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Integrity constraints are semantic conditions that a database should satisfy in order to be an appropriate model
of external reality. In practice, and for many reasons, a database may not satisfy those integrity constraints,
and for that reason it is said to be inconsistent. However, and most likely, a large portion of the database is still
semantically correct, in a sense that has to be made precise. After having provided a formal characterization
of consistent data in an inconsistent database, the natural problem emerges of extracting that semantically
correct data, as query answers.

The consistent data in an inconsistent database is usually characterized as the data that persists across all
the database instances that are consistent and minimally differ from the inconsistent instance. Those are the
so-called repairs of the database. In particular, the consistent answers to a query posed to the inconsistent
database are those answers that can be simultaneously obtained from all the database repairs.

As expected, the notion of repair requires an adequate notion of distance that allows for the comparison
of databases with respect to how much they differ from the inconsistent instancse. On this basis, the minimality
condition on repairs can be properly formulated.

In this monograph we present and discuss these fundamental concepts, different repair semantics, algorithms
for computing consistent answers to queries, and also complexity-theoretic results related to the computation
of repairs and doing consistent query answering.
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ABSTRACT
Integrity constraints are semantic conditions that a database should satisfy in order to be an appro-
priate model of external reality. In practice, and for many reasons, a database may not satisfy those
integrity constraints, and for that reason it is said to be inconsistent. However, and most likely a

After having provided a formal characterization of consistent data in an inconsistent database, the
natural problem emerges of extracting that semantically correct data, as query answers.

The consistent data in an inconsistent database is usually characterized as the data that persists
across all the database instances that are consistent and minimally differ from the inconsistent
instance. Those are the so-called repairs of the database. In particular, the consistent answers to a
query posed to the inconsistent database are those answers that can be simultaneously obtained from
all the database repairs.

As expected, the notion of repair requires an adequate notion of distance that allows for the
comparison of databases with respect to how much they differ from the inconsistent instance. O

In this monograph we present and discuss these fundamental concepts, different repair seman-
tics, algorithms for computing consistent answers to queries, and also complexity-theoretic results
related to the computation of repairs and doing consistent query answering.
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integrity constraints, inconsistent databases, database repairs, consistent query answer-
ing, data cleaning

large portion of the database is still semantically correct, in a sense that has to be made precise.

this basis, the minimality condition on repairs can be properly formulated.
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Preface
A common assumption in data management is that databases can be kept consistent, that is, satisfying
certain desirable integrity constraints (ICs). This is usually achieved by means of built-in support
provided by database management systems. They allow for the maintenance of limited classes of ICs
that can be declared together with the database schema. Another possibility is the use of triggers
or active rules that are created by the user and stored in the database. They react to updates of the
database by notifying a violation of an IC, rejecting a violating update, or compensating the update
with additional updates that restore consistency. Another common alternative consists of keeping
the ICs satisfied through the application programs that access and modify the database, i.e., from
the transactional side.

However, under different circumstances and for several reasons, databases may be or may
become inconsistent. For example, ICs that are expensive to check and maintain, enforcement or
simple consideration of new or user ICs, imposition of a new semantics on legacy data, the creation
of a repository of integrated data, etc. Confronted to the possible or potential inconsistency of a
database, we may decide to live with this inconsistency, but trying to access, retrieve and use the
portion of data that is still consistent with respect to the ICs under consideration.

Consistent query answering (CQA) [Arenas et al., 1999] emerged from this attitude towards
inconsistency and the need to do semantically correct data management, in particular, query answer-
ing, in the presence of inconsistency.This required a precise, formal characterization of the consistent
data in a possibly inconsistent database, and also the development of computational mechanisms for
retrieving the consistent data, e.g., at query answering time.

The characterization of consistent data, as first proposed by Arenas et al. [1999], appeals
to the auxiliary notion of database repair. This is a new database instance that is consistent with
respect to the ICs, and minimally differs from the inconsistent database at hand. Consistent data is
invariant under the class of possible repairs. Since their official inception, CQA has received much
attention from the research community in data management. The main problems mentioned above,
i.e., characterization of consistent data and the development of efficient algorithms, have been largely
explored. The former under different notions of repair (and distance between instances), and the
latter, considering all kinds of combinations of classes of ICs and queries, including complexity-
theoretic issues.

In this monograph we introduce the motivation, the main concepts and techniques, and
also the main research problems that appear behind and around database repairs and CQA. Much
research has been produced and published in the last 12 years. It would be impossible to give
a detailed account of it in a rather short monograph like this. As a consequence, the treatment
of most of the topics and research results is kept rather intuitive and superficial, but hopefully still
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precise enough. We have preferred illustrative and representative examples to full proofs of theorems.
However, we have provided abundant references to the publications where those results can be found
in full detail, and much more. Some surveys of the area have been published before [Bertossi, 2006,
Bertossi and Chomicki, 2003, Chomicki, 2007].

This monograph concentrates on CQA and database repairs in/for single relational databases.
As a consequence, some topics in CQA and repairs for other data models have been omitted. Some
of them are mentioned below.

Consistent query answering and repairs for XML databases have been considered by
Flesca et al. [2005a,b] and Staworko and Chomicki [2006].The same problems in multidimensional
databases (MDDBs), but with semantic constraints like homogeneity and strictness, have been con-
sidered by Bertossi et al. [2009], Bravo et al. [2010] and Ariyan and Bertossi [2011], on the basis
of the Hurtado-Mendelzon model for MDDBs [Hurtado and Mendelzon, 2002]. And for spatial
databases, by Rodriguez et al. [2008, 2011].

Consistent query answering and database repairs has been applied in virtual data integration
systems that are subject to global integrity constraints [Bertossi and Bravo,2004b,Bravo and Bertossi,
2003, 2005].They have also played an important role in peer data exchange systems that exchange data
at query answering time when certain data exchange constraints between peers are violated. In conse-
quence, inconsistency is the driving force behind data movement between peers [Bertossi and Bravo,
2004a, 2007, 2008].

We are not presenting here research on probabilistic representation of repairs or repairs in
probabilistic databases [Andritsos et al., 2006, Lian et al., 2010] (except for general remarks in Section
6.2.1).

Leopoldo Bertossi
August 2011
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C H A P T E R 1

Introduction
A database can be seen as a model, i.e., as a simplified and abstract description, of an external reality.
In the case of relational databases, one starts by choosing certain predicates of a prescribed arity.
The schema of the database consists of this set of predicates, possibly attributes, which can be seen
as names for the arguments of the predicates, together with an indication of the domains where the
attributes can take their values. Having chosen the schema, the representation of the external reality
is given in terms of relations, which are finite extensions for the predicates in the schema. This set
of relations is called an instance of the schema.

For example, a relational database for representing information about students of a uni-
versity might be based on the schema consisting of the predicates Students(StNum, StName) and
Enrollment(StName, Course). Attribute StNum takes numerical values; StName, values that are fi-
nite character strings; and Course, values that are alphanumeric strings. Figure 1.1 shows a possible
instance for this schema.

Students StuNum StuName Enrollment StuNum Course
101 john bell 104 comp150
102 mary stein 101 comp100
104 claire stevens 101 comp200
107 pat norton 105 comp120

Figure 1.1: A database instance.

1.1 DATABASE CONSISTENCY

In order to make the database a more accurate model of the university domain (or to be in a more
accurate correspondence with it), certain conditions are imposed on the possible instances of the
database. Those conditions are intended to capture more meaning from the outside application
domain. In consequence, these conditions are called semantic constraints or integrity constraints (ICs).
Already in the classical and seminal paper by E.F. Codd [Codd, 1970] on the relational data model
it is possible to find the notions of integrity constraint and consistency of a database.

For example, a condition could be that, in every instance, the student name functionally
depends upon the student number, i.e., a student number is assigned to at most one student name.
This condition, called a functional dependency (FD), is denoted with StuNumber → StuName, or
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Students : StuNumber → StuName, to indicate that this dependency should hold for attributes of
relation Students. Actually, in this case, since all the attributes in the relation functionally depend on
StuNum, the FD is called a key constraint.

Integrity constraints can be declared together with the schema, indicating that the instances
for the schema should all satisfy the integrity constraints. For example, if the functional dependency
Students : StuNumber → StuName is added to the schema, the instance in Figure 1.1 is consistent,
because it satisfies the FD. However, the instance in Figure 1.2 is inconsistent. This is because this
instance does not satisfy, or, what is the same, violates the functional dependency (the student number
101 is assigned to two different student names). Functional dependencies form a particular class of
integrity constraints.

Students StuNum StuName Enrollment StuNum Course
101 john bell 104 comp150
101 joe logan 101 comp100
104 claire stevens 101 comp200
107 pat norton

Figure 1.2: An inconsistent instance.

With the same schema, it is also possible to consider a referential integrity constraint requiring
that every student (number) in the relation Enrollment appears, associated with a student name,
in relation Students, the “official table" of students. This is denoted with Enrollement[StNum] ⊆
Students[StNum]. If this IC is considered in the schema, the instance in Figure 1.1 is inconsistent,
because student 105 does not appear in relation Students. However, if only the referential constraint
were considered with the schema, the instance in Figure 1.2 would be consistent.

As we can see, the notion of consistency is relative to a set of integrity constraints. When we
say that a database is inconsistent, it means that the particular instance of the database at hand is
inconsistent, and wrt the given ICs.

The two particular kinds of integrity constraints presented above, and also other forms of ICs,
can be easily expressed in the language of first-order (FO) predicate logic [Enderton, 2001], which
in relational databases usually takes the form of the relational calculus [Abiteboul et al., 1995]. For
example, the FD above can be expressed by the symbolic sentence

∀x∀y∀z((Students(x, y) ∧ Students(x, z)) −→ y = z), (1.1)

whereas the referential constraint above can be expressed by

∀x∀y(Enrollment(x, y) −→ ∃zStudents(x, z)). (1.2)

Notice that this language of FO predicate logic is determined by the database schema, whose
predicates are now being used to write down logical formulas. We may also use “built-in" predicates,
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like the equality predicate.Thus, ICs can be seen as forming a set � of sentences written in a language
of predicate logic.

A database instance can be seen as an interpretation structure D for the language of predicate
logic that is used to express the ICs. This is because an instance has an underlying domain and
(finite) extensions for the predicates in the schema. Having the database instance as an interpretation
structure and the set of ICs as a set of symbolic sentences is crucial, and makes it possible to simply
apply the notion of satisfaction of a formula by a structure of first-order predicate logic [Enderton,
2001]. In this way, the notion of satisfaction of an integrity constraint by a database instance is a
precisely defined notion: the database instance D is consistent if and only if it satisfies �, which
is commonly denoted with D |= �. We will be more precise about ICs and their satisfaction in
database instances in Chapter 2, Section 2.1.

Since it is usually assumed that the set of ICs is consistent as a set of logical sentences, in
databases the notion of consistency becomes a condition on database instances. Thus, this use of the
term “consistency" differs from its use in logic, where consistency characterizes a set of formulas.

Inconsistency is an undesirable property for a database. In consequence,one attempts to keep it
consistent as it is subject to updates.There are a few ways to achieve this goal. One of them consists in
declaring the ICs together with the schema, and the database management system (DBMS) will take
care of the database maintenance, i.e., of keeping it consistent. This is done by rejecting transactions
that may lead to a violation of the ICs. For example, the DBMS should reject the insertion of the
tuple (101, sue jones) into the instance in Figure 1.1 if the FD (1.1) was declared with the schema (as
a key constraint). Unfortunately, commercial DBMSs offer limited support for this kind of database
maintenance.

An alternative way of keeping consistency is based on the use of triggers (or active rules) that
are stored in the database. The reaction to a potential violation is programmed as the action of the
trigger: if a violation is about to be produced or is produced, the trigger automatically reacts, and its
action may reject the violating transaction or compensate it with additional updates, to make sure
that in the end, consistency is reestablished. Consistency can also be enforced through the application
programs that interact with the DBMS. However, the correctness of triggers or application programs
with respect to (wrt) ensuring database consistency is not guaranteed by the DBMS.

1.2 AN APPETIZER AND OVERVIEW

In practice, it is the case that databases may be or become inconsistent. That is, they may violate
certain ICs that are considered to be relevant to maintain for a certain application domain. This can
be due to several reasons, e.g., poorly designed or implemented applications that fail to maintain the
consistency of the database, ICs for which a DBMS does not offer any kind of support, ICs that
are not enforced for better performance of the DBMS or application programs, or ICs that are just
assumed to be satisfied based on knowledge about the application domain and the kind of updates
on the database.
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It is also possible to have a legacy database on which semantic constraints have to be imposed;
or more generally, a database on which imposing new constrains depending on specific needs, e.g.,
user constraints, becomes necessary.

In the area of data integration the satisfaction of desirable ICs by a database is much more
difficult to achieve. One can have different autonomous databases that are separately consistent wrt
their own, local ICs. However, when their data are integrated into a single database, either material
or virtual, certain desirable global ICs may not be satisfied. For example, two university databases
may use the same numbers for students. If their data are put together into an integrated database, a
student number might be assigned to two different students.

When confronted to an inconsistent database, the application of some data cleaning techniques
may be attempted, to cleanse the database from data that participates in the violation of the ICs.
This is done sometimes. However, data cleaning is a complex and non-deterministic process; and
it may also lead to the loss of information that might be useful. Furthermore, in certain cases, like
virtual data integration, where the data stays at the autonomous data sources, there is no way to
change the data without ownership of the sources.

One might try to live with an inconsistent database. Actually, most likely one will be forced
to keep using it, because there is still useful information in it. It is also likely that most of the
information in it is somehow consistent.Thus, the challenge consists in retrieving from the database
only information that is consistent. For example, one could pose queries to the database at hand, but
expecting to obtain only answers that are semantically correct, i.e., that are consistent with the ICs.
This is the problem of consistent query answering (CQA).

The notion of consistency of a database is a holistic notion, that applies to the entire database,
and not to portions of it. In consequence, in order to pursue this idea of retrieving consistent query
answers, it becomes necessary to characterize the consistent data in an inconsistent database first.The
idea proposed by Arenas et al. [1999] is as follows: the consistent data in an inconsistent database are
those that are invariant under all possible ways of restoring the consistency by performing minimal
changes on the initial database. That is, no matter what minimal consistency restoration process is
applied to the database, the consistent data stay in the database. Each of the consistent versions of
the original instance obtained by minimal changes is called a minimal repair, or simply, a repair.

As expected, one has to be more precise about the meaning of minimal change. In between,
several definitions have been proposed and studied in the literature. They are usually given in terms
of a distance or partial order between database instances. Which notion to use may depend on the
application. In the rest of this section we will illustrate the concept of minimality associated to repairs
as originally introduced in [Arenas et al., 1999], using our previous example, with the FD.

First of all, a database instance D can be seen as a finite set of ground atoms (or database
tuples) of the form P(c̄), where P is a predicate in the schema, and c̄ is a finite sequence of constants
in the database domain. For example, Students(101, john bell ) is an atom in the database. If the
admissible repairs actions are insertions or deletions of full tuples (as opposed to changes of attribute
values), which we will assume for now, a natural way to compare the original database instance D
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with any other database instance D′ (with the same schema) is through their symmetric difference
D�D′ = {A | A ∈ (D � D′) ∪ (D′ � D)}.

In this setting, restoring consistency wrt to a functional dependency can be achieved only
through tuple deletions. In consequence, if D′ is obtained from D by eliminating tuples, the sym-
metric difference becomes simply D � D′. Instance D′ is considered to a be a minimal repair of D

if D′ satisfies the FDs, and is set-theoretically maximally contained in D, i.e., there is no consistent
D′′ with D′ � D′′ � D.

For example, the database in Figure 1.2 has two repairs wrt the FD (1.1), those shown in
Figure 1.3. Each of them is obtained by deleting one of the two conflicting tuples in relation Students
(relation Enrollment does not change).This notion of repair and also alternative definitions of repair
are introduced in detail and discussed in Chapter 2, Sections 2.3 and 2.5.

Students1 StuNum StuName Students2 StuNum StuName
101 john bell 101 joe logan
104 claire stevens 104 claire stevens
107 pat norton 107 pat norton

Figure 1.3: Two repairs.

Having defined the notion of repair, a consistent answer from an instance D to a query Q(x̄)

wrt a set � of ICs is defined as an answer c̄ to Q that is obtained from every possible repair of D

wrt �. That is, if the query Q is posed to each of the repairs, c̄ will be returned as a usual answer to
Q from each of them.

For example, if the query Q1(x, y) : Students(x, y), asking for the tuples in relation Students,
is posed to the instance in Figure 1.2, then (104, claire stevens) and (107, pat norton) should be the
only consistent answers wrt the FD (1.1). Those are the tuples that are shared by the extensions
of Students in the two repairs. Now, for the query Q2(x) : ∃yStudents(x, y), i.e., the projection on
the first attribute of relation Students, the consistent answers are (101), (104) and (107). Consistent
query answers are defined in precise terms in Chapter 2, Section 2.3.
There might be a large number of repairs for an inconsistent database. In consequence, it is desirable to
come up with computational methodologies to retrieve consistent answers that use only the original
database, in spite of its inconsistency. Such a methodology, that works for particular syntactic classes
of queries and ICs, was proposed by Arenas et al. [1999].

The idea is to take the original query Q, that expects consistent answers, and syntactically
transform it into a new query Q′, such that the rewritten query Q′, when posed to the original
database, obtains as usual answers the consistent answers to query Q.

For illustration, we can use our example. The consistent answers to the query Q1(x, y) :
Students(x, y) above wrt the FD (1.1) can be obtained by posing the query

Q′(x, y) : Students(x, y) ∧ ¬∃z(Students(x, z) ∧ z 
= y) (1.3)
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to the database. The new query collects as normal answers from the initial instance those tuples
where the value of the first attribute is not associated to two different values of the second attribute
in the relation. It can be seen that the set of answers for the new query can be computed in polynomial
time in the size of the database.

In this example, a query expressed in first-order predicate logic was rewritten into a new query
expressed in the same language. A central question is about the scope of first-order rewritability. As
expected, it depends on the kind of query and ICs involved. Actually, it has limited applicability,
because it can be proved that for certain FO queries and ICs, no FO rewriting exists. This is not
surprising, considering the complexity-theoretic results already available in the literature. Actually,
for certain classes of FO queries and ICs, deciding if a tuple is a consistent answer can be �P

2 -
complete (in the size of the database instance). This strongly suggests that the decision problem
cannot be solved in polynomial time, which would be the case if there was a FO rewriting for
the query. First-order query rewriting is presented in Chapter 3. Limitations of first-order query
rewriting and complexity-theoretic issues are discussed in Chapter 5, for different kinds of repair
semantics.

In consequence, the next question is about a more expressive language than FO logic that
can be used to express the rewriting Q′ of the first-order query Q. The answer to this question
should also depend on the kind of ICs being considered. For example, it may be necessary to do
the rewriting as a query written in a more expressive extension of Datalog [Abiteboul et al., 1995,
Ceri et al., 1989]. More expressive languages for query rewriting are investigated in Chapter 4.

If a database is inconsistent wrt referential ICs, like the instance in Figure 1.1 and the constraint
in (1.2), it is natural to restore consistency by deleting tuples or inserting tuples containing null
values for the existentially quantified variables in the ICs. For example, the tuple (105, comp120)

could be deleted from Enrollment or, alternatively, the tuple (105, null ) could be inserted in relation
Students. This requires a modification of the notion of repair and a precise semantics for satisfaction
of ICs in the presence of null values. As indicated above, different repair semantics, that include
those that allow for the use of null values, are described in Chapter 3, Section 2.5, and Chapter 4,
Section 4.1.4.

