
B-Trees and 2-3-4 Trees

Reading:

• �B-Trees� 18 CLRS
• �Multi-Way Search Trees� 3.3.1 and �(2,4) Trees� 3.3.2 GT

B-trees are an extension of binary search trees:

• They store more than one key at a node to divide the
range of its subtree's keys into more than two subranges.

• Every internal node has between t and 2t children.
• Every internal node has one more child than key.
• All of the leaves must be at same level.

2, 7

−1, 0 8, 9, 113, 6

We will see shortly that the last two properties keep the tree balanced.

Most binary search tree algorithms can easily be converted to B-trees. The amount of work done at each
node increases with t (e.g. determining which branch to follow when searching for a key), but the height of
the tree decreases with t, so less nodes are visited. Databases use high values of t to minimize I/O overhead:
Reading each tree node requires a slow random disk access, so high branching factors reduce the number
of such accesses. We will assume a low branching factor of t = 2 because our focus is on balanced data
structures. But the ideas we present apply to higher branching factors. Such B-trees are often called 2-3-4
trees because their branching factor is always 2, 3, or 4.

To guarantee a branching factor of 2 to 4, each internal node must store 1 to 3 keys. As with binary trees,
we assume that the data associated with the key is stored with the key in the node. We assume that every
2-3-4 tree node N has the following �elds.

• The number N.n of keys stored at this node.
• The keys N.key[1 . . . n] sorted so that N.key[i] < N.key[j], for i < j.
• The indicator N.leaf which is set to True if and only if N is a leaf node.
• The references N.child[1 . . . (N.n + 1)] pointing to each of N 's children.

The example on the right shows that di�er-
ent 2-3-4 trees may hold the same keys.

1, 5

−5,−1, 0 2 6, 7, 12

1, 5, 7

−5,−1, 0 2 6 12

Lemma. Let n denote the total number of keys in a 2-3-4 tree. If n ≥ 1, the height is ≤ log2 n.

Proof. In the picture below, all of the leaves are on level h. Each internal node has at least 2 children, which
lower-bounds the number of nodes in every tree of height h.

level 0

1

2

.

.

.

h

1 = 20

2 = 21

4 = 22

2h+

.

.

.

minimum

number of

nodes on each

level

n ≥ 20 + 21 + . . . + 2h

.

.

.
.
.
.

.

.

.
.
.
.

1



2

So n is bounded below by a geometric series. Using our formula for geometric series:

n ≥ 2h+1 − 1
2− 1

= 2h+1 − 1

n + 1 ≥ 2h+1 = 2 · 2h

n + n ≥ 2 · 2h

n ≥ 2h

log2 n ≥ h

�

The algorithm for locating a key in a 2-3-4 tree is similar to the algorithm for a binary tree. It di�ers from
the binary tree case in that we have up to 4 subtrees to choose from when branching.

Algorithm 2-3-4-Find(T,k)
if (T = nil) then

return nil

for i← 1 to T.n do

if (k < T.key[i]) then

return 2-3-4-Find(T.child[i],k)
if (k = T.key[i]) then

return (T,i)

return 2-3-4-Find(T.child[T.n + 1],k)

Run-time analysis: We do Θ(1)
work per level to �nd the
appropriate subtree (or key). If
we recurse, we drop a level in
the tree. There are O(log n)
levels. So we do at most
Θ(1)×O(log n) = O(log n)
work.

Exercise: Write 2-3-4-Max



3

Adding a Node.

With an unbalanced binary search tree,
adding a node was easy: We searched for
the key in the tree until we fell o�; then the
last node that we visited became the parent
of a leaf node storing the key.

insert 6

⇒

3

2 5

4

3

2 5

4 6

But we can not do this with a 2-3-4
tree because all of the leaves must be
on the last level. However, unlike bi-
nary trees, 2-3-4 leaf nodes can con-
tain more than one key. So we may
still be able to insert a key at a leaf
node.

6, 7, 122−5,−1, 0

1, 5

6, 7, 12−5,−1, 0

1, 5

2, 3

insert 3

⇒

What if the leaf node to which
we want to add is full? Then we
split the leaf node and push the
split key up a level.

6, 7, 12−5,−1, 0

1, 5

2, 3

insert 8:

⇒

6, 7, 12Split to get

6

7

12

−5,−1, 0 2, 3

1, 5, 7

6 12

⇓
⇐

−5,−1, 0 2, 3

1, 5, 7

6 8, 12

full leaf

Then push 7

into the

parent.

What if the parent does not have room for the split node? Then we must split the parent before the
child.

−5,−1, 0 2, 3

1, 5, 7

6 8, 12 −5,−1, 0 2, 3 6 8, 12

71

5

2, 3 6 8, 12

7

5

0

−1, 1

−5,−22, 3 6 8, 12

7

5

−5 0

−1, 1

split the root split the leaf insert the keyinitial tree

insert -2:

Notice that splitting the root increases the height of the 2-3-4 tree. This is the only way that a 2-3-4 tree's
height increases. The height of a 2-3-4 tree grows by adding a new root, whereas the height of a binary search
tree grows by adding new leaves.

When adding a key to a 2-3-4 tree, we traverse from the root to the leaf where we insert the key. At each
node that we visit, we split the node if it has three keys. This guarantees we can always push a key into a
node's parent because we visited its parent �rst. In particular, we will always be able to split a leaf to make
room for a new key.



4

Is splitting correct? We just
have to check that it is order
preserving. β γα δ

α < a < β < b < γ < c < δ

a b c

β γα δ

cca

b

⇒
split

α < a < β < b < γ < c < δ

Is pushing correct? Again,
check that it is order preserving. β γα δ

α < a < β < b < γ < c < δ

a b c

β γ

α δb

a c

α < a < β < b < γ < c < δ

⇒
push

Practice: Insert -2 into the 2-3-4 tree below.

