
Binary Trees

Binary trees are a data structure for storing and manipulating ordered data. There are several possible
representations, but we will start by assuming that every binary tree has three �elds:

key

left right

• key is the part of the data that we use to order the nodes � every
pair of keys must be comparable (total order).

• left is a pointer (reference) to the root of the left subtree.
• right is a pointer (reference) to the root of the right subtree.

Keys typically have data associated with them (e.g. names with
phone numbers), which are stored in each node as additional
�elds. Many trees also store the parent of each node to allow
easy traversal up the tree. The node with no parent is the root,
and nodes with no children are leaves.

Denmark

Spain

Portugal UK

Canada Spain

−3

27

3 511 10

One way in which binary trees di�er is how the key of a par-
ent relates to the keys of its children. Minimum heaps (priority
queues) are binary trees in which the key of a parent is less than
(or equal to) the keys of its left and right children. This means
that the minimum element is always at the root of the tree and
it makes it easy to keep the tree balanced. Being balanced means
that there are (roughly) as many nodes in the left subtree as in
the right subtree, for every node in the tree. The advantage of
being balanced is that the height of the tree is logarithmic in the
number of nodes stored in it. Heaps are kept balanced by keeping
the tree very close to a complete tree � that is, by having all of
the leaves in the last two rows of the tree.

Lemma. Let l(v) denote the number of nodes in the left subtree of v, and let r(v) denote the number of
nodes in the right subtree of v. Suppose that there is some constant c ≥ 1 such that l(v) ≤ c(r(v) + 1) and
r(v) ≤ c(l(v) + 1), for every node v in the tree (that is, there are roughly less than c times as many children
in the left subtree as the right subtree and vice versa). Then the height of the tree is O(log n), where n is the
total number of nodes in the tree.

Proof. Let h(v) be the height of the subtree rooted at h(v). Let n(v) be the number of vertices in the subtree
rooted at v. We prove inductively on n(v) that h(v) ≤ d log n(v) + 1, for some positive constant d that
depends on c.

Base case: n(v) = 1. Then v has no children and h(v) = 1. Now d log n(v)+1 = d log 1+1 = d×0+1 = 1.
Inductive case: Suppose that inequality holds for all subtrees with less than n(v) vertices. We now show

that it holds for a subtree with n(v) vertices. First we upperbound l(v) and r(v) in terms of n(v) and c.
Clearly, l(v) + r(v) + 1 = n(v). So

1

2

l(v) ≤ c(r(v) + 1)
l(v) + (r(v) + 1) ≤ c(r(v) + 1) + (r(v) + 1)

n(v) ≤ (c + 1)(r(v) + 1)
n(v)
c + 1

≤ r(v) + 1

n(v)
c + 1

+ l(v) ≤ l(v) + r(v) + 1 = n(v)

l(v) ≤ n(v)− n(v)
c + 1

=
(c + 1)n(v)− n(v)

c + 1
=

cn(v)
c + 1

This upperbound also holds for r(v) because l(v) and r(v) are symmetric in all of the inequalities that we
used. Now h(v) is one plus the maximum of the height of the left subtree and the right subtree. Using our
inductive hypothesis

h(v) ≤ max {d log l(v) + 1, d log r(v) + 1}+ 1

≤ max
{

d log
(

cn(v)
c + 1

)
+ 1, d log

(
cn(v)
c + 1

)
+ 1

}
+ 1

≤ d log
(

cn(v)
c + 1

)
+ 1 + 1

= d log n(v) + d log
(

c

c + 1

)
+ 1 + 1

≤ d log n(v) + 1, if d log
(

c

c + 1

)
+ 1 ≤ 0

Recall that c ≥ 1. Therefore c
c+1 < 1. Hence log

(
c

c+1

)
< 0. Thus d = − 1

log(c/(c+1)) is a positive constant

satisfying our constraint, and our induction goes through. �

Although �nding the minimum key in a heap is very fast, �nding an arbitrary key value in a heap requires
looking at most of the nodes. When this kind of random access is required, we construct binary trees with
the following important properties:

• No two keys in the tree are equal.
• Every key α in the left subtree of a node N is less than N.key.
• Every key β in the right subtree of a node N is greater than N.key.