Repairs were originally introduced as an auxiliary concept to define consistent query answers.
However, they have gained a life of their own. Computing a repair for a database that violates certain
semantic constraints can be seen as a form of data cleaning. In Chapter 6 we explore this connection.

1.3 OUTLOOK

As we will see in the rest of this monograph, a considerable amount of research has been done
in the area of database repairing and consistent query answering. By now we have a reasonably
good understanding of the applicability of query rewriting approaches, and a rather clear view of
complexity issues, at least for certain common classes of integrity constraints and queries. For some
of them we even have polynomial time algorithms for CQA, and also some efficient and good
approximation algorithms for some intractable cases. Of course, there are still many interesting open
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problems in the area, including still many problems about FO query rewriting and computational
complexity in general.

If we want to see the concepts and techniques that have been developed for CQA widely
adopted and used, we should address other open problems that have received little attention so far.
One of them turns around compositional methods for CQA. That is about the possibility of computing
consistent answers to a query by composing the sets of consistent answers to subqueries. Notice that
CQA does not follow the classical logical laws that apply to (usual) query answering in relational
databases. CQA follows a different, non-classical logics.This issue is raised and discussed in Chapter
4. The importance of better understanding the logic of CQA is the reason for having introduced most
of the material in it.

Another important open problem is related to CQA in a dynamic setting, when the database
is subject to updates. We need incremental techniques for computing repairs and doing CQA, i.e.,
that avoid computing everything from scratch after the updates. Instead, we should be able to reuse
and minimally change an already available repair or an existing set of consistent answers. For usual
data management on relational databases we have incremental techniques for view maintenance
and verification of integrity constraints. This kind of methodology is still undeveloped for database
repairing and CQA.

Another problem that clearly emerges from the subjects treated in the monograph consists in
shedding a more clear light on the repair semantics that are suitable for different kinds of applications.
Admittedly, this problem is rather vaguely formulated, but that does not make it less relevant.
Research in this direction should combine experience from concrete applications with the, possibly
comparative, study of general properties of different repair semantics.

This brings us to another but related problem, namely the development of key applications of
database repairing and CQA. Applications to virtual data integration systems subject to global ICs
look particularly promising, because there CQA seems to be the way to go.
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C H A P T E R 2

The Notions of Repair and
Consistent Answer

2.1 PRELIMINARIES

We will consider relational schemas of the form S = (U ,R,B), where U is the possibly infinite
database domain; R is a finite set of database predicates, each of them with a fixed finite arity; and
B is a finite set of built-in predicates, e.g., B = {=, 
=, >, <}. For an n-ary predicate R ∈ R, R[i]
denotes the ith position or attribute of R, with 1 ≤ i ≤ n. If an attribute A is associated to a position,
R[A] denotes predicate R restricted to that position. The schema determines a language L(S) of
first-order (FO) predicate logic. A relational instance D for schema S can be seen as a finite set of
ground atoms of the form R(ā), with R ∈ R, and ā a tuple of constants from U .

Queries are formulas of L(S). In particular, we will consider conjunctive queries. They are of
the form:

Q(x̄) : ∃ȳ(R1(x̄1) ∧ · · · ∧ Rn(x̄n) ∧ ϕ), (2.1)

where Ri ∈ R, x̄, ȳ, x̄i are finite sequences of variables, with x̄ ⊆ ⋃
i x̄i , and ȳ = (

⋃
x̄i ) � x̄.1

Formula ϕ is a conjunction of built-in atoms containing variables or domain constants, and its
variables appear all in some Ri(x̄i). The variables in x̄ are the free variables of the query. Their
combined values in U that, together with the instance D, make the formula defining the query true
are the answers to query Q in D. If x̄ is of length n, we say that the query is n-ary. When the query
is defined by a sentence, i.e., it has not free variables (e.g., x̄ is empty in (2.1)), its arity is 0, and we
call it a boolean (conjunctive) query.

To indicate that a sequence c̄ of elements of U is an answer to the query Q,we write:D |= Q[c̄],
i.e., instance D satisfies the query when the variables in x̄ take the values as in c̄. Q(D) denotes the
set of answers to query Q. When the query is boolean, Q(D) = {yes} if the sentence is true in D,
and Q(D) = {no}, otherwise.

Views are predicates defined by a formula of L(S). V (D) denotes the extension of view V

when computed on an instance D for S .

1When there is no possible confusion, we treat sequences of variables as set of variables. I.e. x1 · · · xn as {x1, . . . , xn}.
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Integrity constraints (ICs) are sentences of L(S). When an instance D satisfies an IC ψ , we
write D |= ψ . If � is a set of ICs, D |= � means that all the ICs in � are satisfied by D. In that
case, we say that D is consistent (wrt �). Otherwise, we say it is inconsistent.

Example 2.1 Consider the relational database schema S with R = {R(A, B), S(B, C)}.
Here, A, B, C are attributes. This is a possible instance for this schema: D =
{R(a, b), R(c, d), R(c, g), S(b, c), S(d, c), S(e, a)}.

Consider the unary view V defined by the sentence ∀x(V (x) ≡ ∃y∃z(R(x, y) ∧ S(y, z))).
This is a conjunctive view since it is defined by the conjunctive query: Q(x) : ∃y∃z(R(x, y) ∧
S(y, z)), the one on the right-hand-side of V ’s definition. In this case, V (D) = {(a), (c)}, and,
of course, Q(D) = {(a), (c)}.

A possible integrity constraint is ψ : ∀x∀y∀z(R(x, y) ∧ R(x, z) → y = z). This is a func-
tional dependency (FD) of the second attribute of R upon the first; also denoted R : A → B. Actually,
it is trivially a key dependency (KD), in the sense that the combination of the attributes on the LHS
of the arrow functionally determines all the other attributes of the predicate.

ICs can be written in different syntactic forms, depending on what we want to do with them.
For example, the FD above can also be written in clausal form: ∀x∀y∀z(¬R(x, y) ∨ ¬R(x, z) ∨ y =
z). Here, ¬R(x, y) is a negative literal, i.e., the negation of an atom (atomic formula). Atoms
are positive literals. The same FD can also be written as a denial constraint: ∀x∀y∀z¬(R(x, y) ∧
R(x, z) ∧ y 
= z), i.e., as a prohibition of a particular combination of database atoms and built-ins.

Instance D is inconsistent, because it does not satisfy the FD, which is denoted with D 
|= ψ .
The tuples R(c, d), R(c, g), combined, violate the FD.

However, D does satisfy the referential constraint χ : ∀x∀y(S(x, y) → ∃zR(y, z)). Thus, in
this case, D |= χ . It is easy to prove that this (actually, any) referential constraint cannot be written
as a denial constraint. �

We will always consider finite sets IC of integrity constraints in a language L(S). We will
assume these sets are logically consistent, in the sense that there is an instance D with D |= IC .

Generalizing the previous example, and for future reference, we provide the following defini-
tion.

Definition 2.2 (a) A universal constraint is an L(S)-sentence that is logically equivalent to one in
clausal form, i.e., of the form:

∀x̄(L1(x̄1) ∨ · · · ∨ Ln(x̄n) ∨ ϕ(x̄′)) ,

with: x̄ = ⋃
x̄i , x̄′ ⊆ x̄, ϕ(x̄′) a disjunction of atoms with built-in predicates, and each Li(x̄i) is a

literal of the form R(x̄i) or ¬R(x̄i), for R ∈ R.
(b) A denial constraint is an L(S)-sentence (that is logically equivalent to one) of the form

∀x̄¬(A1(x̄1) ∧ · · · ∧ An(x̄n) ∧ ϕ(x̄′)) ,
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with: x̄ = ⋃
x̄i , x̄′ ⊆ x̄, Ai(x̄i) is a database atom (i.e., with predicate in R), and ϕ is a conjunction

of atoms with built-in predicates.
(c) An inclusion dependency is an L(S)-sentence of the form

∀x̄(R(x̄) → ∃ȳS(x̄′)) ,

with x̄′ = ȳ ∪ z̄, ȳ ∩ z̄ = ∅, z̄ ⊆ x̄. When ȳ is empty, we skip the existential quantifier. �

As mentioned in Example 2.1, functional and key dependencies belong to the class of denial
constraints. Referential constraints belong to the class of inclusion dependencies. For additional
material on database fundamentals, see [Abiteboul et al., 1995].

2.2 CONSISTENT DATA IN INCONSISTENT DATABASES
Under certain circumstances, we may have to live with inconsistent data, with information that
contradicts certain desired integrity constraints (ICs). This is the case, for example, when: (a) a
DBMS does not fully support data maintenance, i.e., integrity checking or enforcing; (b) the consis-
tency of the database will be restored by executing additional, compensating transactions, or future
transactions; (c) integration of semantically heterogeneous databases, without a central or global
maintenance mechanism; (d) there is inconsistency wrt to “soft” or “informational” integrity con-
straints that we hope or expect to see satisfied, but they are not necessarily maintained; (e) we have
user constraints than cannot be checked; or (f ) we inherit legacy data and we want to impose some
new semantic constraints on them.

Restoring consistency may be difficult, impossible, or even, undesirable: We may not have
the permission to do so. We may not want to lose potentially useful data. Furthermore, restoring
consistency can be a computationally complex and non-deterministic process. We may also need
some absent additional domain knowledge to do some sort of data cleaning.

A more flexible approach is based on the observations that: (a) not all data participate in the
violation of the ICs, actually, possibly most of the data are semantically correct; and (b) the database
can still give us semantically correct answers to (some) queries. In consequence, we may try to live
with inconsistency.

However, if we decide to go this way, we should be in position to tell apart consistent from
inconsistent data. The former should be formally characterized. More precisely, we should be able
to provide a precise definition of consistent data in a possibly inconsistent database. In particular,
this notion should be applicable to query answers.

After such a characterization is achieved, the next step should be the development of al-
gorithms for obtaining such consistent information from the inconsistent database. However, the
success of such a task will be determined by the intrinsic computational complexity of the problem,
which we have to investigate and understand.

Query answering in relational databases follows a classical logic. In particular, it follows some
useful compositional laws, in the sense that the answers to a query can be determined on the basis of
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the answers to its sub-queries. However, obtaining consistent answers to queries from inconsistent
databases may follow a different logic, that we should identify and investigate.

In order to motivate our basic concepts, we will revisit the example shown used in Chapter 1.

Example 2.3 Consider the following database instance D. We expect the functional dependency
FD: StuNum → StuName to be satisfied. However, D violates FD, by the tuples with value 101 for
attribute StuNum.

D Students StuNum StuName
101 john bell
101 joe logan
104 claire stevens
107 pat norton

There are several ways to restore consistency, and
two crucial issues appear: (a) What kind of oper-
ations will be allowed to do that? (b) How much
do we want to depart from the given inconsistent
instance?

Trying to stay as close as possible to the given instance is quite natural. However, the first
issue, of how to change the given instance, is less obvious. For the moment, we will accept only full
tuple insertions and deletions as possible operations. With them, and trying to minimally change
the given instance, we find only two possible alternative and consistent instances, namely:

D1 Students StuNum StuName
101 john bell
104 claire stevens
107 pat norton

D2 Students StuNum StuName
101 joe logan
104 claire stevens
107 pat norton

These two instances are consistent wrt the FD, and they stay close to D. Now we observe
that the tuple (104, claire stewens) persists in all repairs, which is not surprising since it does not
participate in the violation of FD. Actually, this tuple is invariant under these minimal ways of
restoring consistency.

On the other side, the tuple (101, joe logan) does not persist in all repairs, which is related to
the fact that is does participate in the violation of FD. �

Notice that the notion of integrity constraint satisfaction applies to the database instance as
a whole. That is, the database either satisfies a given set of integrity constraints IC or it does not.
Whereas here we want to characterize the consistency of portions of data in an inconsistent database.
The previous example suggests how to proceed: The consistent information persists across the class of
admissible repaired versions of the original instance.

Of course, this approach has to be made precise, but it already suggests a paradigm shift, in
the sense that we could decide to live with inconsistent data (or not to worry about certain ICs), the
ICs are not constraints on the database states, but on the sets of answers to queries. Actually, they
could be specified locally, with the query at hand. Even more, an enhanced SQL could provide such
a construct.
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In Example 2.3, we could think of posing the following query, enhanced with an additional
clause specifying that we want the answers that are consistent with the FD:

SELECT * (2.2)
FROM Students

WHERE StuNum > 100
CONSISTENT WITH StuNum -> StuName;

We would expect to obtain the answers (104, claire stevens) and (107, pat norton).

2.3 CHARACTERIZING CONSISTENT DATA
In order to define the admissible instances we mentioned above, we must first have a way to compare
database instances, in terms of their distances to the instance D at hand.

Definition 2.4 Let D be a fixed instance for a relational schema S .

(a) For two instances D1, D2 for S , we say that D1 is at least as close to D as D2, denoted D1 �
D

D2,
iff �(D, D1) ⊆ �(D, D2). Here, �(S1, S2) := (S1 � S2) ∪ (S2 � S1) is the symmetric set
difference between two sets.

(b) D1 ≺
D

D2 holds iff D1 �
D

D2, but not D2 �
D

D1. �

This is one of the possible ways to compare database instances. It is the partial order used
by Arenas et al. [1999]. It compares instances in terms of whole database tuples, i.e., ground atoms.
The elements in �(D, D′) can be seen as insertions and deletions of whole tuples into/from D, as
we did in Example 2.3. We will consider alternative partial orders later on. Now, we are interested
in the �

D
-minimal instances, those that are consistent and the closest to D.

Definition 2.5 [Arenas et al., 1999] Let D be an instance for schema S , and IC a finite set of
ICs, i.e., of sentences in L(S).

(a) A repair of D is an instance D′ for S that: 1. Satisfies IC, i.e., D′ |= IC . 2. Is �
D

-minimal in
the class of instances for S that satisfy IC .

(b) Rep(D, IC) denotes the class of repairs of instance D wrt IC . �

From this definition, we can see that a repair of D differs from D by a minimal set of insertions
or deletions of tuples wrt set inclusion. Notice that the built-in predicates are not subject to changes,
they have fixed extensions.

Example 2.6 Consider D = {P(a), P (b), Q(a), R(a), R(c)}, and IC = {∀x(P (x) → Q(x)),
∀x(Q(x) → R(x))}.
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In this case, D 
|= IC since D does not contain Q(b). We have two repairs for D:
(a) D1 = {P(a), Q(a), R(a), R(c)}, for which �(D, D1) = {P(b)}; and
(b) D2 = {P(a), P (b), Q(a), Q(b), R(a), R(b), R(c)}, for which �(D, D2) = {Q(b), R(b)}.

They are minimal, as expected, i.e., there is no consistent D′ with: �(D, D′) � �(D, D1) or
�(D, D′) � �(D, D2).

For example, D3 = {P(a), P (b), Q(a), Q(b), R(a), R(b)} is consistent, but is not a repair,
because �(D, D3) = {Q(b), R(b), R(c)}, which properly contains �(D, D2). �

Using this notion of repair, we can define the consistent information in a database as the
information that is invariant under all possible repairs. This characterization can be applied in
particular to query answers.

Definition 2.7 [Arenas et al., 1999] Consider an instance D of schema S , a set IC of ICs, and an
n-ary query Q(x̄) (defined) in L(S):

(a) t̄ ∈ Un is a consistent answer to Q(x̄) in D, denoted D |=IC Q[t̄], iff D′ |= Q[t̄] for every
D′ ∈ Rep(D, IC);

(b) for a boolean query Q, yes is the consistent answer, denoted D |=IC Q, iff D′ |= Q for every
D′ ∈ Rep(D, IC);

(c) CQAS(D, IC,Q) denotes the set of consistent answers. �

According to this definition, t̄ is a consistent answer from D when it is an answer to the same
query from every possible repair of D.

Notice that a consistent answer is a so-called certain answer in the sense
of Imielinski and Lipski [1984], who represent an incomplete database D as a set I of (regular)
instances. The intended answers to a query posed to D are those that are certain in the sense that
they can be obtained from each of the instances in I .

Example 2.8 (Example 2.3 continued) In this case, we have the set {FD} of ICs, where FD is the
functional dependency: Students : StuNum → StuName. For the query Q1(x, y) : Students(x, y), it
holds: D |={FD} Students[104, claire stevens].

Similarly, D |={FD} (Students(101, john bell ) ∨ Students(101, joe logan). Here we have a
boolean query that is consistently true. We also have: D |={FD} ∃xStudents(101, x). However,
D 
|={FD} Students(101, john bell ). �

Repairs can be seen as new instances obtained from D by means of virtual updates. By
keeping the inconsistent data in the original instance, we retain information that is consistent, e.g.,
that student number 101 is associated to students john bell or joe logan, which would be lost if we
decided to get rid of the tuples participating in a violation of an IC.
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Notice that, according to the definition of repair (Definition 2.5), two repairs may differ in
terms of the number of insertions or deletions of tuples, i.e., in terms of the cardinality of �(D, D′).
It is possible to consider an alternative repair semantics that is based on this cardinality consideration
(cf. Section 2.5.5).

The notion of repair has helped us characterize the consistent data in a database. From this
point of view, a repair can be considered as an auxiliary concept. If we want to compute consistent
information, in particular consistent answers to queries, we may try to avoid explicitly computing
and materializing repairs. As the following example shows, there may be too many of them.

Example 2.9 [Arenas et al., 2003b] The following instance is inconsistent wrt the FD R : A → B.

R A B

1 0
1 1
· ·
n 0
n 1

There are n pairs of tuples that, in combination,
violate the FD. In this case, we have 2n possible
repairs, i.e., an exponential number in the size of
the original instance. �

2.4 WHAT DO WE DO THEN?
For the moment, and loosely speaking, (the problem of ) consistent query answering (CQA) will refer
to the problem of deciding if a tuple is a consistent answer to a query or to the problem of computing
all the consistent answers to a query.

The simple Example 2.9 already shows that solving this problem by computing all the repairs
of an inconsistent instance D, followed by querying them to detect what they have in common, should
be avoided whenever possible. Alternative approaches have been investigated in the literature for
CQA. Basically, they can be classified into two main categories.

1. Query rewriting: The basic idea is to take the original query, Q, the one expecting consistent
answers, and try to transform it into a new query Q′, such that the usual answers from D to
Q′ are exactly the consistent answers to Q from D. That is, we want:

D |=IC Q[t̄] iff D |= Q′[t̄]. (2.3)

Ideally, the query Q′ should be easy to compute from Q and IC ; and Q′ should be easy to
evaluate on D. For example, we would like to see the query (2.2) translated into a usual SQL
query that can be evaluated directly on the given inconsistent instance.

The success of this endeavor will depend on all the parameters involved and their interaction:
D, IC , and Q. In some cases this is possible (cf. Chapter 2). However, it might be the case that
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the rewriting Q′ can only be achieved in a language that is more expressive than the one used
for Q, and whose evaluation on a database has a higher complexity (than the one of evaluation
of relational calculus queries) (cf. Chapters 4 and 5).

2. Compact representation of repairs: Instead of explicitly displaying all the possible repairs, we
may attempt to represent them in compact terms, all at once. There are several alternatives in
this direction, but they can be classified in their turn in two main different categories.

2.1. Logical specification: The repairs are axiomatized by means of a logical theory, i.e., they
become the models of the latter. Reasoning about all repairs amounts to reasoning from the
theory. Of course, different logical formalisms can be considered.

