Introduction

Reading:

- "Dynamic Programming", 15 CLRS
- "Dynamic Programming", 5.3 GT

Greedy works if some optimal solution contains the greedy choice.

- Dijkstra's algorithm always adds the cheapest vertex to the shortest path tree (greedy).
- > Dijkstra's algorithm may not work with negative edge weights.

Dynamic programming tries all possible choices.

- Bellman-Ford's algorithm attempts every one edge extension of shortest paths (exhaustive).
- > Bellman-Ford's algorithm works with negative edge weights.

Optimal substructure

Both Dijkstra's and Bellman-Ford's algorithms work because you can extend the optimal solution of a subproblem.

Definition

- A problem has optimal substructure if some optimal solution is
 - > an optimal solution to a subproblem combined with
 - ► an optimal choice.
 - Often don't know which choice to make, so try them all.
 - May be efficient if subproblems overlap
 - \blacktriangleright |V| paths to extend in Bellman-Ford (subproblems)
 - ► |*E*| edges to extend with (choices)

Making change with coins

Problem

Given: Coin values c_1, c_2, \ldots, c_t with which to make change and the amount of change to be made n.

Wanted: Number of each coin to use $n_1, n_2, ..., n_t$ such that sum of coins is n and fewest coins are used.

Denominations chosen so that greedy algorithm works, but not true in general.

Example

Coins: 1¢, 3¢, and 4¢	$Greedy \rightarrow $	4¢, 1¢, and 1¢
Change to make: $6c$	$Optimal \rightarrow $	3c and $3c$

July 5, 2007

Department of Computer Science

University of British Columbia

Dynamic Programming

Jonathan Backer

backer@cs.ubc.ca

UBC

Exhaustive coin changing

Algorithm TryEmAll(C, n) int N[C.length]for $i \leftarrow 0$ to N.length-1 do $N[i] \leftarrow 0$ if n = 0 then return N $N[1] \leftarrow \infty$ for $i \leftarrow 0$ to C.length-1 do if $n \ge C[i]$ then $subprob \leftarrow TryEmAll(C, n - C[i])$ if subprob.sum()+1 < N.sum() then $N \leftarrow subprob$ $N[i] \leftarrow N[i] + 1$ return N

Dynamic programming solution

Algorithm DPCoinChange(C, n) int N[n+1][C.length]for $i \leftarrow 0$ to C.length-1 do $N[0][i] \leftarrow 0$ for $m \leftarrow 1$ to n do $N[m][0] \leftarrow \infty$ for $i \leftarrow 0$ to C.length-1 do if $m \ge C[i]$ then if N[m - C[i]].sum()+1 < N[m].sum() then $N[m] \leftarrow N[m - C[i]]$ $N[m][i] \leftarrow N[m][i] + 1$ return N[n]

Recursion tree for TryEmAll

This is inefficient because it recomputes the same subproblems over and over again.

A better idea: replace each recursive call with a table look-up.

- Construct a table to store the optimal solution for each *n*.
- ▶ Iteratively increase *n* and compute its entry.

Runtime complexity

What is the runtime complexity of this algorithm?

- If it updates N[m] every time, then $n \times t$ updates.
- Each update copies t integers.
- ▶ So *O*(*nt*²).

Advantages of eliminating the recursion:

- Counting argument for runtime complexity.
- No call stack overhead!

Why copy solution during update when we only chose one coin?

- Faster to remember the optimal choice and
- backtrack to recover the solution.

Faster solution

Designing a dynamic programming algorithm

Decide on the parameters the problem will have.

- This gives the "shape" of the table and determines the runtime complexity.
- FastDPCoinChange only used n to determine bestChoice, so table is an array.
- Limited supply of coins
 - Solution depends on *n* and number of each type of coin available (*a*₁, *a*₂, ..., *a*_t).
 - ► Table has one dimension for *n*, another for *a*₁, another for *a*₂, etc.

What do we need to store in the table:

- ▶ DPCoinChange stored all of the best choices made so far.
- FastDPCoinChange just stored the last best choice.

Backtracking

```
// backtracking
int N[C.length]
for i \leftarrow 0 to N.length-1 do
N[i] \leftarrow 0
while n > 0 do
N[bestChoice[n]] \leftarrow N[bestChoice[n]] + 1
n \leftarrow n - C[bestChoice[n]]
return N
```

Eliminates copying and adding t integers from the innermost loop.

• Total runtime complexity is O(nt).

Example: 1¢, 3¢, and 4¢ coins												
n	0	1	2	3	4	5	6	7	8	9	10	How do you
Ν	0	1	2	1	1	2	2	2	2			make 9 $arphi$ and
bC	Ø	1	1	3	4	1	3	3	4			10 archi change?

Design (cont'd)

Express the problem in terms of smaller problems.

FastDPCoinChange

 $minCoins[n] = min\{1 + minCoins[n - C[i]] : C[i] \le n\}$

Determine how to fill-in the table.

- A subproblem solution must be computed before those that rely on it.
- Trickier for multi-dimensional tables. Typically row-by-row, column-by-column, or diagonal-by-diagonal.

Memoization (top-down)

Use divide-and-conquer to fill-in the table.

- Return value if already computed.
- Recurse otherwise.
- Save solution in table before returning.

Pros:

- ▶ If some subproblem is irrelevant, memoization won't solve it.
- If you cannot figure out how to fill the table, divide-and-conquer will do it for you.

Cons:

- Recursive function calling overhead (stack frame).
- Sometimes miss tricks like we used in FastDPCoinChange.