We can construct such binary trees by adding one node at a time using the following algorithm.

Algorithm TreeAdd(Tree T, Node N)

if T = ∅ then return N
if N.key < T.key then

if T.left = ∅ then

T.left← N
else

TreeAdd(T.left, N)

else if N.key > T.key then

if T.right = ∅ then

T.right← N
else

TreeAdd(T.right, N)

return T

We recursively search for the value in the
tree and insert the value as a leaf.

Can every tree be constructed this way?

What is the worst-case height of a tree
constructed this way?

3

15

4 23

17

19

8

11

25

5 27

9

Add these values to
the tree in their listed
order: 4, 23, 17, 19, 8,
11, 25, 9, 24, 5, and
27.

Trees containing the same keys can di�er
substantially. Some trees are more bal-
anced than others. The reason that we
chose the ordering properties that we did
was that they permit a simple divide-and-
conquer method of locating a key.

1

2

3

4

5

1

2

3

4

51

2

4

3 5

Algorithm TreeFind(Tree T, Key k)
if T = ∅ then

return ∅
if k < T.key then

return TreeFind(T.left)
if k = T.key then

return T
if k > T.key then

return TreeFind(T.right)

Every recursive call decends a level in the tree,
so the total number of recursive calls is upper-
bounded by the height of the tree. The previous
lemma guarantees that the search time is loga-
rithmic in the size of the tree, if the tree is bal-
anced.

What is the average-case search in a randomly constructed tree?

Lemma. Consider a tree constructed by inserting keys. Assume that the order of key insertion is uniformly
random (i.e. every permutation of the insertion order is equally likely). Then the expected query time is
O(log n), where n is the tree size.

Proof. We use a technique called backwards analysis. To use it, we �rst take a query key. Then we build
the binary tree incrementally, and after each insertion, we track where the query key was found or where we
dropped o� the tree looking for it. Searching for 3.5 in the trees above would drop o� of at 3, 3, and 4 (from
left to right). Searching for 2.5 would drop o� at 3 in each of the trees.

Clearly, inserting one more node in the binary tree only increases the number of recursive calls in the
search algorithm because new nodes are inserted as leaves. Moreover, we only add one node, which results in
at most one more recursive call (i.e. tree height increases by at most one). Let Xi be a 0/1 random variable:
Xi is 1 if the number of recursive calls increases after the ith insertion and 0 otherwise. Then the number of
recursive calls after n insertions is

∑n
i=1 Xi and the average-case runtime is

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi]

4

by the linearity of expectation. To calculate the expectation of Xi, we must understand when the number of
recursive calls increases. This is best seen by redrawing the above trees as shown below.

1

2

3

4

5

−∞ +∞

1

2

3

4

5

−∞ +∞

1

2

4

3 5

−∞ +∞

We now view each node as splitting the real number line. The particular structure of the tree does not a�ect
the partition of the real number line.

• If the query key is contained in the tree after the ith insertion, the search stops at the node containing
the key. So if Xi = 1, we need the ith insertion to be equal to the query key. Each of the i keys was
equally like to be the ith insertion (backwards analysis), so the probability of this happening is 1/i.

• If the query key is not contained in tree after the ith insertion, the search falls o� at a node bounding
the interval containing the query point. If Xi = 1, one of the bounding keys was inserted on the ith
step. There are at most two keys bounding any interval, so the probability of this happening is at
most 2

i because each of the i keys was equally likely to be the ith insertion (backwards analysis).

Therefore,
n∑

i=1

E [Xi] ≤
n∑

i=1

2
i

= 2
n∑

i=1

1
i
.