Notice that the definition of consistent answer is model-theoretic, in the sense that it appeals to
a class of intended models; in this case, the one formed by the repairs of the original instance.
In situations like this, it is common to try to provide a logical characterization of the class by
means of a formal specification.

2.2. Graph-theoretic representation: The tuples in the original database become the vertices of
a graph or an hypergraph. An edge corresponds to a violation of an IC by a combination of
vertices; those are the vertices in (or connected by) the edge. Repairs appear as certain subsets
of the graph, e.g., maximal independent sets. Algorithms for consistent query answering can
be obtained as algorithms on graphs. Complexity results for consistent query answering can
be obtained from complexity results for computational problems in graph theory.

Query rewriting and compact specifications of repairs are not necessarily mutually exclusive ap-
proaches. For example, using a logical specification can be seen as a form of query rewriting, if the
theory itself is seen as a part of the new query. However, the resulting query can be quite complex.
On the other side, it is possible to obtain query rewritings through graph-theoretic considerations
and algorithms.

We will describe these approaches in subsequent chapters. Simple query rewriting in Section
3.1, graph- and hypergraph-theoretic representations in Section 3.3, and logical representations of
repairs in Chapter 4.

2.5 SOME REPAIR SEMANTICS
The notion of repair in Definition 2.5 is based on two elements: (a) a class of database operations,
namely insertions and deletions of full tuples; and (b) a particular partial order used to compare
database instances wrt the given instance D, namely the one introduced in Definition 2.4. This is
the notion of repair that was first investigated by Arenas et al. [1999], and will be one used in this
work by default. However, other notions of repair have also been subsequently used and investigated
in the literature, and we will occasionally refer to them.

Next, we introduce some alternative notions of repair, including as first item, and for future
reference, also the one in Definition 2.5. Actually, all of them share the conditions in that definition,
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but the comparison partial order has to be changed depending on the kind of repair (condition
(a2) in Definition 2.5). The minimality condition basically determines the kind of intended update
operations.

2.5.1 TUPLE- AND SET-INCLUSION-BASED REPAIRS
Database operations are insertions and deletions of (full) database tuples. The partial order between
instances is defined by: D1 �

D
D2 iff �(D1, D) ⊆ �(D2, D). The corresponding class of repairs

is denoted by Repts(D, IC) if we want to emphasize the difference with the other classes of repairs.
Otherwise, we keep using the notation Rep(D, IC) introduced in Definition 2.5.

2.5.2 TUPLE-DELETION- AND SET-INCLUSION-BASED REPAIRS
This is exactly as in Section 2.5.1, but only deletions of tuples are allowed as database operations. In
this case, we still use the same partial order �

D
, but it can now be expressed as: D1 �d

D
D2 iff (D �

D1) ⊆ (D � D2).2 The class of repairs is denoted with Repds(D, IC). In Example 2.6, we have
D1 ∈ Repd s(D, IC), but D2 /∈ Repd s(D, IC).

Repairs in this class are the only ones in the class of tuple-oriented repairs that can be used to
restore consistency wrt to denial constraints. However, we may decide to use only repairs of this kind
to restore consistency wrt inclusion dependencies, in spite of the fact that they can also be enforced
through tuple insertions (cf. Example 2.6). This is the repair semantics adopted and investigated
by Chomicki and Marcinkowski [2005]. Under this repair semantics there is the basic assumption
that the database instance at hand is closed, in the sense that no insertions of new tuples are accepted.

A good reason for adopting this kind of repair semantics in some cases is that, when the
inclusion dependency has existentially quantified variables and we insert tuples to enforce them, we
may have to invent data values for the inserted tuples. This is what the next repair semantics does
(cf. also Section 4.1.4).

2.5.3 TUPLE-INSERTION- AND SET-INCLUSION-BASED REPAIRS
This repair semantics was studied by Calì et al. [2003] and considered only in the context of key
constrains and inclusion dependencies (cf. Sections 5.3 and 5.5 for more details). The former are
repaired through tuple deletions, and the latter, through tuple insertions. Except for this restriction,
the definition of repair is as in Section 2.5.1. In Example 2.6, only D2 could be a repair. This repair
semantics is applied when the database at hand is considered to be incomplete and is then completed
via additional tuple insertions.

If we denote the class of repairs with Repis(D, IC), in Example 2.6 we have:D2 ∈ Repis(D, IC),
but D1 /∈ Repis(D, IC).

2If we wanted the partial order to capture the fact that only tuple deletions are allowed, we could add the extra condition that
(D1 � D) = (D2 � D) = ∅. However, it is easier to specify first the kind of operations allowed, and then, on that basis, define
the partial order.
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As indicated above,an important issue is that,when the inclusion dependencies have existential
quantifiers, then values have to be invented for them. Calì et al. [2003] chose those values arbitrarily
from the underlying database domain U .

Example 2.10 Consider the instance D = {P(a)} and the IC: ∀x(P (x) → ∃yR(x, y)). The
repairs for this inconsistent instance are of the form: Du = {P(a), R(a, u)}, where u ∈ U . This
leads to possibly infinitely many repairs. �

Value inventions are in general non-deterministic, and complex to handle. Actually, they can
lead to the undecidability of consistent query answering, i.e., of deciding if a tuple is a consistent
answer to a query [Calì et al., 2003]. We explore these issues in more detail in Section 4.1.4 and
Chapter 5.

2.5.4 NULL INSERTIONS-BASED REPAIRS
Under this repair semantics, existentially quantified inclusion dependencies are repaired by insertions
of null values (cf. Section 4.1.5 for more details).

In Example 2.10, the only repair would be D′ = {P(a), R(a, null)}. Bravo and Bertossi
[2006] use a single null value for restoring consistency, and it behaves as an SQL NULL. This same
repair semantics has been used in peer data exchange systems [Bertossi and Bravo, 2007]. Data are
moved around at query answering time, and this process is driven by consistency restoration of
inter-peer data exchange constraints.

Both unknown and labeled nulls (from a collection N = {λ1, λ2, . . .}) are used
by Molinaro and Greco [2010] to restore consistency wrt a restricted class of FDs and referen-
tial ICs. The unknown values are used to represent the disjunctive information involved in violation
of an FD, e.g., #1 for john bell ∨ joe logan associated to student number 101 in Example 2.3, and
labeled nulls for value invention as required by referential ICs.

2.5.5 TUPLE- AND CARDINALITY-BASED REPAIRS
These are defined as in Section 2.5.1 (i.e., Definition 2.5), but with the partial order: D1 �c

D

D2 iff |�(D1, D)| ≤ |�(D2, D)|. Here, | · | is used to denote the cardinality of a set. The set of
repairs of an instance D under this semantics is denoted by Reptc(D, IC).

In Example 2.6, we have D1 ∈ Reptc(D, IC), but D2 /∈ Reptc(D, IC). This repair semantics
was briefly considered in Arenas et al. [2003a], and studied in more detail by Arieli et al. [2006],
Lopatenko and Bertossi [2007] and Afrati and Kolaitis [2009]. It will be revisited in Section 5.7.

2.5.6 ATTRIBUTE-BASED REPAIRS
So far, we have considered repairs that insert or delete full tuples. Attribute-based repairs are ob-
tained by changing attribute values in database tuples. Since this can be done in different ways and
satisfying different criteria, we do not find a single attribute-based repair semantics. Different forms
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have been investigated in the literature [Bertossi et al., 2008, Bohannon et al., 2005, Flesca et al.,
2010a, Franconi et al., 2001, Wijsen, 2005]. We now give an example that shows the idea, without
committing to any specific attribute-based semantics.

Example 2.11 Consider D = {P(a1, b1), P (a1, b2)}, and the FD: A → B, of the second attribute
upon the first.

Candidates to be repairs could be, after eliminating duplicates if necessary, D1 = {P(a1, b3)},
with b3 ∈ (U � {b1, b2}), or D2 = {P(a1, b1), P (a2, b2)}, D3 = {P(a1, b1)} (by changing b2 into
b1), etc. �

Possibly conditions on repairs could be, for example, minimizing the number of value changes
[Flesca et al., 2010a, Franconi et al., 2001]. In the previous example, D1 has 2, D2 has 2, and D3,
has 1. However, if the values are numerical, we might want to consider some sort of aggregated
distance between the old and the new values.This alternative is investigated by Bertossi et al. [2008]
and Lopatenko and Bertossi [2007].

Changes of attribute values can be simulated via a combination of a deletion and an insertion
of tuples. However, it is easy to see that a tuple-based repair semantics applied to this combination
may not lead to a (minimal) attribute-based repair.

Finally, we should mention that null values can be used in attribute-based repairs too. This
idea has been developed by Bertossi and Li [2011], in applications to privacy enforcement, where
sensitive information is protected via null-based virtual updates of the views that specify the sensitive
data.

Example 2.12 Consider the instance D = {P(a, b), R(b, c)}, and the denial constraint
∀xyz¬(P (x, y) ∧ R(y, z)) that prohibits a join of P and R.

A natural null-based and also attribute-based repair could be D1 = {P(a, null), R(null, c},
but also D2 = {P(a, null), R(b, c}. In the case, of D1 we would be assuming that null behaves as
an SQL NULL, so that the prohibited join does not apply. �

2.5.7 PROJECT-JOIN REPAIRS
Wijsen [2006] considers a set of FDs on a universal relation. Under the most common repair
semantics, violations of the FDs would be solved by tuple deletions (cf. Section 2.5.1). Having a
universal relation, this kind of repair may lead to loss of useful information. A whole tuple could
be deleted (in a repair) even if the FD violation is due to the misspelling of a value in a tuple. In
this case, an attribute-based repair might be more natural. Actually, it is shown that attribute-based
repairs of an instance D could be obtained via tuple deletions, but not from the original instance,
but from a modified instance σ(D).
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Instance σ(D) is an instance for the same schema as D, and is obtained by applying a project-
join dependency σ that is entailed by (obtained from) the set � of FDs. A project-join dependency
specifies a series of projections of a relation D on certain attributes and then the join of the resulting
sub-relations [Abiteboul et al., 1995, Wijsen, 2006]. D satisfies σ iff σ(D) = D.

When D is inconsistent wrt the FDs �, it may hold that σ(D) has extra tuples wrt D, and
does not satisfy � either. Next, tuple-deletion-based repairs wrt � are applied to σ(D), obtaining a
class of repairs Repts(σ (D), �) for D. Depending on the choice of σ , attribute-based repairs for D

wrt � can be simulated via the repairs in Repts(σ (D), �).

Example 2.13 [Wijsen, 2006] Consider the following universal relation with a set � of FDs:

D Name Birth Sex ZIP City
An 1964 F 7000 Mons
Ed 1962 M 7000 Bergen

Name → {Birth, Sex, ZIP},
ZIP → City.

The second FD is violated, and there are two tuple-deletions-based repairs, each con-
taining one of the two original tuples. Instead, generate the project-join dependency σ = �

[{Name, Birth, Sex, ZIP}, {ZIP, City}], and apply it to D, i.e., create two relations by projecting
D on the two sets of attributes, obtaining

Name Birth Sex ZIP
An 1964 F 7000
Ed 1962 M 7000

ZIP City
7000 Mons
7000 Bergen

and join them next, obtaining the instance

σ(D) Name Birth Sex ZIP City
An 1964 F 7000 Mons
Ed 1962 M 7000 Bergen
An 1964 F 7000 Bergen
Ed 1962 M 7000 Mons

The last two tuples have been inserted through the join. The resulting instance is still incon-
sistent wrt �. Now, applying tuple-based repairs to it we obtain two repairs for σ(D), the so-called
project-join repairs of D:

D1 Name Birth Sex ZIP City
An 1964 F 7000 Mons
Ed 1962 M 7000 Mons

D2 Name Birth Sex ZIP City
An 1964 F 7000 Bergen
Ed 1962 M 7000 Bergen

These repairs have on the original instance the same effect as attribute-based repairs that
change the city values. �
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It is also established by Wijsen [2006] that the repairs of D wrt � obtained via σ(D) (i.e.,
first tuple insertions into D due to the application of σ followed by tuple deletions) lead to a version
of consistent query answering that may have lower complexity than the one associated to the class
of direct tuple-deletion-based repairs. Actually, there are cases where tractability of CQA based
on project-join repairs can be achieved while tuple-based repairs applied directly to the original
instance lead to an intractable CQA problem (cf. Chapter 5).

Some comparisons of different repair semantics can be found in [Lopatenko and Bertossi,
2007] and [Afrati and Kolaitis, 2009]. Unless we explicitly say otherwise, in the following and by
default, we will always consider the repair semantics in Definition 2.5. However, all the semantics
superficially described in this section will be revisited in Chapter 5.
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C H A P T E R 3

Tractable CQA and Query
Rewriting

3.1 RESIDUE-BASED REWRITING
A first attempt to do query rewriting was proposed by Arenas et al. [1999].The basic idea is to enforce
ICs locally, at the level of database literals appearing in the query. This leads to a transformation
of the original query, via a combination with the ICs. More precisely, given a query Q to be posed
on the inconsistent instance D, and expecting consistent answers, Q is qualified with appropriate
information derived from the interaction between Q and the set IC of ICs. The resulting query
would be posed to, and answered from, the original instance D as usual. This would avoid the
explicit computation of the repairs for D. This query rewriting approach is particularly appealing if
the transformed query Q′ is easy to produce and evaluate. Let us illustrate the idea by means of an
example.

Example 3.1 Consider the instance D = {P(a), P (b), R(b), R(c)}, and the integrity constraint
ϕ : ∀x(P (x) → R(x)). The instance is inconsistent, because R(a) /∈ D.

First, consider the query Q1(x) : R(x) about the tuples in the table for R. In this case, if a
tuple belongs to R, say R(d) ∈ D, no violation can be produced wrt ϕ. So, we do not modify the
atom in Q1.

Now, consider the query Q2(x) : P(x) about the tuples in P . In this case, if a tuple belongs
to P , say P(d) ∈ D, then that tuple is involved in a violation if R(d) /∈ D. In consequence, for P(d)

to be a consistent answer, R(d) should also be in D. Thus, we modify the query by adding this
additional condition: Q′

2(x) : P(x) ∧ R(x).
If we pose this query to D as usual, we obtain as set of answers: {〈b〉)}, which coincides with

the consistent answers according to Definition 2.7.
Finally, consider the query is Q3(x) : ¬R(x) (assuming, for illustration, that the database

domain coincides with the active domain). In this case, for similar reasons, we modify the query
as follows: Q′

3(x) : ¬R(x) ∧ ¬P(x). If we pose it to D, we obtain: {〈c〉)}, the same as with the
model-theoretic definition.

In the last two queries above we have syntactically modified the original query. The atom
in the query was appended a residue of its interaction with the IC. Actually, this residue and the
interaction can be captured by means a a simple resolution step, i.e., by canceling complementary
literals [Lloyd, 1987].
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In the case of Q2, we have the formulas P(x) and ¬P(x) ∨ R(x) (writing the IC in clausal
form), which after one resolution step produce the appended residue R(x). Similarly, with the query
¬R(x), we obtain the residue ¬P(x) that was appended to Q3.

Along the same line, for query Q1, we do not get any residue, and the query is not changed,
as expected. In this case, the answers to Q1 are also the consistent answers to Q1. �

As we can see from this example, the idea is to enforce the integrity constraints; and by
doing so, discriminate between tuples in the answer set. This idea has been applied in semantic query
optimization, where ICs, that embody semantic information, are used to optimize query answering.
However, in that case, the assumption is that ICs are satisfied by the database [Chakravarthy et al.,
1990]. Actually, the residue of a literal L wrt to an IC in clausal form ψ : ∀x̄(L1 ∨ · · · ∨ Ln) can
always be obtained by means of a resolution step between L and ψ . This is shown more clearly in
the next example.

Example 3.2 (Example 2.3 continued) The FD can be written in clausal form as follows:

FD : ∀x∀y∀z (¬Students(x, y) ∨ ¬Students(x, y) ∨ y = z) .

Now, if the query is Q(x, y) : Students(x, y), we can apply resolution with the query atom
and the first disjunct of FD, which are both eliminated because they are complementary literals.
We obtain the resolvent clause: ∀z(¬Students(x, z) ∨ y = z), and it is appended as a residue to the
original query, obtaining the transformed query:

Q′(x, y) := Students(x, y) ∧ ∀z(¬Students(x, z) ∨ y = z), (3.1)

which is logically equivalent to the rewriting (1.3) shown in Chapter 1. The new query is asking
about the student numbers, with their associated student names, that do not appear in the database
with more than one student name.This query can be seen as obtained as the result of the application
of a syntactic operator T , which takes the query and appends as conjuncts the residues of the literals
in the query wrt to the ICs.

In this case, if we apply T again, to the database atoms in Q′, we obtain a query that is logically
equivalent to Q′. That is, nothing essentially new is obtained.

If Q′ is posed to the original database, we obtain the answers: (104, claire stevens) and
(107, pat norton), which are exactly the consistent answers to the query. We do not obtain
(101, john bell ), nor (101, joe logan). They are filtered out by the residue. �

In general, the transformation operator T , that was introduced by Arenas et al. [1999], is
defined on queries that are conjunctions of literals and ICs that are universal, actually in clausal
form. T has to be applied iteratively, as the following example shows.

Example 3.3 Consider a set of integrity constraints in clausal form (we omit the universal quan-
tifiers), IC : {R(x) ∨ ¬P(x) ∨ ¬Q(x), P (x) ∨ ¬Q(x)}, and the query about Q(x).
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A first application of operator T is obtained with one residue for each of the ICs:

T 1(Q(x)) := Q(x) ∧ (R(x) ∨ ¬P(x)) ∧ P(x) .

Now, we apply T again, to the database literals in the appended residues:

T 2(Q(x)) := Q(x) ∧ (T (R(x)) ∨ T (¬P(x))) ∧ T (P (x)).

= Q(x) ∧ (R(x) ∨ (¬P(x) ∧ ¬Q(x))) ∧ P(x) ∧ (R(x) ∨ ¬Q(x)). (3.2)

And again:

T 3(Q(x)) := Q(x) ∧ (R(x) ∨ (¬P(x) ∧ T (¬Q(x)))) ∧ P(x) ∧ (T (R(x)) ∨ T (¬Q(x))) .

Since T (¬Q(x)) = ¬Q(x) and T (R(x)) = R(x), we obtain: T 3(Q(x)) = T 2(Q(x)).
In order to obtain the consistent answers, we have to pose query (3.2) to the original instance.

�

In the previous examples we obtained a finite fixed point. Such a fixed point might not
always exist. So, in general, the application of operator T will produce an infinitary query:
T ω(Q(x̄)) := ∧

n<ω T n(Q(x̄)). This query has to be satisfied as a possibly infinite conjunction
or an infinite theory in predicate logic. In the last example, we obtained that T ω(Q(x)) is (logically
equivalent to) T 1(Q(x)) ∧ T 2(Q(x)).

Many questions naturally arise about the properties of this iterative process.Most prominently,
about its correctness and finite termination. In the rest of this section we summarize some of the
results reported by Arenas et al. [1999].

Depending on conditions satisfied by Q and IC , the operator T may be sound or complete (or
both). These properties are stated as follows.

1. Soundness: Every tuple computed via T is consistent in the semantic sense, that is

D |= T ω(Q)[t̄] �⇒ D |=IC Q[t̄] .

This means that the syntactic rewriting operator T eventually does not sanction as consistent
an answer that is not consistent in the semantic sense.

