
Big-O Notation and Complexity Analysis

Jonathan Backer
backer@cs.ubc.ca

Department of Computer Science
University of British Columbia

May 28, 2007



Problems

Reading:

I CLRS: “Growth of Functions” 3

I GT: “Algorithm Analysis” 1.1-1.3

Course is about solving problems with algorithms: Find a function
from a set of valid inputs to a set of outputs. An instance of a
problem is just one specific input.

Sorting

I Input: A sequence of n
values a1, a2, . . . , an.

I Output: A permutation
b1, b2, . . . , bn of
a1, a2, . . . , an such that
b1 ≤ b2 ≤ . . . ≤ bn.

I Instance: 3, 8, 2, 5.

Compiling a Program

I Input: A sequence of
characters (file).

I Output: A sequence of
bytes (either an
executable file or error
messages).



Algorithms

An algorithm is a finite set of instructions such that

I each step is precisely stated (e.g. english instructions,
pseudo-code, flow charts, etc.),

I the result of each step is uniquely defined and depends only
on the input and previously executed steps, and

I it stops after finitely many steps on every instance of the
problem (i.e. no infinite loops).



Algorithms (cont’d)

What follows is a pseudo-code description of the insertion sort
algorithm. We more interested in clarity than syntax.

InsertionSort(A)
for j ← 2 to A.length-1 do

key ← A[j]
i ← j-1
while (i ≥ 0 and key < A[i]) do

A[i+1] ← A[i]
i ← i-1

A[i+1] ← key

Just like Java, we pass parameters by value for simple types and
reference for arrays and objects.



Analysis

We analyse the behaviour of algorithms. That is, we will prove

I an algorithm is correct (i.e. it always terminate and returns
the right result)

I a bound on its best-/worst-/average-case time or space
complexity

A machine model captures the relevant properties of the machine
that the algorithm is running on. We usually use the Integer-RAM
model with

I constant time memory access,

I sequential instruction execution,

I a single processor, and

I memory cells that hold integers of arbitrary size.



Time Complexity

We count the # of elementary steps, which depends on the
instance of the problem. We look at

I worst-case: usual,

I best-case: typically not very useful, and

I average-case: hard and really depends on input distribution
(i.e what is average?).

Search an unsorted list of n numbers.

I Worst-case: n comparisons (not in the list).

I Best-case: 1 comparison (won the lottery!).

I Average-case: n/2 comparisons, if all numbers are different,
the number occurs in the array, and each permutation of the
array is equally likely.



Time Complexity (cont’d)

Why analyse the worst-case? Because it

I provides an upperbound,

I may frequently occur, and

I is often related to the average-case (but it is much easier to
prove).

How do we count elementary steps?

I It is hard to do exactly (even in worst-case).

So we use asymptotic notation because it

I focuses on behaviour in the limit (where things break) and

I is independent of underlying technology (e.g. machine, OS,
compiler, etc.).



Big-O Notation

Intuition: f is upperbounded by a multiple of g in the limit.

Definition

Let g : N→ R. Then f : N→ R is in O (g (n)) if and only if
∃c ∈ R+ and n0 ∈ N such that f (n) ≤ c · g(n), ∀n ≥ n0.

n0

f (n)

c · g(n)



Constructive Big-O Proofs

Proofs following the definition. Called constructive because we
construct specific c and n0.

Show 2n ∈ O (n2)

Take c = 1, n0 = 2.

2n ≤ 2 · n
≤ n · n
= n2

Or take c = 2, n0 = 1.

2n ≤ 2 · n · n
≤ 2n2

Show 7n2 + 5 ∈ O (n3/6)

Take c = 72, n0 = 1.

7n2 + 5 ≤ 7n2 + 5n2

≤ 12n2

≤ 12n3

≤ 72 · n
3

6



Big-O Proofs by Contradiction

Typically used to prove that f (n) 6∈ O (g (n)).

Show n2 6∈ O(2n)

Suppose n2 ∈ O(2n) and
consider any
n > max{n0, 2c}. Then

n2 = n · n
> (2c) · n
= c · (2n)

which is a contradiction.

c(2n)

n2



Big-O Ignores Constant Factors

Theorem

If f (n) ∈ O (g (n)), then x · f (n) ∈ O (g (n)) for every (constant)
x ∈ R+.

Proof.

Since f (n) ∈ O (g (n)), consider c , n0 such that f (n) ≤ c · g (n)
for all n ≥ n0. Let b = c · x . Then, for n > n0

x · f (n) ≤ x · c · g (n)

= b · g(n)

Hence x · f (n) ∈ O(g(n)).



Big-O Ignores Lower Order Terms

Theorem

If f (n) ∈ O(g(n)) and h(n) ∈ O(f (n)), then
f (n) + h(n) ∈ O(g(n)).

Proof.

Consider a, l0 such that f (l) ≤ a · g(l), for l ≥ l0. Consider b,m0

such that h(m) ≤ b · f (m), for m ≥ m0. Let c = a · (1 + b) and
n0 = max{l0,m0}. Then for n ≥ n0

f (n) + h(n) ≤ f (n) + b · f (n)

= (1 + b) · f (n)

≤ (1 + b) · a · g(n)

= c · g(n)

So f (n) + h(n) ∈ O(g(n))



Big-Ω Notation

Intuition: f is lowerbounded by a multiple of g in the limit.

Definition

Let g : N→ R. Then f : N→ R is in Ω (g (n)) if and only if
∃c ∈ R+ and n0 ∈ N such that f (n) ≥ c · g(n), ∀n ≥ n0.

n0

f (n)

c · g(n)



Other Asymptotic Notations

Definition

Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

There is a correspondence:

< ≤ = ≥ >

o O θ Ω ω

Except that not every pair of
functions is comparable.

f (n)

g(n)



Limits

Theorem

Let f , g : N→ R+. Suppose L = limn→∞ f (n)/g(n) exists. Then

I f (n) ∈ ω(g(n)), if L = +∞
I f (n) ∈ Θ(g(n)), if L ∈ R+

I f (n) ∈ o(g(n)), if L = 0

Show
√

n ∈ ω(log n)

lim
n→∞

√
n

log n
=
∞
∞

so use L’Hopital’s Rule

= lim
n→∞

1
2n−

1
2

n−1
= lim

n→∞

1

2

√
n =∞



Time Complexity (Redux)

How do you determine the run-time of an algorithm?

I Pick a barometer: An operation performed a # of times
proportional to the (worst case) running time.

I Count how many times the barometer is performed.

Example

for i ← 1 to n do
for j ← 1 to 2i do

print "Hi!"

T (n) =
n∑

i=1

2i

=
2n+1 − 1

2− 1
− 1

= 2n+1 − 2 ∈ Θ(2n)

Geometric Series:
∑n

i=0 ai = an+1−1
a−1