The harmonic series
∑n

i=1 (1/i) ∈ Θ(log n) because log n =
� x

1
(1/y) dy. �

Note that the condition that every insertion order is equally likely is not the same as saying every tree
is equally likely because di�erent insertion orders can produce the same tree (e.g. 2, 1, 3 and 2, 3, 1). Also
note that this result holds for queries that are in the tree. The run-time of such queries is asymptotically the
depth of the node containing the query key. So the expected level of any given node is Θ(log n).

Does this result tell us about the height of a random binary tree? Unfortunately no, because the height is
determined by the worst-case query, which is biased through maximization (i.e. it ratchets up on the variance
of the expectation).

Exercise: Write a TreeMax routine that returns the largest key in a tree.

5

We now show how to �nd the predecessor key of a node in a binary tree, which we will use to remove
nodes shortly.

Algorithm TreePred(Tree T, Key k)
v ←Find(T, k)
if v = ∅ then

return ∅
if v.left6= ∅ then

return TreeMax(v.left)
while (v.parent 6= ∅ and v 6= v.parent.right)

v ← v.parent
return v.parent

1

2

5

4

3

1 5

What is the asymptotic runtime of TreePred? It is dominated by TreeFind, TreeMax, and the while

loop. All three of these take O(h) time, where h is the height of the binary tree.
We now turn to deleting a node. In order to remove a node we have to �nd a place for its children.

Consider the following cases:

(1) If the node to delete has no children (3), delete the node.
(2) If the node to delete has one child (4), delete the node and put the

child in its parent's place.
(3) If the node to delete has two children (2), removing the node leaves

two dangling subtrees. A straightforward approach is to temporarily
remove one of the child subtrees T . Then we can apply the previous
case. To reattach T , we could iteratively add each node in T . How-
ever, the worst case of this approach is |T | × O(h) where, h is the
height of the tree.

1

2

4

3

We can resolve case (3) in a better manner: replace the node n that we want to delete with its predecessor
l. Recall that l is maximum element in n's left subtree. The ordering property of the subtree rooted at n
tree is that α < n < β, where α is any node in the left subtree of n and β is any node in the right subtree of
n. The predecessor l of n has the property that α ≤ l and l < n < β. So removing l and then changing n to
l preserves the order. But if l has two children, we have only shifted case (3) elsewhere! Fortunately, l has
no right child because l is the maximum element in the left subtree of n.

⇒
delete 15

15

4 23

8 17 25

5 11

10

19 24 27

11

4 23

8 17 25

5 10 19 24 27

6

Practice:

delete 4

⇒

delete 16⇓

9

3 16

1 5 12 19

2 7 10

9

4 16

1 5 12 19

3 7 10

2

9

3 16

1 5 12 19

2 7

delete 9

⇐

9

3 16

1 5 12 19

2

What is the asymptotic complexity of this sophisticated deletion routine? We always do O(h) to locate
the node to delete.

• Case 1 and 2 use a small local �x that takes Θ(1) time.
• Case 3 takes O(h) time to �nd the predecessor. Deleting the predecessor is Θ(1) time because we
have already located it. Swapping the predecessor takes Θ(1) time. So the total is O(h) time.

Regardless the case, the total runtime is O(h). Notice that TreeFind, TreeMax, TreePred, and TreeAdd also
take O(h) time. Hence, good performance requires keeping the height low. This can be done by keeping
the tree balanced. Two common schemes for doing this are AVL trees and red-black trees. They both use a
rotation operation to rebalance the tree.

α β

γ

Y

X
α

β γ

X

Y
⇔

α < X < β < Y < γ α < X < β < Y < γ

The rotation operation has three very important properties.

(1) It preserves the ordering of subtrees with respect to their roots.
(2) It transfers one level between subtrees: it decreases the height of the right subtree by one and increases

the height of the left subtree by one (or vice versa).
(3) It is local, so it only takes constant time.

7

7

3

1 6

9

8 10

7

3

1

6 9

8 10

7

3

1

6

9

8

107

3

1

6

9

8

10

⇐

⇓

⇒

Both AVL and red-black trees are fast but complicated and not obviously correct (lots of case analysis).
So we study B-trees instead.