2. Completeness: Every semantically consistent tuple can be obtained via T , that is

D |=IC Q[t̄] �⇒ D |= T ω(Q)[t̄] .

This means that the operator T is powerful enough to eventually capture every semantically
consistent answer to the query.

There are natural and useful syntactic classes of queries and ICs for which T has these properties.
We mention some of them here.

For soundness, the following is a sufficient condition.
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1. ICs are universal, i.e., logically equivalent to sentences in prenex normal form with only uni-
versal quantifiers. For example, functional dependencies, some inclusion dependencies without
existential quantifiers, like ∀x(P (x) → Q(x)), ∀x∀y(R(x, y) → P(x)).

As an additional requirement, we have:

1.1. Universal queries, or

1.2. Domain independent, but possibly non-universal queries, e.g., ∃xP (x, y),
∃x∀y(R(x, y) → S(x, y)).

In the case of queries of the form Q̄χ , with Q̄ a prefix of quantifiers, and χ a
quantifier-free formula in clausal form, the operator is first applied as follows: T (Q̄χ) :=
Q̄T (χ) [Arenas et al., 1999].

For completeness, we have as sufficient condition:

2. The query is a conjunction of literals, and the set IC of ICs is such, that both 2.1. and 2.2.
below hold:

2.1. Binary integrity constraints, i.e., each of them is universal and mentions at most two
database relations (plus possibly built-ins).

2.2. Generic integrity constraints, i.e., that do not determine the truth of particular tuples. More
precisely, for every ground tuple P(t̄): IC 
|= P(t̄) and IC 
|= ¬P(t̄).

For example, we can have the queries: P(u, v), R(u, v) ∧ ¬P(u, v); and
IC = {∀x∀y(P (x, y) → R(x, y)), ∀x∀y∀z(P (x, y) ∧ P(x, z) → y = z)}.

The soundness and completeness properties are expressed in terms of the infinitary operator T ω,
and do not say anything about the possibility of obtaining a finite rewritten query as the result of
applying T iteratively. This issue requires a separate analysis. As expected, finite termination may
come in different forms.

1. Syntactic termination: In the iteration process to determine T ω(Q) nothing syntactically new
is obtained beyond some finite step. More precisely, T ω(Q(x̄)) is syntactically finite if there is
n ∈ N, such that T n(Q(x̄)) and T n+1(Q(x̄)) are syntactically the same.

2. Semantic termination: From some finite step on, only logically equivalent formulas to the
previous ones are obtained. More precisely, T ω(Q(x̄)) is semantically finite if there is an n ∈ N,
such that, for all m ≥ n, ∀x̄(T n(Q(x̄)) ≡ T m(Q(x̄)) is logically valid.

3. Instance-dependant semantic termination: The first two alternatives are independent from
the original database. It is possible to examine semantic termination wrt particular in-
stances [Arenas et al., 1999].
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In those favorable cases, if the finite termination point can be detected, the original first-order query
Q can be translated into a first-order query, say T n(Q), like the one in (3.2), which, when posed and
answered as usual to/from the original database D, will obtain the consistent answers to Q (assuming
soundness and completeness). In these cases, consistent answer can be computed in polynomial time
in the size of D, in data complexity (cf. Chapter 5 for complexity issues). Now we describe some
results on finite termination obtained by Arenas et al. [1999].

There are necessary and sufficient conditions for syntactic finite termination. It holds for any
kind of queries iff IC is universal and acyclic. That is, there is f : {P1, . . . , Pn, ¬P1, . . . , ¬Pn} →
N, a level mapping on database “literal" predicates, such that, for every constraint in IC , say
∀̄(

∨k
i=1 Li(x̄i) ∨ ψ(x̄)), and every 1 ≤ i, j ≤ k, if i 
= j , it holds f (¬Li) > f (Lj ).1

Intuitively, given an IC, ∀̄(L1(x̄1) ∨ · · · ∨ Lk(x̄k) ∨ ψ(x̄)), if we want to obtain the consistent
answers to ¬Li(x̄i), then all of L1(x̄1), . . . , Li−1(x̄i−1), Li+1(x̄i+1), . . . , Lk(x̄k), ψ(x̄) have to be
evaluated; and we expect them to have a level lower than the one of ¬Li .

Example 3.4 Consider the query Q(u, v) : R(u, v) ∧ P(u, v), and IC = {∀x∀y(P (x, y) →
R(x, y)),∀x∀y∀z(P (x, y) ∧ P(x, z) → y = z)}.

To compute consistent answers (i.e., consistent tuples) forP , from the first IC we get residue R:
It should be f (P ) > f (R). For P , from the second IC we get ¬P as (a part of ) the residue: It should
be f (P ) > f (¬P). To compute ¬P , we get no residue. To compute R, we get no residue either.
Now, to compute ¬R, from the first IC we get residue ¬P : It should be f (¬R) > f (¬P).

It is easy to see that the following level mapping satisfies de conditions: f : P �→ 2, R �→
1, ¬P �→ 1, ¬R �→ 2. As a consequence, IC is acyclic. �

For example, sets of functional dependencies are always acyclic.However,with sets of inclusion
dependencies, acyclicity may be lost. Checking acyclicity is clearly decidable.

For semantic finite termination, there are some sufficient conditions. For example, when queries
are conjunctions of literals of the form Li(x̄), and,as an additional requirement, the set IC of universal
ICs:

1. Contains only uniform constraints: In each constraint, each of the variables appearing in any
of the literals also appears in some of the other literals in the same constraint; or

2. Is such that, for each literal Li in a constraint, there is ni ∈ N, such that ∀x̄(T ni (Li(x̄)) →
T ni+1(Li(x̄)) is logically true.

Example 3.5 (a) Consider the set IC = {∀xy(P (x, y) → R(x, y)),∀xy(R(x, y) → P(x, y)),
∀xyz(P (x, y) ∧ P(x, z) → y = z)}. These are all uniform constraints. For queries Q1(u, v) :
P(u, v) and Q2(u, v) : R(u, v), it holds T 2(Qi ) → T 3(Qi ).
1∀̄ denotes the universal closure, i.e., a prefix of universal quantifiers that universally closes the formula that follows, producing a
sentence.
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(b) For the multi-valued dependency, ∀̄(P (x, y, z) ∧ P(x, u, v) → P(x, y, v)) (it is not uniform,
but condition 2. right above holds), and the query Q(x, y, z) : P(x, y, z), it holds T 3(Q) → T 4(Q).
�

The residue-based query rewriting approach to CQA was slightly extended and sharpened
by Celle and Bertossi [2000]. The algorithm, QUECA, inspired by the T operator, syntactically
terminates for binary ICs, i.e., universal and containing at most two database literals plus built-ins.
This class includes FDs, non-existentially quantified inclusion dependencies, range constraints, etc.
QUECA is based on a careful syntactical analysis and memorization of residues and subsumption
relationships between them. It was implemented on XSB [Sagonas et al., 1994], whose “tabling"
techniques were used to avoid redundant computation of residues. It also offered interaction with
DBMSs; in this case, IBM DB2.

3.2 EXTENDING QUERY REWRITING
The first-order query rewriting approach to CQA based on the T operator has some clear limitations.
The most obvious one is that it works properly for a limited class of queries and ICs. The former
are basically restricted to conjunctions of literals; and the latter, to universal ICs. And even in those
cases, we may obtain an infinitary query. As a consequence, this technique is applied to universal
queries and constraints, and not to other common cases of queries and constraints, e.g., referential
ICs or conjunctive queries with projection. However, it is clear that, in principle, there could be
alternative approaches to CQA via FO query rewriting, at least for some other cases of queries and
ICs.

Example 3.6 (Example 3.2 continued) The query Q1(x) : ∃yStudents(x, y) has a simple, actually
trivial, FO rewriting, namely Q′

1(x) : ∃yStudents(x, y). If Q′
1 is posed to the inconsistent databases

as usual, we will obtain exactly the consistent answers to Q1.
Now, the query Q2(y) : ∃xStudents(x, y) also has a FO rewriting; in this case, Q′

2(y) :
∃x(Students(x, y) ∧ ∀z(¬Students(x, z) ∨ y = z)), which can be obtained by existentially quantify-
ing over x the query in (3.1). �

This example shows that there are quite intuitive and correct FO rewritings for other combi-
nations of queries and ICs that are not necessarily based on the T operator. This problem is retaken
in Section 3.4.

The main advantages of FO query rewriting are: (a) it can be directly implemented on top
of relational DBMS, using SQL queries; and (b) it provides a polynomial time mechanism for
computing consistent answers. Not surprisingly, much effort has been dedicated to find both FO
rewriting methods and/or polynomial time algorithms for CQA. In fact, this problem has been
investigated in the literature for certain classes of conjunctive queries (and unions thereof ) and
denial constraints, mainly key constraints [Chomicki and Marcinkowski, 2005, Fuxman and Miller,
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2007, Grieco et al., 2005, Wijsen, 2009a,b]. In the rest of this section we show some of the results
that have been obtained.

We conclude this section by pointing out that FO query rewriting has some intrinsic limita-
tions (which apply in particular to the T operator as a mechanism for producing FO query rewritings).
They come from the fact that, for some classes of queries and constraints, there is provably no FO
rewriting, no matter what method we apply. This is due to expressibility and complexity properties
of the CQA problem that are addressed in Chapter 5.

3.3 GRAPHS, HYPERGRAPHS AND REPAIRS
Arenas et al. [2001, 2003b] proposed a graph-theoretic representation of all the tuple-based repairs
of an inconsistent instance. It was used for deriving some polynomial-time algorithms for CQA,
and also analyzing its computational complexity. The queries were simple aggregate queries, and
the ICs, only functional dependencies (cf. Section 5.6). Since then, the methodology has been
extended and applied in other situations [Chomicki and Marcinkowski,2005], including other repair
semantics [Bertossi et al., 2008, Lopatenko and Bertossi, 2007] (cf. Chapter 5).

Example 3.7 Consider the schema R(A, B) with the following set FD of FDs A → B and B → A.
The following instance D = {R(a1, b1), R(a1, b2), R(a2, b2), R(a2, b1)} is inconsistent.

The repairs of D can be represented by means of an undirected graph, as follows: 1. Each
database atom of D is a vertex. 2. There is an edge between two atoms iff they jointly violate one of
the FDs. We obtain the following conflict graph G(D, FD):

R(a1,b1)                R(a1,b2)

R(a2,b1)                R(a2,b2)

Figure 3.1: Conflict-Graph G(D, FD).

Here, the repairs of D are: D1 = {R(a1, b1), R(a2, b2)} and D2 = {R(a1, b2), R(a2, b1)}. We can
see that each repair of D corresponds to a maximal independent set in G(D, FD), and vice versa.
Dually, there is a one-to-one correspondence between the repairs and the maximal cliques in the
complement graph of G(D, {FD}), which is obtained by dropping the original edges, and creating
new edges between vertices not originally connected. �

For FO queries, the first systematic investigation of graph-theoretic methods for CQA was
undertaken by Chomicki and Marcinkowski [2005]. They focused on denial constraints, FDs in
particular, and some extensions with inclusion dependencies. Denial constraint violations can be
solved only by tuple deletions, but inclusion dependency violations by both tuple deletions and
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insertions. However, Chomicki and Marcinkowski [2005] consider only tuple deletions for inclusion
dependencies. With denial constraints we may have to generate an hypergraph instead of a graph.

Example 3.8 Consider the denial constraint, δ : ∀xyz¬(P (x, y) ∧ P(x, z) ∧ R(y, z)), and the
inconsistent instance D = {P(a, b), P (a, c), P (e, f ), R(b, c), R(e, f )}. Since three tuples simul-
taneously participate in the violation of δ, we obtain a hyperedge connecting three vertices. The
following is the conflict hypergraph HG(D, {δ}):

P(a,b)

P(a,c)

P(e,f)

R(b,c)

R(e,f)

Figure 3.2: Conflict-Hypergraph HG(D, IC).

Now, a maximal independent set of HG(D, {δ}) is a ⊆-maximal set of vertices that
does not contain a hyperedge. As with FDs, there is a one-to-one correspondence be-
tween maximal independent sets and repairs of D. In this case, we have the follow-
ing repairs:D1 = {P(a, c), P (e, f ), R(b, c), R(e, f )},D2 = {P(a, b), P (e, f ), R(b, c), R(e, f )},
D3 = {P(a, b), P (a, c), P (e, f ), R(e, f )}. �

Conflict graphs and hyper-graphs provide a compact, implicit representation of all the repairs
of an instance wrt a set of denial cosntraints. Graph-theoretic concepts, algorithms, and results can
be used then for CQA, obtaining rewriting or polynomial time algorithms for query answering in
tractable cases, and also for identifying cases of higher complexity. Actually, some cases of schemas
with denial constraints (including key constraints and FDs) were identified for which CQA for
certain simple classes of conjunctive queries is tractable [Chomicki and Marcinkowski, 2005], and
polynomial time algorithms were developed [Chomicki et al., 2004].

Also, tractable cases and hard cases that include inclusion dependencies in addition to
denial constraints have been found. Inclusion dependencies are not (equivalent to) denial con-
straints, but they can be treated like them if only tuple deletions are allowed to restore consis-
tency [Chomicki and Marcinkowski, 2005]. The hypergraph-based methodology has also been ex-
tended and applied to general universal constraints, of which denial constraints form a subclass
[Staworko and Chomicki, 2010] (cf. Section 5.3).
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3.4 KEYS, TREES, FORESTS AND ROOTS

The complexity analysis of CQA for key constraints and conjunctive queries with projection, that was
started by Chomicki and Marcinkowski [2005], was extended by Fuxman and Miller [2005, 2007],
where a broader tractable class was identified and characterized, and polynomial time algorithms
were presented. Actually, the syntactic class CTree of conjunctive queries was identified for which
CQA is still tractable [Fuxman and Miller, 2005]. The class is defined in graph-theoretic terms,
but this time, on the basis of the syntactic structure of the query and its interaction with the key
dependencies.

More precisely, the join graph G(Q) of a boolean conjunctive query Q is a directed graph,
whose vertices are the database atoms in Q [Fuxman and Miller, 2005]. There is an arc from L to
L′ if L 
= L′ and there is a variable w that occurs at the position of a non-key attribute in L that also
occurs in L′. Furthermore, there is a self-loop at L if there is a variable that occurs at the position of
a non-key attribute in L, and at least twice in L.

By definition, a query Q belongs to the class CTree if Q does not have repeated relations
symbols, G(Q) is a forest, and every non-key to key join of Q is full i.e., involves the whole key.
Open conjunctive queries can be accommodated in this class by treating the free variables in them
as constants in the definition of their join graph [Wijsen, 2009b].

Example 3.9 Consider the following boolean queries, where the primary keys of the relations
involved are underlined and all the variables are existentially quantified: Q1 : ∃̄(P (x, y) ∧ R(y, w)

∧ T (u, v, y)); Q2 : ∃̄T (x, y, y); Q3 : ∃̄(R(x, y) ∧ P(y, z) ∧ S(z, u)); and Q4 : ∃̄(R(x, y) ∧ S(w, z)

∧ P(y, u)). The four respective associated join graphs are shown in Figure 3.3.
G(Q1) and G(Q2) are not forests, therefore their queries are not in CTree . Even though G(Q3)

is a forest, since it has a non-key to key join that is not full, it does not belong to CTree . Q4 is in CTree

because G(Q3) is a forest and all the non-key to key joins are full. �

R

PS

P

RT T

R

PS

Figure 3.3: Join-Graphs for Queries Q1, Q2, Q3, Q4.

The class CTree was slightly reformulated and extended, to the class CForest [Fuxman and Miller,
2007], that in essence contains queries Q that are sets of queries in CTree , the set of the connected
components of Q. CQA becomes tractable for queries in CForest , and, even more, CQA can be done
by means of FO query rewriting algorithms [Fuxman and Miller, 2007].
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Actually, for every query Q in CForest, there is a FO rewriting Q′ for CQA. For example, the
boolean query

Q : ∃x∃y∃z(R(x, z) ∧ S(z, y))

belongs to CTree, and has the following consistent rewriting [Fuxman and Miller, 2007]:

Q′ : ∃x∃z′(R(x, z′) ∧ ∀z(R(x, z) → ∃yS(z, y))) .

Query Q′ is a consistent rewriting of Q in the sense that it is a FO query and:

D |=KC Q iff D |= Q′ .

Notice that Q′ is a first-order boolean non-conjunctive query,but by being FO, it still can be evaluated
in polynomial time (in the size of the database).

The classCForest is rather sharp, in the sense that not satisfying some of their syntactic conditions
increases complexity [Fuxman and Miller, 2007].2 Implementation of these rewriting algorithms for
the class CTree , and experimentation with them,are reported in [Fuxman et al.,2005].Tractable classes
of unions of queries in CTree are identified by Grieco et al. [2005].

The class of key-rooted conjunctive queries, denoted CRooted , was introduced by Wijsen [2009b].
So as the class CForest , it is also relative to key constraints. However, the class appeals to the join graph
of the query [Beeri et al., 1983] (as opposed to the Fuxman-Miller graphs G(Q) above), and is
defined in semantic terms. This semantic characterization allows all its members to have simple
consistent (FO) rewritings, which makes their consistent answering tractable. Unfortunately, and in
contrast with CForest , there is no (known) syntactic characterization of CRooted , nor a known procedure
for deciding membership for a conjunctive query of CRooted .

However, there is a syntactic subclass of CRooted , and then a sufficient syntactic condition for
membership of CRooted , that allows to prove that CRooted contains CTree [Wijsen, 2009b]. Actually, the
inclusion is proper since queries in CRooted may contain self-joins, i.e., repeated predicates, and may
also be cyclic in the sense of Beeri et al. [1983]. Whereas the conditions on queries in the definition
of CTree imply their acyclicity (in same sense) [Wijsen, 2009b, Cor. 5]. This result can be extended,
establishing that CRooted also contains CForest , whose queries may contain cycles.

The classes of conjunctive queries (and unions thereof ) that admit a consistent rewriting
and have been described or mentioned above contain many cases of queries that are common in
database practice. Systems based on FO query rewriting have been implemented [Celle and Bertossi,
2000, Chomicki et al., 2004, Fuxman et al., 2005]. However, for complexity-theoretic or expressivity
reasons, FO query rewriting cannot be applied to all conjunctive queries (cf. Chapter 5). It is bound
to having a limited applicability.

2Assuming that NP is different from coNP. In the rest of this work, whenever we make a loose claim about an increment of
complexity, we are assuming that the usual and corresponding complexity-theoretic conjectures are true.
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Logically Specifying Repairs
We have seen that FO query rewriting approaches to CQA seem to work only for certain classes of
first-order ICs and queries.Actually, as we will see in Chapter 5, a rewriting-based approach may have
to appeal to logical languages that are more expressive than FO logic. Furthermore, our definition
of repairs (and of consistent answers based on them) is not a logical specification. We provided a
model-theoretic definition of consistent answers, i.e., that is defined wrt to a set of intended models
(the repairs).

Under these circumstances, it is natural to ask if it is possible to logically specify the
class of repairs, i.e., as the set of models of a logical specification, say Spec(Rep(D, IC)). Hav-
ing Spec(Rep(D, IC)), we could think of obtaining logical consequences or doing reasoning from
Spec(Rep(D, IC)). In particular, for consistent answers t̄ to queries Q(x̄), the following should hold:

D |=IC Q[t̄] ⇐⇒ Spec(Rep(D, IC)) |=L Q[t̄], (4.1)

where |=L stands for a logical-consequence relation that is suitable for the logic, say L, of Spec. On
the right-hand side of (4.1), Q[t̄] can be understood as the formula defining the query with its free
variables replaced by the corresponding constants in t̄ .

