Big-O Notation and Complexity Analysis

Jonathan Backer backer@cs.ubc.ca

Department of Computer Science University of British Columbia

May 28, 2007

Problems

Reading:

- ► CLRS: "Growth of Functions" 3
- ► GT: "Algorithm Analysis" 1.1-1.3

Course is about solving problems with algorithms: Find a function from a set of valid *inputs* to a set of *outputs*. An instance of a problem is just one specific input.

Sorting

- ▶ Input: A sequence of n values a_1, a_2, \ldots, a_n .
- ▶ Output: A permutation $b_1, b_2, ..., b_n$ of $a_1, a_2, ..., a_n$ such that $b_1 \le b_2 \le ... \le b_n$.
- ► Instance: 3, 8, 2, 5.

Compiling a Program

- Input: A sequence of characters (file).
- Output: A sequence of bytes (either an executable file or error messages).

Algorithms

An algorithm is a finite set of instructions such that

- each step is precisely stated (e.g. english instructions, pseudo-code, flow charts, etc.),
- the result of each step is uniquely defined and depends only on the input and previously executed steps, and
- ▶ it stops after finitely many steps on every instance of the problem (i.e. no infinite loops).

Algorithms (cont'd)

What follows is a pseudo-code description of the insertion sort algorithm. We more interested in clarity than syntax.

```
\begin{array}{l} \text{InsertionSort(A)} \\ \text{for } j \leftarrow 2 \text{ to A.length-1 do} \\ \text{key} \leftarrow \text{A[j]} \\ \text{i} \leftarrow \text{j-1} \\ \text{while } (\text{i} \geq 0 \text{ and key} < \text{A[i]) do} \\ \text{A[i+1]} \leftarrow \text{A[i]} \\ \text{i} \leftarrow \text{i-1} \\ \text{A[i+1]} \leftarrow \text{key} \end{array}
```

Just like Java, we pass parameters by value for simple types and reference for arrays and objects.

Analysis

We analyse the behaviour of algorithms. That is, we will prove

- an algorithm is correct (i.e. it always terminate and returns the right result)
- a bound on its best-/worst-/average-case time or space complexity

A machine model captures the relevant properties of the machine that the algorithm is running on. We usually use the Integer-RAM model with

- constant time memory access,
- sequential instruction execution,
- a single processor, and
- memory cells that hold integers of arbitrary size.

Time Complexity

We count the # of elementary steps, which depends on the instance of the problem. We look at

- worst-case: usual,
- best-case: typically not very useful, and
- average-case: hard and really depends on input distribution (i.e what is average?).

Search an unsorted list of *n* numbers.

- ▶ Worst-case: *n* comparisons (not in the list).
- Best-case: 1 comparison (won the lottery!).
- Neverage-case: n/2 comparisons, if all numbers are different, the number occurs in the array, and each permutation of the array is equally likely.

Time Complexity (cont'd)

Why analyse the worst-case? Because it

- provides an upperbound,
- may frequently occur, and
- is often related to the average-case (but it is much easier to prove).

How do we count elementary steps?

▶ It is hard to do exactly (even in worst-case).

So we use asymptotic notation because it

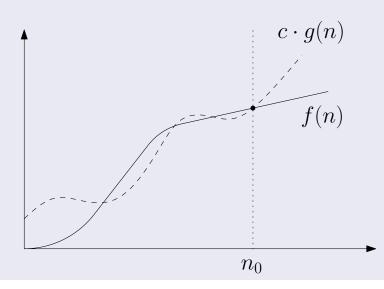
- focuses on behaviour in the limit (where things break) and
- is independent of underlying technology (e.g. machine, OS, compiler, etc.).

Big-O Notation

Intuition: f is upperbounded by a multiple of g in the limit.

Definition

Let $g : \mathbb{N} \to \mathbb{R}$. Then $f : \mathbb{N} \to \mathbb{R}$ is in O(g(n)) if and only if $\exists c \in \mathbb{R}^+$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$, $\forall n \geq n_0$.



Constructive Big-O Proofs

Proofs following the definition. Called constructive because we construct specific c and n_0 .

Show $2n \in O(n^2)$

Take
$$c = 1$$
, $n_0 = 2$.

$$2n \leq 2 \cdot n \\
\leq n \cdot n \\
= n^2$$

Or take
$$c = 2$$
, $n_0 = 1$.

$$2n \leq 2 \cdot n \cdot n < 2n^2$$

Show $7n^2 + 5 \in O(n^3/6)$

Take
$$c = 72$$
, $n_0 = 1$.

$$7n^{2} + 5 \leq 7n^{2} + 5n^{2}$$

$$\leq 12n^{2}$$

$$\leq 12n^{3}$$

$$\leq 72 \cdot \frac{n^{3}}{6}$$

Big-O Proofs by Contradiction

Typically used to prove that $f(n) \notin O(g(n))$.

