
Dynamic Programming

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science
University of British Columbia

July 5, 2007

Introduction

Reading:

I “Dynamic Programming”, 15 CLRS

I “Dynamic Programming”, 5.3 GT

Greedy works if some optimal solution contains the greedy choice.

I Dijkstra’s algorithm always adds the cheapest vertex to the
shortest path tree (greedy).

I Dijkstra’s algorithm may not work with negative edge weights.

Dynamic programming tries all possible choices.

I Bellman-Ford’s algorithm attempts every one edge extension
of shortest paths (exhaustive).

I Bellman-Ford’s algorithm works with negative edge weights.

Optimal substructure

Both Dijkstra’s and Bellman-Ford’s algorithms work because you
can extend the optimal solution of a subproblem.

Definition

A problem has optimal substructure if some optimal solution is

I an optimal solution to a subproblem combined with

I an optimal choice.

I Often don’t know which choice to make, so try them all.
I May be efficient if subproblems overlap

I |V | paths to extend in Bellman-Ford (subproblems)
I |E | edges to extend with (choices)

Making change with coins

Problem

Given: Coin values c1, c2, . . . , ct with which to make change and
the amount of change to be made n.

Wanted: Number of each coin to use n1, n2, . . . , nt such that sum
of coins is n and fewest coins are used.

Denominations chosen so that greedy algorithm works, but not
true in general.

Example

Coins: 1¢, 3¢, and 4¢
Change to make: 6¢

Greedy → 4¢, 1¢, and 1¢
Optimal → 3¢ and 3¢

Exhaustive coin changing

Algorithm TryEmAll(C,n)

int N[C.length]
for i ← 0 to N.length−1 do

N[i]← 0

if n = 0 then
return N

N[1]←∞
for i ← 0 to C.length−1 do

if n ≥ C [i] then
subprob ← TryEmAll(C,n − C [i])
if subprob.sum()+1 < N.sum() then

N ← subprob
N[i]← N[i] + 1

return N

Recursion tree for TryEmAll

This is inefficient because it recomputes the same subproblems
over and over again.

TryEmAll([1,3,4],90)

88 86 85 86 84 83 85 83 82

89 87 86

90

A better idea: replace each recursive call with a table look-up.

I Construct a table to store the optimal solution for each n.

I Iteratively increase n and compute its entry.

Dynamic programming solution

Algorithm DPCoinChange(C,n)

int N[n + 1][C .length]

for i ← 0 to C.length−1 do
N[0][i]← 0

for m← 1 to n do
N[m][0]←∞
for i ← 0 to C.length−1 do

if m ≥ C [i] then
if N[m − C [i]].sum()+1 < N[m].sum() then

N[m]← N[m − C [i]]
N[m][i]← N[m][i] + 1

return N[n]

Runtime complexity

What is the runtime complexity of this algorithm?

I If it updates N[m] every time, then n × t updates.

I Each update copies t integers.

I So O(nt2).

Advantages of eliminating the recursion:

I Counting argument for runtime complexity.

I No call stack overhead!

Why copy solution during update when we only chose one coin?

I Faster to remember the optimal choice and

I backtrack to recover the solution.

Faster solution

Algorithm FastDPCoinChange(C,n)

int minCoins[n + 1], bestChoice[n + 1]
minCoins[0]← 0
bestChoice[0]← −1

// main loop
for m← 1 to n do

minCoins[0]←∞
for i ← 0 to C.length−1 do

if m ≥ C [i] then
if minCoins[m−C [i]]+1 < minCoins[m] then

minCoins[m]← minCoins[m − C [i]] + 1
bestChoice[m]← i

Backtracking

// backtracking
int N[C.length]
for i ← 0 to N.length−1 do

N[i]← 0

while n > 0 do
N[bestChoice[n]]← N[bestChoice[n]] + 1
n← n − C [bestChoice[n]]

return N

Eliminates copying and adding t integers from the innermost loop.

I Total runtime complexity is O(nt).

Example: 1¢, 3¢, and 4¢ coins

n 0 1 2 3 4 5 6 7 8 9 10

N 0 1 2 1 1 2 2 2 2

bC ∅ 1 1 3 4 1 3 3 4

How do you
make 9¢ and
10¢ change?

Designing a dynamic programming algorithm

Decide on the parameters the problem will have.

I This gives the “shape” of the table and determines the
runtime complexity.

I FastDPCoinChange only used n to determine bestChoice, so
table is an array.

I Limited supply of coins
I Solution depends on n and number of each type of coin

available (a1, a2, . . . , at).
I Table has one dimension for n, another for a1, another for a2,

etc.

What do we need to store in the table:

I DPCoinChange stored all of the best choices made so far.

I FastDPCoinChange just stored the last best choice.

Design (cont’d)

Express the problem in terms of smaller problems.

I FastDPCoinChange

minCoins[n] = min{1 + minCoins[n − C [i]] : C [i] ≤ n}

Determine how to fill-in the table.

I A subproblem solution must be computed before those that
rely on it.

I Trickier for multi-dimensional tables. Typically row-by-row,
column-by-column, or diagonal-by-diagonal.

Memoization (top-down)

Use divide-and-conquer to fill-in the table.

I Return value if already computed.

I Recurse otherwise.

I Save solution in table before returning.

Pros:

I If some subproblem is irrelevant, memoization won’t solve it.

I If you cannot figure out how to fill the table,
divide-and-conquer will do it for you.

Cons:

I Recursive function calling overhead (stack frame).

I Sometimes miss tricks like we used in FastDPCoinChange.