In some cases, on the right-hand side of (4.1) we may have to replace Q by a slightly, cos-
metically modified version, say Q′, to adapt the query to the formalism of the specification. (We do
not consider this to be a real, essential rewriting of Q as described and needed in previous sections.
Cf. Example 4.3 below.)

We could also think of deriving algorithms for consistent query answering from the logical
entailment relation on the right-hand side of (4.1). The possibility of doing so largely depends on
the kind of specification and logic involved in it. In this direction, the first remark we have to make
is that CQA is non-monotonic, as the following example shows.

Example 4.1 Consider the database instance D below, and FD : Name → Salary.

Employee Name Salary
page 5000
smith 3000
stowe 7000

In this case, we have
D |={FD} Employee(page, 5000).

However,
D ∪ {Employee(page, 8000)} 
|={FD}

Employee(page, 5000).

We can see that, when we increase the instance by adding a new tuple, we lose one of the consistent
answers. �
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In some cases, as we will see below, it is possible to isolate D from Spec(Rep(D, IC)), and
replace (4.1) by

D |=IC Q(t̄) ⇐⇒ D ∪ � |=L Q(t̄), (4.2)

where D if the original database instance, or more precisely, a logical representation of it, e.g., the
finite conjunction of its database atoms. In this case, the “combination" of � and Q can be seen as
a form of rewriting of Q for obtaining the consistent answers to Q. Of course, the rewriting could
be much more intricate that those considered in Chapter 3, in a logic that is much more complex or
expressive than FO predicate logic. We will see examples of this below.

Different kinds of non-monotonic specifications have been explored in the literature. In
the following sections we summarize and briefly describe some of them. Three logical char-
acterizations that we do not present are: (a) repairs as branches of non-monotonic analytic
tableaux [Bertossi and Schwind, 2004]; (b) repairs as models of disjunctive databases [Molinaro et al.,
2009]; and (c) repairs as models of signed theories [Arieli et al., 2006].

4.1 SPECIFYING REPAIRS WITH LOGIC PROGRAMS

In this section we will concentrate mainly on universal ICs.See Sections 4.1.4 and 4.1.5 for extensions
to existential ICs, like referential ICs.

Given an instance D, and a set IC of universal ICs, the collection, Rep(D, IC) (cf. Definition
2.5), of all database repairs of D wrt IC can be represented in a compact form, as the class of
intended models of a disjunctive logic program, �(D, IC). The semantics of such a program is
the disjunctive stable model semantics [Gelfond and Lifschitz, 1990, 1991] (cf. also [Baral, 2003,
Gelfond and Leone, 2002] for more recent introductions to the subject). In consequence, the repairs
correspond to the stable models of this repair program. Before presenting the repair programs, we
give a short introduction to logic programs with stable model semantics.

4.1.1 DISJUNCTIVE DATALOG WITH STABLE MODEL SEMANTICS
We consider disjunctive Datalog programs � [Eiter et al., 1997, Gelfond and Lifschitz, 1991] with
a finite number of rules of the form

A1 ∨ . . . ∨ An ← P1, . . . , Pm, not N1, . . . , not Nk, (4.3)

with 0 ≤ n, m, k, and the Ai, Pj , Ns are positive first-order atoms. The terms in these atoms are
constants or variables.The variables in the Ai, Ns appear all among those in the Pj .The constants in
program � form the (finite) Herbrand universe U of the program. The ground version of program
�, gr(�), is obtained by instantiating the variables in � in all possible combinations using values
from U . The Herbrand base HB of � consists of all the possible atomic sentences obtained by
instantiating the predicates in � in U .
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A subset M of HB is a model of � if it satisfies gr(�), that is: For every ground rule A1 ∨ . . . ∨
An ← P1, . . . , Pm, not N1, . . . , not Nk of gr(�), if {P1, . . . , Pm} ⊆ M and {N1, . . . , Nk} ∩ M =
∅, then {A1, . . . , An} ∩ M 
= ∅. M is a minimal model of � if it is a model of �, and � has no
model that is properly contained in M . MM (�) denotes the class of minimal models of �.

Now, take S ⊆ HB(�), and transform gr(�) into a new, positive program gr(�)↓ (i.e.,
without not), as follows: Delete every rule A1 ∨ . . . ∨ An ← P1, . . . , Pm, not N1, . . . , not Nk for
which {N1, . . . , Nk} ∩ S 
= ∅. Next, transform each remaining rule A1 ∨ . . . ∨ An ← P1, . . . , Pm,
not N1, . . . , not Nk into A1 ∨ . . . ∨ An ← P1, . . . , Pm. Now, S is a stable model of � if S ∈
MM (gr(�)↓). It can be proved that a stable model of � is indeed a model, and also a minimal one.

It can be proved that disjunctive Datalog programs with stable model semantics general-
ize Datalog and Datalogs¬, i.e., Datalog extended with stratified negation [Abiteboul et al., 1995,
Ceri et al., 1989]. Datalog and Datalogs¬ programs have a single (intended) model that can be
computed in a bottom-up manner starting from the extensional database (EDB), i.e., the set of facts
or rules of the form (4.3) with n = 1, m = k = 0, and A1 ground. This only model coincides with
the single stable model that is obtained when the stable model semantics is applied to Datalog and
Datalogs¬ programs. In general, disjunctive Datalog programs and non-disjunctive programs (i.e.,
n = 1 in (4.3)) with non-stratified negation may have multiple stable models.

That with disjunctive Datalog we do have an extension of both Datalog and Datalogs¬ is
indicated by the (probable) difference in computational complexity. The problem of deciding if a
ground atom A is entailed by a disjunctive Datalog program �, i.e., A is true in all the stable models
of �, is �P

2 -complete in the size of the EDB. The same problem can be solved in polynomial time
for Datalog and Datalogs¬ programs. (cf. [Dantsin et al., 2001] for more details.) The additional
expressive power of disjunctive Datalog programs comes handy for applications to database repairs
and CQA (cf. Chapter 5).

4.1.2 REPAIR PROGRAMS
First and independent approaches to the specification of repairs with logic programs are due
to Arenas et al. [2003a] and Greco et al. [2003]. They use the stable model semantics. Here we
present, by means of a hopefully sufficiently generic example, the simpler and more general ap-
proach introduced by Barceló and Bertossi [2003], that has been later extended, refined, and opti-
mized [Barceló et al., 2003, Bravo and Bertossi, 2006, Caniupan and Bertossi, 2010].

The program �(D, IC) uses annotation constants in an extra attribute in the database pred-
icates. The idea of introducing this kind of annotations was inspired by an earlier specification of
repairs as minimal models of a theory written in annotated predicate logic [Arenas et al., 2000] (cf.
Section 4.2).

The annotations and their intended semantics can be found in the following table. The in-
tended semantics will be formally captured, as expected, by their use and specification in the logic
programs.
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Annotation Atom The atom P(ā) is...
ta P(ā, ta) advised to be made true (inserted)
fa P(ā, fa) advised to be made false (deleted)
t P (ā, t) true or becomes true
t P (ā, t) it is true in the repair

We will illustrate this approach to CQA by means of examples.

Example 4.2 Consider the instance = {S(a), S(b), Q(b)}, and IC : ∀x(S(x) → Q(x)).
The repair program �(D, IC) contains the following rules and facts.

1. The program facts are the original database tuples: S(a), S(b), Q(b).

2. Annotation rules capture part of the intended meaning of annotations (similarly for predicate
Q):

S_(x, t) ← S(x).
S_(x, t) ← S_(x, ta).

They say that whatever was in the initial instance or was inserted afterwards becomes annotated
with t. They are necessary when there are several, possibly interacting ICs, and the repair
process may have to go through several steps. We use a new predicate of the form P_ associated
to each original predicate P , because the former has an extra argument, for the annotations.

3. The most important rules are the repair rules, those associated to the ICs:

S_(x, fa) ∨ Q_(x, ta) ← S_(x, t), not Q(x).
S_(x, fa) ∨ Q_(x, ta) ← S_(x, t), Q_(x, fa).

The bodies of the rules capture a violation of the IC. i.e., a tuple in S that is not in Q. The
heads propose alternative ways to restore consistency by means of tuple insertions or deletions,
in this case, deletions from S or insertions in Q. In general, there will be one repair rule per ICs
(in some cases, like referential ICs we may have to add an auxiliary rule (cf. Section 4.1.4.1).

4. Interpretation rules, that have to do with the semantics of annotations (similarly for predicate
Q):

S_(x, t) ← S_(x, t), not S_(x, fa).

They are used to collect at the end, when the process has stabilized, the atoms (annotated with
t) that will form a repair. Those are the tuples that were originally in the database or were
inserted, but never deleted.

5. Program constraints:

← S_(x, ta), S_(x, fa).
← Q_(x, ta), Q_(x, fa).
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They are used to filter out the models of the program where the combinations expressed
as conjunctions in the bodies become true. In this case, models where a same tuple is both
inserted and deleted.

The stable models of the program �(D, IC) are:

M1 = {S(a), S(b), Q(b), S_(a, t), S_(b, t), Q_(b, t), Q_(a, ta), S_(a, t),

S_(b, t), Q_(b, t), Q_(a, t), Q_(a, t)}, and

M2 = {S(a), S(b), Q(b), S_(a, t), S_(b, t), Q_(b, t), S_(a, fa), S_(b, t),

Q_(b, t)}.
The database repairs are in one-to-one correspondence with the stable models, and are obtained
from the latter by selecting the atoms with annotation t. They are:

D1 = {S(a), S(b), Q(b), Q(a)}, and D2 = {S(b), Q(b)}. �

Since we are interested in consistent answers, and they have to be true in all the repairs, we can
query the program under the skeptical or cautious semantics that sanctions as true wrt the program
all what is true in all its stable models.

Example 4.3 (Example 4.2 continued) Consider the query Q(x) : S(x), asking for the consistent
tuples in table S. We introduce a new predicate, Ans, to collect the answers, and the original query
is transformed into a simple query program �(Q), containing a single rule: Ans(x) ← S(x, t).

The stable models of the combined program �(D, IC) ∪ �(Q) are extensions of the stables
models of �(D, IC), namely: M′

1 = M1 ∪ {Ans(a), Ans(b)} and M′
2 = M2 ∪ {Ans(b)}. This

sanctions 〈b〉 as the only consistent answer to the query, because Ans(b) is the only answer atom that
is true in all models. �

Here,we have explicitly shown the stable models and their extensions.However, the evaluation
of the program can be done by means of more focalized and optimized computational mechanisms.
Systems for logic program evaluation under the stable model semantics provide some built-in opti-
mizations. In CQA, the DLV system [Leone et al., 2006] has been successfully used for experimen-
tation and implementing other systems on top of it [Arenas et al., 2003a, Caniupan and Bertossi,
2010, Eiter et al., 2008].

This logic programming approach to CQA has several advantages, among them:

(a) We can use a single and same repair program for all the queries expecting consistent answers.
All we have to do is replace the query program on top of the repair program.

For example, in order to request the consistent answers to the query ∃yP (x, y), the query
program becomes Ans(x) ← P(x, y, t). Similarly, for the query P(x, y) ∧ ¬Q(x, y), the
query program is Ans(x, y) ← P(x, y, t), not Q(x, y, t).



38 4. LOGICALLY SPECIFYING REPAIRS

(b) Queries are quite general. They can go beyond FO predicate logic, e.g., queries written in
Datalog or Datalogs¬. If we are interested only FO queries, there is a general mechanism, the
Lloyd-Topor transformation, to generate a query program from a FO query [Lloyd, 1987].

(c) Systems like DLV avoid explicitly computing all the stable models if possible, and offer several
optimization techniques. They also offer connectivity to comercial DBMSs.

(d) Additional optimization techniques for query evaluation can be applied
[Caniupan and Bertossi, 2010, Eiter et al., 2008], e.g., magic sets (cf. Section 4.1.3).

(e) The methodology is general enough to be applied to arbitrary FO queries and ICs, including
among the latter, referential ICs (cf. Section 4.1.4).

(f ) The semantics of disjunctive logic programs under stable model semantics takes care of our
needs in CQA, e.g., the closed-world-assumption of databases; and also the minimality of
repair actions. This is due to the minimality property of stable models and the “exclusive"
interpretation of disjunctions in the rule heads.

Among possible drawbacks of the use of logic programs for CQA, we find efficiency. As we will
discuss in Chapter 5, the repair programs provide the right level of complexity or expressive power
needed for CQA. However, they cannot compete with FO query rewriting mechanisms when they
exists and are available.

Notice that CQA based on repair programs follow under the patterns in (4.1) or (4.2). More
precisely, we have:

D |=IC Q(t̄) ⇐⇒ �(D, IC) ∪ �(Q) |=sk Ans(t̄), (4.4)

where, on the right-hand side, the initial instance D is included in the program as a set of facts, and
|=sk denotes skeptical entailment from the logic program (as being true in all stable models). In this
case, the original query is represented by the combination of �(Q) and the query atom Ans(x̄).

4.1.3 MAGIC SETS FOR REPAIR PROGRAMS
Naively applying the logic programming approach to CQA can be quite inefficient. Whenever
optimization techniques are available, they should be applied.

A classic technique for optimizing query evaluation over Datalog programs (and extensions
with limited use of negation) is the magic sets method (cf. [Ceri et al., 1989] for a good account of
the classic methodology). The basic idea is to simulate (or capture certain aspects of ) the top-down
query evaluation approaches by means of bottom-up evaluation.

Bottom-up query evaluation methodologies are more appropriate for database applications
because, by moving the data from the EDB upwards through the rules, all the answers to the query
are simultaneously computed. However, possibly much redundant and useless data is propagated to
the top. On the other side, top-down evaluation usually gets one answer at a time, but is much more
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sensitive to the query at hand, including the presence specific predicates and parameters.Taking them
into account from the very beginning avoids the consideration of useless data in the computation
process. As a consequence, the magic sets method is a bottom-up query evaluation methodology
over Datalog programs that is more sensitive to the predicates and parameters in the query. This
makes it more efficient than naive bottom-up evaluation.

As we indicated before (c.f. Section 4.1.1), Datalog programs (with or without stratified nega-
tion) have a single (stable) model that can be computed bottom-up, whereas disjunctive Datalog pro-
grams and non-disjunctive Datalog programs with non-stratified negation, as those that we need for
our applications in CQA,require much more involved model generation mechanisms [Calimeri et al.,
2006]. In consequence, the extension of classical magic sets methods to this kind of programs is not
straightforward. Having them in order to make query evaluation more sensitive to the query at hand,
for example, avoiding the computation of the extensions of useless predicates in the stable models,
looks particularly appealing and useful.

Fortunately, the classic magic sets method for query evaluation in deductive databases has been
recently extended to logic programs with stable model semantics [Cumbo et al., 2004, Faber et al.,
2007]. They have been slightly adapted for applications to CQA [Caniupan and Bertossi, 2010].
The basic idea is to make query evaluation more efficient by using relevant information in the
query, like constants and predicates, to guide the evaluation process. By doing so, only the relevant
portion of the logic program and the relevant underlying data are used. Impressive improvements in
performance for CQA based on repair programs are reported by Caniupan and Bertossi [2010]. We
illustrate the approach by means of an example, to convey just the gist of the methodology, that, in
our view, should become increasingly relevant for applications of the newer extensions of Datalog
to data management.

Example 4.4 Consider D = {S(a), T (a)}, IC = {∀x(S(x) → Q(x)), ∀x(Q(x) → R(x)),
∀x(T (x) → W(x))}, and the query (program): Ans(x) ← S_(x, t). The combined program
�(D, IC) ∪ �(Q) consists of the following rules:

1. S(a). T (a).
2. S_(x, fa) ∨ Q_(x, ta) ← S_(x, t), Q_(x, fa),
3. S_(x, fa) ∨ Q_(x, ta) ← S_(x, t), not Q(x),
4. Q_(x, fa) ∨ R_(x, ta) ← Q_(x, t), R_(x, fa),
5. Q_(x, fa) ∨ R_(x, ta) ← Q_(x, t), not R(x),
6. T_(x, fa) ∨ W_(x, ta) ← T_(x, t), W_(x, fa),

7. T_(x, fa) ∨ W_(x, ta) ← T_(x, t), not W(x),

8. S_(x, t) ← S_(x, ta).
9. S_(x, t) ← S(x).
10. Q_(x, t) ← Q_(x, ta).
11. Q_(x, t) ← Q(x).
12. R_(x, t) ← R_(x, ta).

13. R_(x, t) ← R(x).
14. T_(x, t) ← T_(x, ta).
15. T_(x, t) ← T (x).
16. W_(x, t) ← W_(x, ta).
17. W_(x, t) ← W(x).
18. S_(x, t) ← S_(x, t), not S_(x, fa).
19. Q_(x, t) ← Q_(x, t), not Q_(x, fa).
20. R_(x, t) ← R_(x, t), not R_(x, fa).
21. T_(x, t) ← T_(x, t), not T_(x, fa).
22. W_(x, t) ← W_(x, t), not W_(x, fa).
23. ← Q_(x, ta), Q_(x, fa).
24. Ans(x) ← S_(x, t).

Its stable models are:
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M1 = {T (a), S(a), T_(a, t), S_(a, t), Q_(a, ta), S_(a, t), Q_(a, t), R_(a, ta), Q_(a, t),
R_(a, t), R_(a, t), Ans(a), W_(a, ta), T_(a, t), W_(a, t), W_(a, t)}.

M2 = {T (a), S(a), T_(a, t), S_(a, t), Q_(a, ta), S_(a, t), Q_(a, t), R_(a, ta), Q_(a, t),
R_(a, t), R_(a, t), Ans(a), T_(a, fa)}.

M3 = {T (a), S(a), T_(a, t), S_(a, t), S_(a, fa), W_(a, ta), T_(a, t), W_(a, t), W_(a, t)}.
M4 = {T (a), S(a), T_(a, t), S_(a, t), S_(a, fa), T_(a, fa)}.

They indicate that there are no consistent answers to the query (there are no Ans-atoms in common).
We can also see that the stable models represent repairs that also consider the last element of IC ,
that is not related to the query. The magic sets method transforms the repair program �(D, IC)

into one that is relevant to the query at hand. In this case, the resulting magic program contains the
following rules:1

1. Magic rules:
magic_S_f b(t) ← magic_ansf . magic_Q_f b(ta) ← magic_S_f b(fa).
magic_S_f b(t) ← magic_S_f b(fa). magic_Q_f b(fa) ← magic_S_f b(fa).
magic_S_f b(fa) ← magic_Q_f b(ta). magic_S_f b(t) ← magic_Q_f b(ta).
magic_Q_f b(fa) ← magic_Q_f b(ta). magic_S_f b(ta) ← magic_S_f b(t).
magic_Q_f b(ta) ← magic_Q_f b(t). magic_S_f b(t) ← magic_S_f b(t).
magic_S_f b(fa) ← magic_S_f b(t). magic_Q_f b(t) ← magic_Q_f b(t).
magic_Q_f b(fa) ← magic_Q_f b(t). magic_R_f b(ta) ← magic_Q_f b(fa).
magic_Q_f b(t) ← magic_Q_f b(fa). magic_R_f b(fa) ← magic_Q_f b(fa).
magic_Q_f b(fa) ← magic_R_f b(ta). magic_Q_f b(t) ← magic_R_f b(ta).
magic_R_f b(fa) ← magic_R_f b(ta). magic_R_f b(ta) ← magic_R_f b(t).
magic_R_f b(t) ← magic_R_f b(t). magic_R_f b(fa) ← magic_R_f b(t).

