: Space efficient (polynomially bounded)
solutions, but takes exponential time.
...

I Undecidable: No (complete) algorithm exists

Will a given program eventually stop on a given input input?

Decision vs. optimization

I Decision problem: The answer is either YES or NO.

I Optimization problem: Find a maximal or minimal solution.

Typically, a poly-time solution to one variant gives a poly-time
solution to the other variant.

Graph colouring

Given a graph G = (V ,E), a k-colouring of a G is a function
χ : V → {1, . . . , k} such that {u, v} ∈ E implies χ(u) 6= χ(v).

Decision problem: Is a given graph k-colourable?

Optimization problem: Find the smallest k∗ such that a given
graph is k∗-colourable.

Poly-time

Definition

A problem is poly-time solvable if some algorithm A solves every
instance of the problem in O(nk), where k is a constant and n is
the # of bits used to represent the input.

Note: Depends on the input representation

Problem: Print the letter ’A’ m times.

If m is represented in binary, then n = lg m and size of the output
is O (2n).

If m is written as a sequence of 1s, where the number of 1s is m
(unary), then n = m and the size of the output is O(n).

Problem class: P vs NP

I P: all decision problems that are poly-time.

I NP: all decision problems where a YES can be poly-time
verified given an appropriate certificate

Hamiltonian path problem

Given a graph, does some path visit every vertex exactly once?

Finding a such a path is hard. But verifying that a given path
(certificate) is Hamiltonian is easy.

P vs. NP (cont’d)

I P ⊆ NP because correct algorithms are certificates.

I Is NP ⊆ P? $1,000,000 if you find out
http://www.claymath.org/millennium/P vs NP

Satisfiability problem (SAT):

Given a set of boolean variables x1, . . . , xn and a set of clauses
C1, . . . ,Cm, where each clause is a disjunction of variables and
their complements

e.g. C1 = x1 ∨ x2 ∨ x4

C2 = x1 ∨ x3 ∨ x4

C3 = x2 ∨ x3 ∨ x5 ∨ x7,

can we assign true/false values to each variable so that every
clause is satisfied?

NP-Completeness

SAT is clearly in NP (what’s the certificate?). But Cook (from the
U of Toronto) showed the following:

Theorem

If SAT is poly-time, every problem in NP is poly-time (i.e. NP = P).

Definition

Problems with the property of Cook’s theorem are called NP-hard.
If a NP-hard problem is also in NP, it is called NP-complete.

We strongly suspect that a NP-hard problem has no polynomial
time solution.

How do we prove that a problem is NP-hard?

Reductions

Definition

We reduce a problem A to another problem B by providing a
transformation that

I takes any instance IA of A and

I returns an instance IB of problem B

I such that an answer to IB gives an answer to IA.

Example

Multiply every value by −1 to reduce finding the maximum to
finding the minimum.

e.g. {1, 0,−3, 4, 2, 6} ⇒ {−1, 0, 3,−4,−2,−6}

If the transformation is easy to compute, problem A is easier than
problem B because solving B indirectly solves A.

Poly-time reductions

To prove that problem B is NP-hard:

I Find a known NP-hard problem A and

I reduce A to B with a poly-time reduction.

Let us be precise.

1. Pick a known NP-hard decision problem A.

2. Give a transformation T that makes any instance IA of A an
instance IB of B in time polynomially bounded in the size of IA

3. The transformation must be such that IA is YES if and only if
IB is YES.

Then a poly-time solution to B gives a poly-time solution to A via
T .

Why should you care?

Because you can

I stop looking for an efficient algorithm and graduate!

I justify heuristic methods that give good answers most of the
time.

I justify approximation algorithms that give sub-optimal
answers all of the time.

I prove that other problems are NP-hard more easily.

Graph colouring

Theorem

Graph 3-coloring is NP-complete.

Proof

Clearly 3-colouring is in NP because given a colouring we can
verify that a colouring is valid (i.e. no two adjacent vertices have
the same colour) and only uses three colours in poly-time.

To prove that the problem is NP-hard, we reduce SAT to graph
3-colouring. The reduction uses colours to represent truth
assignments and groups of vertices to represent clauses and
variables.

We start with a triangle of labelled vertices T ,F ,N. The colour of
T will represent true, the colour F will represent false, and the
colour of N is neutral.

Truth assignments

Proof (cont’d)

We can swap colours of a valid colouring to get another valid
colouring. So assume without loss of generality that T is white, F
is black, and N is gray in every colouring.

F

T N

Before we describe the construction in detail, let’s analyse one
subgraph (widget) that we use over and over again.

Widget colouring

Lemma
Note that X ,Y are either black or white.

I If Z is white, at least one of X ,Y
is white.

I If both X ,Y are black, then Z is
black.

These statements are equivalent.

N

X Y

Z

Proof.

X Y

Z

X Y

Z

Variable triangles

Proof of NP-hardness (cont’d)

For each variable xi we introduce two vertices labelled xi and xi

that form a triangle with N. Colouring xi white corresponds to
assigning the variable xi the value of true; colouring it black
corresponds to assigning the variable the value of false.

N

xi xi

N

xi xi

The triangle implies that xi is coloured white if and only if xi is
coloured black.

Clause construction

Proof (cont’d)

· · ·

x1 x1 x2 x2 xn xn

N F

T

x1 ∨ x2 ∨ xn = (x1 ∨ x2) ∨ xn

widgets act like “or” gates

Analysis

I The number of vertices and edges is linear in # of variables +
of clauses.

I The graph structure closely follows SAT instance, so it’s a
polynomial time construction.

I A satisfying truth-value-assignment to the SAT instance gives
a colouring.

I That a colouring gives a truth-value-assignment is best seen
with an example...