Show $n^2 \not\in O(2n)$

Suppose $n^2 \in O(2n)$ and consider any

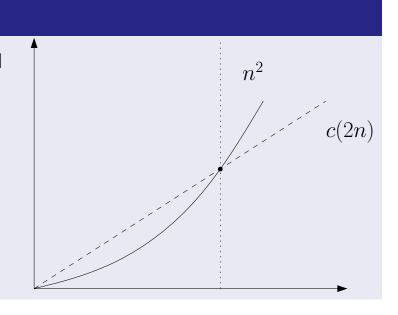
 $n > \max\{n_0, 2c\}$. Then

$$n^{2} = n \cdot n$$

$$> (2c) \cdot n$$

$$= c \cdot (2n)$$

which is a contradiction.



Big-O Ignores Constant Factors

Theorem

If $f(n) \in O(g(n))$, then $x \cdot f(n) \in O(g(n))$ for every (constant) $x \in \mathbb{R}^+$.

Proof.

Since $f(n) \in O(g(n))$, consider c, n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$. Let $b = c \cdot x$. Then, for $n > n_0$

$$x \cdot f(n) \leq x \cdot c \cdot g(n)$$

= $b \cdot g(n)$

Hence $x \cdot f(n) \in O(g(n))$.

Big-O Ignores Lower Order Terms

Theorem

If $f(n) \in O(g(n))$ and $h(n) \in O(f(n))$, then $f(n) + h(n) \in O(g(n))$.

Proof.

Consider a, l_0 such that $f(l) \le a \cdot g(l)$, for $l \ge l_0$. Consider b, m_0 such that $h(m) \le b \cdot f(m)$, for $m \ge m_0$. Let $c = a \cdot (1 + b)$ and $n_0 = \max\{l_0, m_0\}$. Then for $n \ge n_0$

$$f(n) + h(n) \leq f(n) + b \cdot f(n)$$

$$= (1+b) \cdot f(n)$$

$$\leq (1+b) \cdot a \cdot g(n)$$

$$= c \cdot g(n)$$

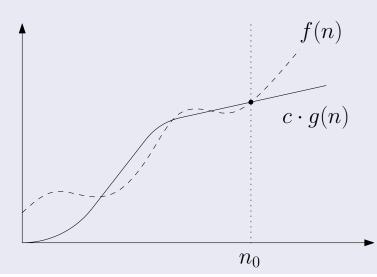
So
$$f(n) + h(n) \in O(g(n))$$

$Big-\Omega$ Notation

Intuition: f is lowerbounded by a multiple of g in the limit.

Definition

Let $g : \mathbb{N} \to \mathbb{R}$. Then $f : \mathbb{N} \to \mathbb{R}$ is in $\Omega(g(n))$ if and only if $\exists c \in \mathbb{R}^+$ and $n_0 \in \mathbb{N}$ such that $f(n) \geq c \cdot g(n)$, $\forall n \geq n_0$.



Other Asymptotic Notations

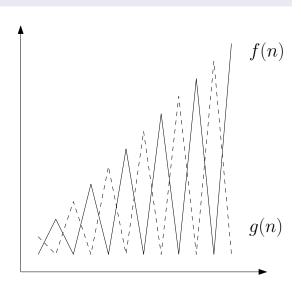
Definition

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

There is a correspondence:

<	<	=	<u> </u>	>
0	0	θ	Ω	ω

Except that not every pair of functions is comparable.



Limits

Theorem

Let $f,g:\mathbb{N}\to\mathbb{R}^+$. Suppose $L=\lim_{n\to\infty}f(n)/g(n)$ exists. Then

- $f(n) \in \omega(g(n))$, if $L = +\infty$
- ▶ $f(n) \in \Theta(g(n))$, if $L \in \mathbb{R}^+$
- ▶ $f(n) \in o(g(n))$, if L = 0

Show $\sqrt{n} \in \omega(\log n)$

$$\lim_{n\to\infty}\frac{\sqrt{n}}{\log n} = \frac{\infty}{\infty} \text{ so use L'Hopital's Rule}$$
$$= \lim_{n\to\infty}\frac{\frac{1}{2}n^{-\frac{1}{2}}}{n^{-1}} = \lim_{n\to\infty}\frac{1}{2}\sqrt{n} = \infty$$

Time Complexity (Redux)

How do you determine the run-time of an algorithm?

- ▶ Pick a barometer: An operation performed a # of times proportional to the (worst case) running time.
- Count how many times the barometer is performed.

Example

for
$$i \leftarrow 1$$
 to n do for $j \leftarrow 1$ to 2^i do print "Hi!"

$$T(n) = \sum_{i=1}^{n} 2^{i}$$

$$= \frac{2^{n+1} - 1}{2 - 1} - 1$$

$$= 2^{n+1} - 2 \in \Theta(2^{n})$$

Geometric Series: $\sum_{i=0}^{n} a^i = \frac{a^{n+1}-1}{a-1}$