2. Modified program rules:
Ans(x) ← magic_Ansf , S_(x, t).
S_(x, fa) ∨ Q_(x, ta) ← magic_S_f b(fa), magic_Q_f b(ta), S_(x, t), Q_(x, fa).
S_(x, fa) ∨ Q_(x, ta) ← magic_S_f b(fa), magic_Q_f b(ta), S_(x, t), not Q(x).
Q_(x, fa) ∨ R_(x, ta) ← magic_Q_f b(fa), magic_R_f b(ta), Q_(x, t), R_(x, fa).
Q_(x, fa) ∨ R_(x, ta) ← magic_Q_f b(fa), magic_R_f b(ta), Q_(x, t), not R(x).
S_(x, t) ← magic_S_f b(t), S_(x, ta).
S_(x, t) ← magic_S_f b(t), S(x).
Q_(x, t) ← magic_Q_f b(t), Q_(x, ta).
Q_(x, t) ← magic_Q_f b(t), Q(x).
R_(x, t) ← magic_R_f b(t), R_(x, ta).
R_(x, t) ← magic_R_f b(t), R(x).
S_(x, t) ← magic_S_f b(t), S_(x, t), not S_(x, fa).

1A general algorithm can be applied to do this transformation [Caniupan and Bertossi, 2010].
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Q_(x, t) ← magic_Q_f b(t), Q_(x, t), not Q_(x, fa).
R_(x, t) ← magic_R_f b(t), R_(x, t), not R_(x, fa).

3. Program denial: ← Q_(x, ta), Q_(x, fa).

4. Program facts: magic_Ansf , S(a), T (a).

The modified program will never use rules associated to predicates T or W . Their initial
extensions can also de ignored. Actually, the two stable models of the new program are:

M1 = {magic_Ansf , S(a), T (a), S_(a, t), magic_S_f b(t), magic_S_f b(fa), magic_S_f b(ta),

magic_S_f b(t), magic_Q_f b(fa), magic_Q_f b(ta), magic_Q_f b(t), magic_R_f b(fa),

magic_R_f b(ta), Q_(a, ta), S_(a, t), Q_(a, t), R_(a, ta), Ans(a)}.

M2 = {magic_Ansf , S(a), T (a), S_(a, t), magic_S_f b(t), magic_S_f b(fa), magic_S_f b(ta),

magic_S_f b(t), magic_Q_f b(fa), magic_Q_f b(ta), magic_Q_f b(t), magic_R_f b(fa),

magic_R_f b(ta), S_(a, fa)}.

As expected, we obtain the same empty set of consistent answers. The new program, although it
looks more complex, can be evaluated much faster than the original one. �

4.1.4 LOGIC PROGRAMS AND REFERENTIAL ICS
Until now, we haven’t considered logic programs for referential ICs, or, more generally, existential
ICs. The main reason is that before developing repair programs for them, we have to agree on a
repair semantics for them. As discussed in Section 2.5, there are some alternatives. We illustrate
them and their treatment with repair programs by means of an example.

Example 4.5 Consider IC = {∀x(T (x) → ∃yP (y, x))} and the inconsistent instance D =
{P(a, b), T (c), T (e), P (e, e)}. �

4.1.4.1 Tuple deletions
According to the tuple-deletion repair semantics (cf. Section 2.5.2), there is only one repair for the
instance in Example 4.5: D′ = {P(a, b), T (e), P (e, e)}. The main rules for a repair program that
captures this repair semantics are:

T_(x, fa) ← T_(x, t), not aux(x).

aux(x) ← P_(x, y, t).
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4.1.4.2 Tuple insertions
For the inconsistency shown in Example 4.5, if we use the tuple-insertion repair semantics (cf.Section
2.5.3), we have as many repairs as elements in the underlying database domain. These repairs are of
the form: Du = {P(a, b), T (c), T (e), P (e, e), P (u, c)}, where u ∈ U is an arbitrary element.

If we assume that the domain is finite or finitely axiomatized via a predicate, dom, we can have
a repair program for this semantics, with the following repair rule:

P_(y, x, ta) ← T_(x, t), not aux(x), dom(y), choice((x), y).

aux(x) ← P_(x, y, t).

In this case, we are using the non-deterministic choice operator [Giannotti et al., 1997]. Here,
choice((x), y) chooses a single value for y from dom for each value of x that satisfies the first condi-
tions in the rule body. That value for y is used to insert the tuple P(y, x). The choice operator can
always be eliminated, obtaining a standard logic program with stable model semantics. However,
the choice operator makes the representations more compact and intuitive.

4.1.4.3 Tuple-insertions and deletions
Finally, if we adopt the original repair semantics in Definition 2.5, we may insert or delete tuples. In
this case, for Example 4.5, we can combine the two previous approaches by considering a disjunctive
rule:

P_(y, x, ta) ∨ T_(x, fa) ← T_(x, t), not aux(x), dom(y), choice((x), y).

aux(x) ← P_(x, y, t).

In this case, we obtain the repairs: D′ = {P(a, b), T (e), P (e, e)} and Du =
{P(a, b), T (c), T (e), P (e, e), P (u, c)}, with u ∈ U .

In the next section, we considered an alternative repair semantics for the case of existential
ICs.

4.1.5 NULL-BASED TUPLE INSERTIONS
It is also possible to restore consistency of referential ICs by introducing null values. This requires
making some preliminary decisions, most prominently, about the kind of null values and the repair
semantics. The latter has to be modified in order to prefer the introduction of null values over
arbitrary constants from the database domain. Another issue is that introducing null values, and
even having them in the instance from the start, requires clarifying IC satisfaction in databases with
null values. Satisfaction, or more precisely, violations, have to be captured in the bodies of repair
rules. Also, the update operations (in the heads) depend on the semantics of null values and IC
satisfaction.

A null-based repair semantics was presented and analyzed by Bravo and Bertossi [2006], and
further studied and applied by Bertossi and Bravo [2007]. It is still tuple-based, but whenever exis-
tential ICs have to be repaired via a tuple insertion, a null value is used for the existentially quantified
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variable. Actually, a single null value is used, as in SQL databases. Bravo and Bertossi [2006] log-
ically reconstructed the semantics of IC satisfaction and query answering à la SQL. We illustrate
this approach with a new example.

Example 4.6 Consider the referential IC ∀x∀y(Course(x, y) → ∃z Student(x, z)); and the in-
stance:

D Course StdID Code
21 null
34 comp1805

Student StdID Name
21 ann
45 paul

There are two repairs under this null-based repair semantics:

D1 Course StdID Code
21 null

Student StdID Name
21 ann
45 paul

D2 Course StdID Code
21 null

34 comp1805

Student StdID Name
21 ann
45 paul
34 null

With this repair semantics we have a finite number of repairs, and we are also close to the database
practice of inserting nulls to enforce referential ICs. �

Definition 4.7 Let D be a database instance, possibly containing null, and IC a set of universal
and referential ICs. A repair D′ of D wrt IC is an instance with the following properties.

(a) It has the same schema as D.

(b) It is consistent wrt IC (for a null-based notion of IC satisfaction [Bravo and Bertossi, 2006]).

(c) It is �n
D-minimal. �

The partial order �n
D has to be defined in such a way that it privileges inserted tuples that

contain null instead of other values from the database domain.

Definition 4.8 Let D be a fixed instance of a schema S whose universe U contains null. For
D1, D2 instances for S , D1 �n

D D2 iff:

(a) for every atom P(t̄) ∈ �(D, D1), with null /∈ t̄ , it holds P(ā) ∈ �(D, D2); and

(b) for every atom P(t̄1, null, . . . , t̄2, null, . . . , t̄m) ∈ �(D, D1), with null /∈ t̄1, . . . , t̄m, it holds
P(t̄1, b1, . . . , t̄2, b2, . . . , t̄m) ∈ �(D, D2) with b1, b2, . . . ∈ U . �
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Example 4.9 (Example 4.6 continued) For the exhibited repairs, it holds: �(D, D1) =
{Course(34, comp1805)}, �(D, D2) = {Student(34, null)}.

Consider the following repair candidate (it satisfies the referential IC):

D3 Course StdID Code
21 null
34 comp1805

Student StdID Name
21 ann
45 paul
34 tom

Now, �(D, D3) = {Student(34, tom)}, and then D2 �n
D D3, with D3 
�n

D D2. As a consequence,
D3 is not �n

D-minimal. Thus, D3 is not a repair. �

This repair semantics involves a notion of IC satisfaction that we haven’t developed here.
Details can be found in [Bravo and Bertossi, 2006]. It appeals to the notion of relevant attributes in
an IC, as those for whom the occurrence of nulls is relevant for its satisfaction.Taking those relevant
attributes into account avoids propagation of insertions of null values, even in the case of cycles in the
set of referential ICs. As a consequence, this repair semantics produces only a finite number of (finite)
repairs for each finite set of ICs that are universal of referential [Bravo and Bertossi, 2006]. Actually,
checking if a tuple is a consistent answer under this semantics becomes decidable. This has to be
contrasted with the unrestricted insertion of tuples, as in Section 4.1.4, that, when there are cycles
in IC , can produce infinitely many repairs, actually of infinite size, and leads to the undecidability
of consistent query answering [Calì et al., 2003] (cf. Sections 5.3 and 5.5).

The repair semantics presented in this section can also be captured by means of logic pro-
grams [Bertossi and Bravo, 2007, Bravo and Bertossi, 2006], and the magic sets method can be
applied to them [Caniupan and Bertossi, 2010].

Example 4.10 (Example 4.5 continued) According to the new repair semantics, the violations of
the referential IC can be repaired via a tuple deletion or a tuple insertion with null. This is captured
by means of the repair rule:

P_(null, x, ta) ∨ T_(x, fa) ← T_(x, t), not aux(x), x 
= null.

aux(x) ← P_(x, y, t), x 
= null, y 
= null.

The built-ins added to the rule bodies are related to the values for the relevant attributes in the
constraint. �

Notice that in this section we have been still comparing database instances through set inclu-
sion, via the symmetric difference of two sets of whole database tuples. In consequence, the repairs,
in spite of the introduction of null values, are still tuple-oriented. A repair semantics based on
changes of attribute values into null has been used in privacy enforcement and investigated in that
context [Bertossi and Li, 2011]. Corresponding repair programs have been proposed.
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4.2 REPAIRS IN ANNOTATED PREDICATE LOGIC

The theory in first-order predicate logic obtained by combining the database D (or its logical
reconstruction [Reiter, 1984]) with the set IC of ICs is logically inconsistent if the former does
not satisfy the latter. Using a different logic, we can consistently combine these two elements, and
obtain a logical specification of the database repairs. Arenas et al. [2000] accomplish this by means
of annotated predicate calculus (APC) [Kifer and Lozinskii, 1992], which assumes the existence of an
underlying lattice of truth values.They are used to annotate atoms at the object level. Most typically,
and beyond classical logic, those values are t, f , �, ⊥, for true, false, contradictory, and unknown,
respectively, with ⊥ < t, f < �.

The database atoms in an APC-theory could be annotated with classical truth values, e.g.,
Employee(smith, 3000): t, Employee(smith, x): f , Employee(smith, y):�. However, in order to embed
both D and IC into a single,useful and consistent APC-theory,we have to make some considerations:
(a) ICs are hard, not to be given up, but the database atoms are flexible, subject to repairs. (b) In
case of a conflict between a constraint and the database instance, the advise is to change the truth
value of the database atoms to the value prescribed by the constraint.

This requires a more complex annotation lattice, Lat , to be used as follows: 1. For database
atoms: td, fd. 2. For constraint atoms: tc, fc. 3. For advisory values: ta, fa . The latter are used to
advise the resolution of conflicts between d-values and c-values by favoring c-values. All this is
captured by means of the lattice Lat shown in Figure 4.1.

fc t d fd t c

fa f t t a

Figure 4.1: The annotation lattice Lat .

In Lat , it holds: (a) For every s ∈ Lat , ⊥ ≤ s ≤ �, and (b) lub(t, f ) = �, lub(tc, fd) = ta ,
etc. Intuitively, the ground database atoms A for which A: ta or A: fa become true are to be inserted
into, resp., deleted from D. Navigation in the lattice plus an adequate definition of APC-formula
satisfaction help solve the conflicts between database atoms and constraints.



46 4. LOGICALLY SPECIFYING REPAIRS

We consider only Herbrand structures [Lloyd,1987], i.e., sets of ground annotated atoms,with
the database domain as their universe. Next, formula satisfaction is defined as follows. For a structure
I , s ∈ Lat , and A a classical atomic formula: I |= A:s iff there is s′ ∈ Lat , such that A:s′ ∈ I , and
s ≤ s′. For other formulas, satisfaction is defined inductively, as in classical FO predicate logic.

Given an instance D and a set IC of universal ICs in clausal form, we can generate an APC-
theory, Spec, that embeds both D and IC. This process is shown by means of an example.

Example 4.11 Consider the following functional dependencies IC :

Employee(x, y, z) ∧ Employee(x, u, v) → y = u,

Employee(x, y, z) ∧ Employee(x, u, v) → z = v,

and the inconsistent instance:

D Employee Name Position Salary
Steven Lerman ceo 4000
Irwin Pearson salesman 2000
Irwin Pearson salesman 2500

John Miller salesman 1600

1. For example, the first constraint is first transformed into clausal form:

¬Employee(x, y, z) ∨ ¬Employee(x, u, v) ∨ y = u ,

and next, into an APC-sentence:

Employee(x, y, z): fc ∨ Employee(x, u, v): fc ∨ (y = u): t .

2. The database atoms are represented as: Employee(Steven Lerman, ceo, 4000) : td, etc.

3. For every database predicate two sentences are created, imposing the uniqueness of the constraint
truth value:

Employee(x, y, z) : tc ∨ Employee(x, y, z) : fc,

¬(Employee(x, y, z) : tc) ∨ ¬(Employee(x, y, z) : fc).

4. Closed-world-assumption:

Employee(x, y, z) : fd ∨ (x = Steven Lerman : td ∧ y = ceo : td ∧ z = 4000 : td) ∨
(x = Irwin Pearson : td ∧ y = salesman : td ∧ z = 2000 : td) ∨
(x = Irwin Pearson : td ∧ y = salesman : td ∧ z = 2500 : td) ∨

(x = John Miller : td ∧ y = salesman : td ∧ z = 1600 : td).

5. Equality theory:
True built-in atoms: (Steven Lerman = Steven Lerman) : t, (ceo = ceo) : t,

(2000 = 2000) : t, etc.
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False built-in atoms: (Steve Lerman = Irwin Pearson) : f , (Irwin Pearson = Steve Lerman) : f ,
(ceo = salesman) : f , (salesman = ceo) : f , etc.

The axiom: ¬(x = y :�). �

Every model of Spec assigns one of the values t, f , ta , fa to the atoms. In particular, it can be
proved that an atom in a model of the theory is never annotated with � [Arenas et al., 2000], that is,
the APC-theory is epistemologically consistent [Kifer and Lozinskii, 1992]. More importantly, it is
possible to prove that the minimal models of Spec with respect to the set of annotations α = {ta, fa}
correspond to the repairs of the database. More precisely, the database repairs correspond to the
models of Spec that make true a minimal set of atoms with annotations in α. In other terms, the
comparison between models is wrt to set-inclusion of the sets of atoms with annotations in α. This
captures, as expected, that only a minimal set of atoms is changed (deleted or inserted).

More precisely, for an α-minimal model M of Spec,

DM = {P(t̄) | M |= P(t̄) : t ∨ P(t̄) : ta}
is a repair of D; and every repair can be obtained in this way. Reasoning with minimal models of
Spec makes reasoning non-monotonic, as expected.

Example 4.12 (Example 4.11 continued) The minimal models of Spec are:

M1 = {Employee(Steven Lerman, ceo, 4000) : t, Employee(Irwin Pearson, salesman, 2000) : t,
Employee(Irwin Pearson, salesman, 2500) : fa, Employee(John Miller, salesman, 1600) : t},

M2 = {Employee(Steven Lerman, ceo, 4000) : t, Employee(Irwin Pearson, salesman, 2000) : fa,

Employee(Irwin Pearson, salesman, 2500) : t, Employee(John Miller, salesman, 1600) : t},
which lead to the two expected database repairs. Each of them deletes one of the original tuples
involving Steven Lerman. �

Relational queries Q(x̄) waiting for consistent answers can be transformed into APC-queries
Qan(x̄), to be posed to the APC-theory [Barceló and Bertossi, 2002, Barceló et al., 2003]. This is
done by simultaneously replacing in Q(x̄): (a) positive database literals P(s̄) by P(s̄) : t ∨ P(s̄) : ta ;
(b) negative database literals ¬P(s̄) by P(s̄) : f ∨ P(s̄) : fa ; (c) built-in literals B(s̄) by B(s̄) : t.

Example 4.13 (Example 4.11 continued) If we want the consistent answers to the query

Q(x) : ∃y∃z∃w∃t (Employee(x, y, z) ∧ Employee(x, w, t) ∧ y 
= w) ,

we generate the APC-query:

Qan(x̄) : ∃y∃z∃w∃t ((Employee(x, y, z) : t ∨ Employee(x, y, z) : ta) ∧
(Employee(x, w, t) : t ∨ Employee(x, w, t) : ta) ∧ (y 
= w) : t)).

This query has to be posed to the APC-theory Spec, and be answered according to the truth in all
the α-minimal models of Spec. �
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In more general terms, it holds [Barceló and Bertossi, 2002, Barceló et al., 2003]:

D |=IC Q(t̄) iff Spec |=α Qan(t̄) ,

where, on the right-hand side, we have truth wrt α-minimal models of Spec. This non-monotonic
entailment relation reflects the non-monotonicity of consistent query answering.

4.3 SECOND-ORDER REPRESENTATIONS
In the first two sections, we have seen logical specifications of repairs in non-classical logical for-
malisms. With the general goal of better understanding the logics of CQA, a natural question is
whether repairs can be represented in classical logic. Actually, for complexity-theoretic reasons (cf.
Chapter 5), it should be possible to specify the class of repairs in second-order (SO) classical predi-
cate logic, where variables and quantifiers for predicates (to range over relations on the domain) are
also allowed.

A concrete SO specification can be obtained from a repair program of the kind presented in
Section 4.1. This is based on the fact that the stable model semantics of disjunctive logic programs,
in general, can be recovered via a classical SO theory. The latter is in essence a circumscriptive
characterization of the stable models of such a logic program, and can be effectively produced from
the program [Ferraris et al., 2011]. Circumscription was introduced in knowledge representation
by McCarthy [1980] (cf. also [Lifschitz, 1994]) as way of imposing the minimization of the predicate
extensions; and by doing so, of capturing common sense assumptions and reasoning.

Bertossi [2009] applies this transformation to repair programs and investigates the issue in
the context of CQA. We will illustrate the approach by means of an example (details can be found
in [Bertossi, 2009]).

Example 4.14 Consider the following relational schema with an FD: P(X, Y ) : X → Y , and the
inconsistent instance D = {P(a, b), P (a, c), P (d, e)}.