10

3, 5, 7 13

−1, 0, 2 4 6 8 11 15

5, 10

0,3 13

-1 4 6 8 11 15

7

2

5, 10

3 13

−1, 0, 2 4 6 8 11 15

7

split

split

⇒

⇓

insert

⇐

5, 10

0,3 13

-1 4 6 8 11 15

7

2

Deleting keys: In binary search trees, deleting a leaf was the easiest case: We just removed the leaf. This
is the easiest case for 2-3-4 trees, as well, so we consider it �rst. Just as we had to be sure that there was
room for a new key when inserting into a leaf, we must make sure that a leaf is not empty after deleting a
key.

3,5

1,2 4 6

For example, it is easy to delete 1: just change 1,2 to 2 . But deleting 4

is complicated because we forbid empty leaves.

When key deletion would create an empty leaf, we look at the leaf's immediate siblings (i.e. to the left and

then right) and try to borrow a key. In this example, we look at 4 's siblings 1,2 and 6 . Clearly, 1,2 is

the only candidate lender. How do we borrow a key? We cannot just transfer a key directly because that
would violate the ordering property of the nodes relative to their parents. So we pass it through the common
parent.



5

3,5

1,2 4 6

2,5

1 3,4 6

⇒
rotate

delete 4:
The restructuring caused by borrowing is equivalent to the ro-
tation used by AVL and red-black trees. After borrowing from

1,2 , we can safely delete 4.

What about deleting 6 from our �rst example? In this case, there
is no immediate sibling from which to borrow a key. So we steal
a key from our parent by doing the opposite of a split: We merge.
Just as we tried to borrow from the left �rst, we try to merge on
the left �rst.

⇒

merge
3,5

1,2 4 6

3

1,2 4,5,6

delete 6:

Merging has a pitfall similar to splitting: When splitting, we needed room in the parent to push a key up;
when merging, we need a key from the parent to pull down.

⇒

delete 7:
4

2

1 3

6

5 7

4

2

1 3 5,6,7

oops!

merge
How do we make sure that we have a key to pull
down? While adding, we traversed the tree main-
tained the invariant that the parent of our current
node had at most two keys. Now we maintain the
invariant that the parent has at least two keys.

When we were adding, we split every node with three keys that we visited. Now that we are deleting, we
ensure that every node that we visit has at least two keys. But we have a strong preference: �rst we attempt
to borrow from a sibling (left and then right), and if that fails, we steal from a parent.

Why do we always try to borrow �rst? So that we can merge, if needed: If we cannot rotate, then both
siblings have one key and we can merge with either of them.

⇒

4

2

1 3

6

5 7

2,4,6

1 3 5 7

⇒ 2,4

1 3 5,6,7

merge merge

delete 7:

So 2-3-4 trees shrink from
the root as well as grow
from the root!

⇒ ⇒
rotate merge

delete 9:

6

2,4

1 3

8

5 7 9

4

2

1 3

6,8

5 7 95 7 9

4

2

1 3

6

5 7,8,9



6

Practice:

⇒ ⇒
merge rotate

delete 3:

4

2

1 3 85,6

7 2, 5, 7

1 3,4 86

2, 4, 7

1 3 85,6

⇒ ⇒
rotate rotate

delete 3:

4

2

1 3 85,6

7,9

10

7

2,4

1 3 85,6

9

10

7

2,5

1 3,4 86

9

10

We now know how to delete keys from leaf nodes: We traverse the tree maintaining the invariant that
each node that we visit has at least two keys. We do this by borrowing (rotating), and when we can't borrow,
we steal (merge).

What about deleting keys from internal nodes. Recall how we did this with binary search trees:

• If the node has zero children, delete it.
• If the node has one child, splice it out.
• If the node has two children, we remove its predecessor and swap keys.

The �rst two strategies do not apply
to internal nodes of a B-tree. What
about the third strategy? ⇒ ⇒

rotate replace

delete 5: first remove predecessor 4, and then swap 4 for 5

3,5

1,2 4 6

delete

2,5

1 3,4 6

2,4

1 3 6

Let's try it again. Notice that the key
that we wish to delete may move when
we delete its predecessor. ⇒ ⇒

merge replace

delete 2: first remove predecessor 1, and then swap 1 for 2

2,4

1 3 5

delete

4

1,2,3 5

4

1,3 5

In both examples, the strategy of removing the predecessor and then swapping worked because the predecessor
was in a leaf node, which we know how to remove. Is this true in general? Yes because every key in the
internal node of a B-tree has a left subtree. The predecessor is the maximum in this subtree, which is the
leaf on the rightmost path.



7

Practice:

delete 4:

4

2

1 3 75

6 4,6

1,2,3 75

3,6

1,2 75

delete

2,4,6

1 3 75

⇒
merge

⇒
replace

⇒
merge

delete 6:

3,6

1,2 75

⇒
rotate

⇒
replace2,6

1 73,5

2,5

1 73

delete 8:

6

2,4 8

⇒
rotate

⇒
replace

1 3 5 7 9

4

2 6,8

1 3 5 7 9

4

2 8

1 3 5,6,7 9

delete

4

2 7

1 3 5,6 9

⇒
merge

Deletion Algorithm: Find the key to delete, and

• if it is in a leaf, delete it,
• otherwise, �nd the predecessor, delete the predecessor, �nd the key to delete again (it may have
moved), and swap keys.

This is simpler than the routine in CLRS, but a constant factor slower.

IMPORTANT: Use this routine! And show intermediate steps to guarantee partial credit.