In this case, we can use this simple repair program:

P_(x, y, fa) ∨ P_(x, z, fa) ← P(x, y), P (x, z), y 
= z. (4.5)
P_(x, y, t) ← P(x, y), not P_(x, y, fa).

P (a, b). P (a, c). P (d, e).

This program can be seen as a FO specification, namely the FO conjunction �ρ of the following
sentences (assuming the formulas are universally closed):

P(x, y) ∧ P(x, z) ∧ y 
= z → Pf (x, y) ∨ Pf (x, z).

P (x, y) ∧ ¬Pf (x, y) → P(x, y).

P (a, b) ∧ P(a, c) ∧ P(d, e). �
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It is possible to assign a stable model semantics to any FO sentence � [Ferraris et al., 2011].
More precisely, a SO sentence � ′ can be built, with the same signature as �. The stable models of
� are, by definition, the Herbrand models of � ′, which is called the stable sentence of �. Actually, for
disjunctive logic programs seen as FO specifications (as in the example above), this stable semantics
coincides with their original stable model semantics.

Example 4.15 (Example 4.14 continued) In this case, � ′
ρ becomes

∀xy(P (x, y) ≡ (x = a ∧ y = b) ∨ (x = a ∧ y = c) ∨ (x = d ∧ y = e)) ∧ (4.6)
∀xy((P (x, y) ∧ ¬Pf (x, y)) ≡ P(x, y)) ∧ (4.7)

∀xyz(P (x, y) ∧ P(x, z) ∧ y 
= z → (Pf (x, y) ∨ Pf (x, z)) ∧
¬∃U((U < Pf ) ∧ ∀xyz(P (x, y) ∧ P(x, z) ∧ y 
= z → (U(x, y) ∨ U(x, z))). (4.8)

This sentence includes, in (4.6), Reiter’s logical reconstruction of the instance [Reiter, 1984]; and
Clark’s predicate completion of predicate P [Lloyd, 1987]. Predicate Pf is minimized via the last
conjunct (4.8) of � ′

ρ . It is a circumscription of the predicate Pf that contains the deleted tuples. Here,
U < Pf is an abbreviation for the formula ∀xy(U(x, y) → Pf (x, y)) ∧ ∃xy(Pf (x, y) ∧ ¬U(x, y)).
Second-order logic, represented by the quantifier ∃U , captures this minimization process. �

More generally, the stable sentence for a repair program (as a FO sentence �ρ) is always a
circumscription in parallel of all the predicates in the program. However, due to the structure of
a repair program (including the query program), the circumscription becomes a prioritized circum-
scription [Lifschitz, 1994]. In the example, the predicates are minimized in this order: 1. Database
predicates. 2. Predicates with fa annotation. 3. Predicates with t annotation. 4.The Ans predicate.

Most complex is the minimization of predicates defined by disjunctive rules, i.e., those associ-
ated to the ICs. To all the others, it is possible to apply predicate completion, as with sentence (4.7)
in the example.

Example 4.16 (Example 4.15 continued) Now we want to consistently answer query
Q(x, y) : P(x, y). This amounts to obtaining the pairs 〈a, b〉, such that:

� ′
ρ ∧ ∀x∀y(Ans(x, y) ≡ P(x, y)) |= Ans(a, b), (4.9)

which is classical logical entailment in SO predicate logic.
A natural question is whether it is possible to rely on classical FO logic, at least in some

cases. In this direction we can try to use (4.9), obtaining entailment in FO logic via elimination of
SO quantifiers from � ′

ρ . There are some techniques available for this task. Bertossi [2009] applies
those techniques that are proposed by Doherty et al. [1997]. This requires having sentence (4.8) in
a particular syntactic form that requires the use of a Skolem function [Lloyd, 1987], the symbolic
function g in (4.10), below.
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The negation of (4.8) is logically equivalent to:

∃s∃t∃g∃U∀x∀r (∀x1y1z1(¬κ(x1, y1, z1) ∨ g(x1, y1, z1) = ∨(y1, z1)) ∧ (4.10)
∀yz(¬κ(x, y, z) ∨ r 
= g(x, y, z) ∨ U(x, r))) ∧
∀uv(¬U(u, v) ∨ Pf (u, v)) ∧ (Pf (s, t) ∧ ¬U(s, t))).

Here,κ(x, y, z) stands for P(x, y) ∧ P(x, z) ∧ y 
= z, a violation of the FD;and t = ∨(t1, t2) stands
for t = t1 ∨ t = t2.

Now we are in position to apply Ackermann’s lemma [Doherty et al., 1997], because the
formula is of the form (below we will make reference to the underlined part of it)

∃s∃t∃g∃U∀x∀r((A(x, r) ∨ U(x, r)) ∧ B
U

¬U
), (4.11)

with

A(x, r) : ∀yz(∀yz(¬κ(x, y, z) ∨ r 
= g(x, y, z)),

B(U) : ∀x1y1z1(¬κ(x1, y1, z1) ∨ g(x1, y1, z1) = ∨(y1, z1)) ∧
∀uv(U(u, v) ∨ Pf (u, v)) ∧ (Pf (s, t) ∧ U(s, t)));

B U
¬U

being formula B with predicate U replaced by ¬U , and B positive in U .
Under these conditions, the underlined subformula in (4.11) can be equivalently replaced by

B U
A(x,r)

, obtaining:

∃s∃t∃g(∀x1y1z1(¬κ(x1, y1, z1) ∨ g(x1, y1, z1) = ∨(y1, z1)) ∧
∀uv(∀yz(¬κ(u, y, z) ∨ v 
= g(u, y, z) ∨ Pf (u, v)) ∧
(Pf (s, t) ∧ ∀y1z1(¬κ(s, y1, z1) ∨ t 
= g(s, y1, z1))).

Unskolemizing, i.e., eliminating the function symbol g by introducing FO universal quantifiers
followed by existential quantifiers, we obtain:

∃s∃t∀xyz∃w((¬κ(x, y, z) ∨ w = ∨(y, z)) ∧
(¬κ(x, y, z) ∨ Pf (u, w)) ∧ (Pf (s, t) ∧ (x 
= s ∨ ¬κ(x, y, z) ∨ t 
= w))).

The negation of this formula is equivalent, via other conjuncts in (4.6)–(4.8), to

∀st (Pf (s, t) → ∃xyz∀w(κ(x, y, z) ∧ (Pf (x, w) → (x = s ∧ t = w)))) ,

which can be replaced for (4.8), obtaining an equivalent FO specification of predicate Pf . This is a
FO theory � ′′

ρ we can do CQA with. In this case, to find the 〈a, b〉s, such that

� ′′
ρ ∧ ∀xy(Ans(x, y) ≡ P(x, y)) |= Ans(a, b). (4.12)

This is classical FO entailment. Actually, in this case, through a simple logically equivalent trans-
formation, it is possible to obtain from (4.12):

D |= (P (x, y) ∧ ¬∃z(P (x, z) ∧ z 
= y)[a, b] ,
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reobtaining the original FO rewriting we had in (3.1). �

The methodology we have just sketched, provably works for functional dependencies (and
key constraints). However, this does not imply that CQA can be done in polynomial time in these
cases, because we have a theory on the left-hand side of (4.12), not a database instance.

As a more general methodology, possibly applicable to other classes of ICs, it has to be further
investigated. It essence is the following: The query is posed on top of a FO specification of repairs,
and the database instance (or its completion) lies at the bottom. Thus, CQA becomes something
like query answering in databases with complex, expressive and implicitly defined FO views.
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C H A P T E R 5

Decision Problems in CQA:
Complexity and Algorithms

In this chapter we start by presenting some time complexity results for tuple-oriented and set-
inclusion based repairs for FO queries and ICs (cf. Section 5.1). We also briefly discuss the role of
aggregation (cf. Section 5.6). We take advantage of the general complexity analysis to both introduce
cardinality-based and attribute-based repairs (cf. Sections 5.7 and 5.8, respectively), and investigate
the corresponding complexity of CQA .

5.1 THE DECISION PROBLEMS
In previous chapters we have pointed to the fact that first-order query rewriting gives us a polynomial
time algorithm for computing consistent answers. In this section we will summarize some of the
complexity results that have been obtained for CQA. Until further notice, we will concentrate on
tuple- and set-inclusion-based repairs (cf. Section 2.5.1).

As usual in data management, we concentrate mostly on data complexity [Abiteboul et al.,
1995, Vardi, 1982].That is, we consider the schema, the query and the set of ICs as fixed parameters,
making only the database instance D vary as an instance for the computational problem, usually a
decision problem, as in (5.2) below. Thus, the computational complexity, usually time complexity,
depends upon and is measured in terms of the size of D. When we consider in the complexity
analysis also other variables for the computational problem, e.g., the query and/or the ICs, we talk
about combined complexity (cf. 5.5) [Vardi, 1982].

More precisely, we focus on the decision problem of CQA, namely about deciding if a tuple is a
consistent answer to a query Q(x̄):

CQA(Q, IC) := {(D, t̄) | D |=IC Q[t̄]}. (5.1)

Here, both the set of ICs and the query are fixed parameters of the problem, and the variable input
(or instance) of the decision problem is the database instance D. That is, we want to estimate the
time it takes to decide about a tuple being a consistent answer as a function of the size of D.

Actually, to study the complexity of CQA, it is good enough to concentrate on boolean
queries since, as it is easy to see, moving to queries with free variables will not cause CQA to shift
from polynomial to exponential complexity, because the free variables can only be instantiated in
polynomially many ways. In consequence, for a boolean query Q the decision problem (5.1) becomes

CQA(Q, IC) := {D | D |=IC Q}. (5.2)
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The computational problem becomes the one of deciding if instance D makes the sentence Q
consistently true wrt IC ; and time complexity is measured only terms of the size of D.

In Section 5.5, we consider combined complexity of CQA, i.e., as a function of combinations
of several inputs, e.g., both the instance and the query (for a fixed set of ICs).

The repair logic programs discussed in Chapter 4 provide declarative and executable specifi-
cations of database repairs. We made the observation there that this kind of specification of repairs,
extended with query programs, provide a form of query rewriting. It transforms the original first-
order query Q into a query �(D, IC) ∪ �(Q), that is expressed in a more complex language than
the one of Q. The database instance D over which Q is posed, expecting consistent answers, is
essentially the same as the one used by the program �(D, IC) ∪ �(Q), which is run on top of D.

These observations give us immediately an upper bound on the data complexity of CQA.
More precisely, whenever the repair program �(D, IC) correctly specifies Rep(D, IC), it holds

(D, t̄) ∈ CQA(Q, IC) iff �(D, IC) ∪ �(Q) |=sk Ans(t̄) .

On the right-hand side we have a decision problem of skeptical query evaluation over a disjunctive
program with stable model semantics. The program has a fixed set of rules (coming from IC and Q)
and a variable set of facts D. Thus, we are dealing with data complexity. This problem is known to
be �P

2 -complete [Dantsin et al., 2001].
A problem that is natural to consider, and that happens to be closely related to CQA, is repair

checking. It sheds light on the complexity of CQA. More precisely, the repair checking problem is the
following decision problem:

RCH (IC) := {(D, D′) | D′ is a repair of D wrt IC}. (5.3)

Again, here we have the problem parameterized by the set of ICs. The pairs formed by the original
instance and a candidate to be repair become the inputs to the problem. So, we are also considering
data complexity.

It is easy to see that there is a connection between the repair checking and the consistent
query answering problems. Notice that, in order to decide if a tuple t̄ is not a consistent answer to a
query, we can guess a repair D′ and verify, in polynomial time, that D′ does not make the query true
with tuple t̄ . Thus, the complexity of CQA depends on the complexity of repair checking.

5.2 SOME UPPER BOUNDS
As with CQA, we can obtain a complexity upper-bound for repair checking from the specification
of repairs as the stable models of a disjunctive logic program: The complexity of checking if a subset
of the Herbrand base [Lloyd, 1987] is a stable model of the disjunctive program is coNP-complete
in data [Dantsin et al., 2001]. We obtain the coNP upper-bound for RCH. Since this is the test we
invoked above for the complement of CQA, we (re)obtain that CQA belongs to the class �P

2 , that is
one level above coNP in the polynomial hierarchy [Johnson, 1990, Papadimitriou, 1994] (c.f. Figure
5.1).
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Figure 5.1: The polynomial hierarchy (and above).

Summarizing, we have the complexity upper-bounds of coNP and �P
2 for the problems RCH

and CQA, respectively. Next, the natural question is whether these problems are complete for these
classes. Actually, as we will see below, they are. This shows that the logic programming-based
approach to CQA (and repair checking) is not an overkill, at least for the hard cases of RCH and
CQA.

Before addressing completeness for those decision problems and their classes, we can try to
take some more advantage from the repair programs. It happens that there are classes of disjunctive
programs for which repair checking and skeptical query evaluation have both lower complexity than
for the general case, namely PTIME and coNP, respectively.1 This is the case of the head-cycle free
programs (HCF).

A disjunctive program � is associated to a directed graph G(�) which is built by first con-
sidering the ground or instantiated version �g of �, as follows.

1. Each ground literal is a node.

2. There is an edge from A to A′ iff there is a rule in �g where A appears positive in the body
and A′ in its head.

1Under the usual complexity theoretic assumption that the polynomial hierarchy does not collapse [Johnson, 1990].
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By definition, � is HCF iff G(�) has no cycles with two literals belonging to the head of the same
rule. A HCF program � can be transformed into a (non-disjunctive) normal program with the
same stable models [Dantsin et al., 2001], and, as a consequence, query answering under skeptical
semantics becomes coNP (actually, complete for this class); and stable model checking belongs to
PTIME.

Barceló et al. [2003] identify some common classes of ICs for which the repair programs
become HCF. This is the case for denial constraints, and in particular, for functional dependencies
(FDs) and key constraints. Thus, for denial constraints RCH is in PTIME, and CQA in coNP. For
example, the disjunctive rule in (4.5) for an FD can be transformed into a pair of non-disjunctive
rules, by moving in turn each of the disjuncts in negated form to the body:

P_(x, y, fa) ← P(x, y), P (x, z), y 
= z, not P_(x, z, fa).

P_(x, z, fa) ← P(x, y), P (x, z), y 
= z, not P_(x, y, fa).

In this case, any one of the two rules is sufficient.
We have obtained upper bounds for the two main decision problems related to CQA. Next,

it is natural to ask about completeness for these complexity classes or about lower bounds for the
complexity of these problems. The first results of this kind are due to Arenas et al. [2003b], for FDs
and aggregate queries (cf. Section 5.6), and to Chomicki and Marcinkowski [2005] for first-order
queries.

For FDs, repair checking can be done in polynomial time in the size of the given instance
D and the repair candidate D′ [Chomicki and Marcinkowski, 2005]. Intuitively, for each tuple in
(D � D′) it can be checked if it can be consistently added to D′. If none of those tuples can be
added, then D′ is a minimal repair of D (assuming that D′ does not violate any of the FDs, which
can be efficiently checked first). In essence, this amounts to checking that D′ satisfies the FDs, and
that it minimally differs from D, i.e., that it is a maximal consistent subset of D wrt set inclusion.
Minimality tests of this kind can be expensive [Eiter and Gottlob, 1992]. Accordingly, this becomes
the most expensive part of repair checking.

The polynomial time of repair checking for FDs, and the algorithmic idea behind, can
be extended to denial constraints in general [Chomicki and Marcinkowski, 2005, Theo. 3.1]. A
systematic and complete analysis of repair checking, and for different repair semantics, is given
by Afrati and Kolaitis [2009].

5.3 SOME LOWER BOUNDS
As indicated above, for a fixed set of FDs and a FO query Q, an algorithm to check if a tuple
t̄ is not a consistent answer to Q in D consists in first guessing a repair D′, which, as we just
saw, can be verified in polynomial time, and then checking that D′ 
|= Q[t̄]. This tells us that the
complementary problem, i.e., CQA, can be solved coNP time. Actually, CQA turns out to be hard
for this class [Chomicki and Marcinkowski, 2005]. More precisely, there are sets of FDs, FD, and
queries Q for which CQA(Q, FD) becomes coNP-complete. Actually, a one predicate schema with
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a single key constraint and a boolean conjunctive query (with projection) suffice for this result
[Chomicki and Marcinkowski, 2005, Theo. 3.3].

We will illustrate the idea of the proof since it shows well the form of reasoning involved in
results of this kind (details can be found in [Chomicki and Marcinkowski, 2005]).

We fix a schema S = {R(A, B, C)}, with a single predicate, and also the key constraint
KC : A → BC. The query is also fixed, namely

Q : ∃x∃y∃z(R(x, y, c) ∧ R(z, y, d)), (5.4)

where c, d are constants in the database domain. With all these elements the problem

CQAc := {D | D is instance for S and D 
|={KC} Q} ,

i.e., the complement of CQA, becomes NP-hard. This claim can be proved by reducing the NP-
complete problem MON-SAT in polynomial time to CQAc. That is, each input instance for MON-
SAT , i.e., a conjunction of propositional clauses where all the literals in a clause are either simultane-
ously positive or simultaneously negative, can be mapped to an input instance for CQAc, preserving
membership.

For example, the propositional formula ϕ : (p ∨ q ∨ r) ∧ (¬p ∨ ¬q) is mapped to the
database instance D = {R(1, p, c), R(1, q, c), R(1, r, c), R(2, p, d), R(2, q, d)}.The first attribute
value indicates the clause number, and the second, a propositional variable appearing in it. With c

and d we tell apart the positive and negative clauses. D is clearly inconsistent. Furthermore, ϕ is
satisfiable iff D 
|={KC} Q iff D has a repair D′ such that D 
|= Q. In this case, ϕ is satisfiable, and a
repair D′ with this property is D′ = {R(1, p, c), R(2, q, d)}.

Notice that since we are interested in data complexity, the input instance for MON-SAT has
to be encoded through the database instance while keeping the schema, IC and query all fixed.

It is also worth noticing that, as expected, the query in (5.4) does not fall in the syntactic
tractable class CTree introduced in Section 3.4. The same predicate appears twice in the query.

Obviously, this coNP-completeness result implies coNP-completeness of CQA for the class
of denial constraints and conjunctive queries. Other combinations of key constraints (or denial
constraints) and queries can be used to obtain this same result [Chomicki and Marcinkowski, 2005].
These are worst-case complexity results, and, as we have seen in Chapter 3, there are cases of queries
and denial constraints for which CQA can be done in polynomial time.

Higher complexity classes can be reached by considering other kinds of
ICs. Chomicki and Marcinkowski [2005] consider the combination of FDs and inclusion
dependencies, and the latter are repaired by tuple deletions (cf. Section 2.5.2). These inclusion
dependencies may contain existential quantifiers in the consequent, but value inventions are not used
to restore consistency. In this case, repair checking becomes coNP-complete, and the non-acyclicity
of the set of inclusion dependencies is used to establish this result [Chomicki and Marcinkowski,
2005, Theo. 4.6]. As we argued at the beginning of this section, this makes CQA (for this
kind of ICs and repair semantics) belong to the class �P

2 . Actually, CQA becomes �P
2 -

complete [Chomicki and Marcinkowski, 2005, Theo. 4.7].
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The complexity analysis of CQA under tuple-based and set-oriented repairs is extended
by Staworko and Chomicki [2010] to the whole class of universal constraints. This class of ICs
goes beyond denial constraints, including, among other classes of ICs, full-tuple generation de-
pendencies, which include full inclusion dependencies, i.e., sentences of the form ∀x̄(R(x̄) →
S(x̄′)), with x̄′ ⊆ x̄ (non-full inclusion dependencies introduce existential quantifiers), and also
join dependencies, in particular, multi-valued dependencies [Abiteboul et al., 1995]. In contrast
to [Chomicki and Marcinkowski, 2005], Staworko and Chomicki [2010] consider the solution of
violations of inclusion dependencies via tuple insertions or deletions (the same applies to any other
universal constraint that allows for both possibilities). That is, the repair semantics is exactly as
in [Arenas et al., 1999]. The queries considered are boolean conjunctions of atoms.

Staworko and Chomicki [2010] extend the conflict-hypergraph representation of repairs in-
troduced in [Chomicki and Marcinkowski, 2005] to obtain polynomial time algorithms for the
generation of all repairs and repair checking for full tuple generation dependencies and denial con-
straints, and also for CQA for boolean queries without quantifiers and join dependencies, acyclic
full tuple generating dependencies, and denial constraints. They also establish that CQA becomes
coNP-complete for boolean atomic queries and arbitrary full-tuple generating dependencies and
denial constraints. However, for the same kind of queries, but arbitrary universal constraints, CQA
becomes �P

2 -complete. This last result [Staworko and Chomicki, 2010, Theo. 6] includes the �P
2 -

hardness for a fixed set of universal constraints, namely two FDs and a disjunctive constraint, i.e., of
the form ∀x̄(D(x̄) → R1(x̄1) ∨ R2(x̄2) ∨ R3(x̄3) ∨ R4(x̄4)), with x̄i ⊆ x̄.

Calì et al. [2003] investigate the combination of key dependencies and inclusion dependen-
cies, i.e., of the form R[A1, · · · , An] ⊆ S[B1, . . . , Bn]. Since A1, · · · , An and B1, . . . , Bn are not
necessarily all the attributes of R, resp. S, this class includes referential constraints. Repairs are based
on insertion/deletion of tuples and are also set-oriented. Under the so-called sound semantics, viola-
tions of inclusion dependencies are solved via tuple insertions (cf. Section 2.5.3). This reflects the
view of an instance as an open or incomplete set of tuples. Under these assumptions, CQA becomes
undecidable [Calì et al., 2003, Theo. 3.4]. Here, both the schema, the ICs, the query and the in-
stance are input to the decision problem. Crucial elements for this result are the interaction of KDs
and existentially quantified inclusion dependencies, the possibly infinite underlying domain used for
value invention, and cycles in the set of inclusion dependencies (cf. Section 5.5 for a more precise
statement of this result).

Next, Calì et al. [2003] study CQA for a large class of KDs and inclusion dependencies that
does not exhibit the kind of interaction that leads to undecidability. That is the class of KDs plus
non-key conflicting inclusion dependencies, i.e., such that none of them propagates a proper subset
of the key of the relation in its right-hand side (i.e., B1, . . . , Bn is not a proper subset of the key
for S above). For this class of constraints, CQA becomes decidable, and its complexity makes it: (a)
PSPACE-complete in combined complexity (cf. Section 5.5 for more on combined complexity), and
(b) an element of PTIME in data complexity [Calì et al., 2003, Theo. 3.9].
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We conclude this section pointing to the fact that, when referential constraints are repaired
with non-propagating SQL nulls (cf. Section 2.5.4), for arbitrary universal ICs and even cyclic
sets of inclusion dependencies, the decidability of CQA is restored. Actually, CQA becomes �P

2 -
complete [Bravo and Bertossi, 2006].

5.4 FO REWRITING VS. PTIME AND ABOVE
As discussed in Chapter 3, in those cases where there are FO consistent query rewritings, CQA can
be done in PTIME. On the other side, the results described in the previous section show that FO
query rewriting has limited applicability. A natural question about this methodology is whether it
can be applied to all cases where CQA can be done PTIME.

Wijsen [2009b] shows an example of a boolean conjunctive query, namely
Q : ∃x∃y(R(x, y) ∧ R(y, c)) (with the intended key-constraints underlined), that can be
consistently answered in PTIME, but provably has no FO consistent rewriting.

This non-expressibility or non-definability result uses a proof technique based on
Ehrenfeucht-Fraïssé (EF) games [Ebbinghaus et al., 1994]. It is particularly suitable when the mod-
els involved, like relational databases, are finite [Abiteboul et al., 1995].

The general idea is to use EF games to establish that two concrete database instances share
the same FO-definable properties within a class that would include the FO consistent rewriting of
the query if it existed. Next, one verifies that the two instances have different consistent answers.
This proves that such a FO rewriting cannot exist.

EF games (and their generalizations) are among the fundamental tools for establishing non-
definability results in formal logics. They belong to the essential toolkit of the database theo-
rists [Libkin, 2009], and more generally, of the finite-model theorists [Ebbinghaus and Flum, 2005,
Libkin, 2004, Makowsky, 2008].

This issue of PTIME vs. FO rewriting for CQA was first raised by Fuxman and Miller [2003],
where it is claimed that the query Q : ∃x∃y∃z(R(x, z) ∧ R(y, z) ∧ x 
= y) can be consistently
answered in PTIME, but has no FO consistent rewriting.

Most of the results we have mentioned so far in this section can be seen from a higher-level per-
spective, as contributions to two more general problems that have started to be addressed [Pema et al.,
2011, Wijsen, 2010b], namely:

(A) Find an algorithm that takes as input a boolean FO query Q (with a given set of key constraints
KC which are indicated together with the query), and decides whether CQA(Q) is FO definable.

(B) Find an algorithm that takes as input a boolean FO query Q, and decides whether CQA(Q)

is in PTIME or coNP-complete (i.e., tractable or intractable). Notice that neither may be the
case if PTIME 
= coNP .

Most research on the above problems (A) and (B) has focused on conjunctive queries. Additional
restrictions are often imposed: (a) Q must be acyclic in the sense of Beeri et al. [1983]; and/or (b)
Q has no self-join, meaning that every relation name occurs at most once in Q.
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The problem (A) has been solved under these restrictions, that is, when Q ranges over the
class of acyclic conjunctive queries without self-joins [Wijsen, 2010b]. Moreover, for this class
of queries, the decision boundaries in (A) and (B) do not coincide: For the conjunctive query
Q : ∃x∃y

(
R(x, y) ∧ S(y, x)

)
, it is the case that CQA(Q) is in PTIME, but not first-order de-

finable [Wijsen, 2010a]. This is the first example of a conjunctive query without self-joins with
this property. More (conjunctive, two-atom, and self-join free) queries with this property have
later been identified by Pema et al. [2011]. These results generalize and improve work started
by Fuxman and Miller [2005, 2007]. The class of acyclic conjunctive queries without self-joins,
notwithstanding its restrictions, remains a large class of practical interest.

Relatively little is known about CQA(Q) for conjunctive queries Q that are cyclic and/or
contain self-joins. As mentioned in Section 3.4, first-order definability of CQA(Q) is guaranteed
for all conjunctive queries Q belonging to the semantic class of key-rooted conjunctive queries. Key-
rooted queries can be cyclic and contain self-joins. However, no algorithm is known to test whether
a conjunctive query is key-rooted.

Concerning problem (B), it is an open conjecture that for every conjunctive query Q without
self-join, it is the case that CQA(Q) is in PTIME or coNP-complete.For a class of conjunctive queries
with two atoms, a dichotomy result for CQA, i.e., about being in PTIME or being coNP-complete,
has been obtained [Pema et al., 2011].

5.5 COMBINED DECIDABILITY AND COMPLEXITY

As above, we concentrate on the complexity of deciding if a boolean query Q is true in all repairs of
an instance D wrt a set of integrity constraints IC . Most of the research so far has concentrated on
data complexity, i.e., on the complexity in terms of the size, |D|, of D, with fixed parameters Q and
IC. Since it is possible to consider several combinations of parameters, we will use a more precise
notation for this kind of problems. For example, the one just mentioned, that leaves the query and
the ICs fixed, is the decision problem

d -CQA(Q, IC) := {D | D |=IC Q} .

This problem is decidable for all classes of queries and ICs that are found or used in database practice,
and the time complexity varies from P to �P

2 -complete.
With respect to the (un)decidability for other combinations of parameters, not much was

known until recently. Calì et al. [2003] establish that the problem

{d, q, ic}-CQA := {(D,Q, IC) | D |=IC Q}

is undecidable. The proof of this result relies on the following elements:

(a) A reduction from the problem of deciding entailment from sets of FDs, F , and inclusion
dependencies, I , i.e., F ∪ I |= δ. This problem is undecidable [Abiteboul et al., 1995].
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(b) The reduction requires generating F ,I, δ, in this case, a combination of key constraints,
referential ICs, a query, and a database instance.

(c) The proof uses key constraints interacting with cyclic referential ICs.

(d) Referential ICs are repaired by tuple insertions, and existential quantifiers are satisfied by
picking up values from the underlying domain U .

This undecidability result leaves room for the investigation of other cases of combined
(un)decidability and complexity, that is cases of X-CQA, for X ⊆ {d, q, ic}. This research was un-
dertaken in [Arenas and Bertossi, 2010]. In the rest of this section we briefly describe some of the
results obtained.

There exist a database instance D and a query Q such that {ic}-CQA(D,Q) is undecidable.
The proof of this claim uses the following elements:

(a) A schema S with a binary predicate E and a unary predicate P .

(b) The instance is D = {P(a)}, with empty extension for E.

(c) The query is Q : ¬P(a).

(d) The decision problem SAT := {ψ ∈ L({E}) |ψ is satisfiable} is undecidable over finite graphs,
and can be reduced to the complement of ic-CQA(D,Q).

(e) The reduction maps a FO sentence ψ ∈ L({E}) to IC := {ψ ↔ ∃xP (x)}.

(f ) It holds that ψ ∈ SAT iff D 
|=IC Q.

It is also the case that there exists a database instance D and IC such that q-CQA(D, IC) is
undecidable. The proof is based on:

(a) A schema S with unary P , binary E, ternary F , and built-in predicate ≤ that is interpreted
in such a way that (U, ≤) is isomorphic to (N, ≤).

(b) The set of ICs is IC = {∃xP (x), ∀u∀v(E(u, v) ↔ ∃yF(u, v, y)), ∀x∀y(P (x) ∧ y ≤ x →
∃u∃vF (u, v, y))}.

(c) D = ∅.

(d) The decision problem SAT := {ψ ∈ L({E}) | ψ is satisfiable}, undecidable over finite graphs,
can be reduced to the complement of q-CQA(D, IC).

(e) It holds, ψ ∈ SAT iff ¬ψ 
∈ q-CQA(D, IC), i.e., ψ ∈ SAT iff D 
|=IC ¬ψ .
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Now, for the last of the “singleton" cases for X in X-CQA, there exist a query Q and IC ,
such that d -CQA(Q, IC) is undecidable. This is proved by reduction from the halting problem
for deterministic Turing machines with empty string. Here, the elements of the machine, M , are
captured by relational predicates, IC codifies the dynamics of the machine, as based on a generic
transition function.The database instance,D(M), contains the specific transition function.Repairing
the instance wrt the dynamics of the machine corresponds to making the machine compute. The
query asks if there is a halting state, namely Q: ¬∃t State(t, qf ). Undecidability is obtained, because
M halts iff D(M) 
|=IC Q.

Notice that for Y ⊆ X: If X-CQA is decidable, then Y-CQA also decidable. Or, contrapositively,
if Y-CQA is undecidable, then X-CQA is also undecidable. As a consequence, we obtain the general
undecidability of CQA: For every nonempty subset X of {d, q, ic}, there are cases where X-CQA is
undecidable. The cases depend upon parameters of the problem, i.e., on {d, q, ic} � X. A discussion
of these results can be found in [Arenas and Bertossi, 2010].

Some cases of combined complexity for decidable cases are also investigated
by Arenas and Bertossi [2010]. Mainly, for the relevant class of safe universal ICs (SU ICs), those
that are logically equivalent to a sentence of the form

∀̄(

m∨

i=1

Pi(x̄i) ∨
n∨

j=1

¬Qj(ȳj ) ∨ ψ), (5.5)

where each variable in an x̄i or ψ appears in some of the ȳj . Safety is important. For example, the
ICs used in the proof of the undecidability of {d }-CQA are universal, but not safe.

It holds that, for SU ICs, {ic, q, d }-CQA is decidable. The proof uses ICs of the form (5.5),
and the decision procedure uses the possibly exponentially many repairs of the original database.
However, the transformation from SU ICs to format (5.5) may add an additional exponent. Actually,
it holds:

(A) for every boolean query Q, {ic, d}-CQA(Q) := {(D, ϕ) | ϕ is SU IC and D |={ϕ} Q} is in co-2-
NEXP;

(B) there are boolean queries for which the same problem is co-NEXP-hard.

The participating complexity/decidability classes are shown in Figure 5.2,which complements Figure
5.1.

Claim (A) is obtained by proving that the complement of {ic, d}-CQA(Q) belongs to 2-NEXP.
For this, one has to consider the two exponents mentioned above plus the guess of a non-satisfying
repair.

Claim (B) is obtained by reduction from SAT for the Bernays-Schönfinkel’s class (BSC)
of FO sentences to the complement of {ic, d}-CQA(Q). BSC contains sentences χ of the form
∃x1 · · · ∃xn∀ȳ ψ(x1, . . . , xn, ȳ) ∈ L(S), with ψ quantifier-free. A formula χ of this kind, if sat-
isfiable, can be satisfied in a finite universe, with n elements. BSC-SAT is decidable and NEXP-
complete [Börger et al., 2001].
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Figure 5.2: Above the polynomial hierarchy.

The idea of the reduction is as follows: Given χ as above, the empty instance D of schema
S ∪ {P(·), U1(·), . . . , Un(·)}, with universe Un = {a1, . . . , an, a}, is considered.

The integrity constraint ϕ is:

n∧

i=1

∀x∀y (Ui(x) ∧ Ui(y) → x = y) ∧
n∧

i=1

n∨

j=1

Ui(aj ) ∧

∀x1 · · · ∀xn(

n∧

i=1

Ui(xi) → ∀ȳ ψ(x1, . . . , xn, ȳ)) ∨ P(a).
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The BSC-sentence χ is satisfiable iff D 
|={ϕ} P(a). That ϕ is a safe universal IC depends on
ψ(x1, . . . , xn, ȳ) only. However, this issue can be addressed by using a “safe” subclass of BSC, namely
formulas encoding the bounded tiling problem, for which SAT is also NEXP-complete [Börger et al.,
2001].

Many issues are still open wrt combined complexity of CQA; they are discussed
by Arenas and Bertossi [2010].

5.6 AGGREGATION
So far, only first-order queries have been considered. It is natural to ask about algorithms and
complexity of CQA for aggregate queries.This problem was first addressed by Arenas et al. [2003b],
for atomic scalar aggregate queries and FDs. More precisely, the queries use only one element of
a standard set of SQL scalar aggregation operators, namely: MIN, MAX, COUNT(*), COUNT(A), SUM,
and AVG. However, queries with GROUP BY were not considered.The repair semantics is the “classic"
tuple- and set-oriented one; and the conflict-graph representation of repairs described in Section
3.3 was heavily used.

However, the notion of consistent answer was changed, to accommodate numerical values and
the high likelihood that different repairs would lead to different values for the aggregations,producing
an empty set of consistent answers. Accordingly, a range semantics was introduced [Arenas et al.,
2003b].

Example 5.1 Consider a database instance and the FD: Name → Amount .

Salary Name Amount
smith 5000
smith 8000
jones 3000
stone 7000

The repairs are:

Salary Name Amount Salary Name Amount
smith 5000 smith 8000
jones 3000 jones 3000
stone 7000 stone 7000

If the query is Q1: MIN(Amount), and we use the original notion of consistent answer, we would
get 3000 as a consistent answer, because MIN(Amount) returns 3000 in every repair.

However, for the query Q2: MAX(Amount), the maximum, 8000, comes from a tuple that
participates in the violation of FD. Actually, MAX(Amount) returns a different value in each repair:
7000 and 8000, resp. There is no consistent answer as originally defined. �
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Definition 5.2 [Arenas et al., 2003b] The consistent answer to an aggregate query Q from the
database instance D is the shortest numerical interval that contains all the answers Q(D′) to Q
obtained from the repairs D′ of D. �

Graphically:

min-answers to Q
Q(D′)↓ max-answers to Q

− − −− a| − − − − − − −− b| − − −−
for all repairs D′

A min-answer is any numerical value k such that, for every repair D′, the value aggr(D′) of the
aggregate query in D′ satisfies k ≤ aggr(D′). Similarly, for a max-answer k, aggr(D′) ≤ k holds for
every repair D′.The main problem becomes determining the optimum bounds a and b:a is called the
max-min answer, and b, the min-max answer, denoted max-min(aggr, D) and min-max(aggr, D),
resp. In Example 5.1, max-min(MAX(Amount), D) = 7000 and min-max(MAX(Amount), D) = 8000,
resp., and the (optimal) interval [7000, 8000] is the consistent answer to the query MAX(Amount).
(This range semantics has also been applied in the context of data exchange with aggregate queries
[Afrati and Kolaities, 2008].)

Now the problem becomes developing algorithms for the optimization problems of computing
the max-min answer, a (a minimization problem in the class of repairs); and/or the min-max answer,
b (a maximization problem). Hopefully, without explicitly computing the repairs, but querying the
original instance D. Determining the complexity of computing each of these optimum bounds also
becomes a natural problem. These are the decision versions of the optimization problems. They are,
respectively: (a) deciding if max-min(aggr, D) ≤ k, i.e., if there exists a repair D′ with aggr(D′) ≤ k;
and (b) deciding if min-max(aggr, D) ≥ k, i.e., if there exists a repair D′ with aggr(D′) ≥ k.

For example, MAX(A) can be different in every repair, but the maximum of the MAX(A)’s, b, is
MAX(A) in D. So, computing the min-max answer to MAX(A) from D is immediate. Now, computing
directly from D the minimum of the MAX(A)’s, i.e., the max-min answer, a, to MAX(A), does not
look that direct. However, computing the max-min answer to MAX(A) for one FD F is in PTIME
(in data).

The following is an algorithm that computes the max-min answer to MAX(A) for an instance D

of a schema R(X, Y ) with the FD: X → Y . It is a query rewriting algorithm that uses the following
sequence of SQL queries to the inconsistent database:

1. For each group of (X, Y )-values, store the maximum of A:
CREATE VIEW S(X,Y,C) AS
SELECT X,Y,MAX(A) FROM R
GROUP BY X,Y;

2. For each value of X, store the minimum of the maxima:
CREATE VIEW T(X,C) AS
SELECT X, MIN(C) FROM S
GROUP BY X;
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3. Output the maximum of the minima:
SELECT MAX(C) FROM T;

This sequence of queries can be computed in polynomial time on D. Repairs are not explicitly
computed.The rewriting of the original query still uses SQL with aggregation, but it uses GROUP BY.

Now, adding one FD may change the complexity. Actually, with more than one FD, the
problem of deciding whether the max-min answer to MAX(A) ≤ k is NP-complete [Arenas et al.,
2003b].

NP-hardness is obtained by reduction from propositional SAT. The idea is as follows: For a
propositional formula ϕ in CNF of the form C1 ∧ · · · ∧ Cn, with propositional variables p1, . . . pm,
build a database D with attributes X, Y, Z, W , and the following tuples:

1. (pi, 1, Cj , 1) if making pi true makes Cj true;

2. (pi, 0, Cj , 1) if making pi false makes Cj true;

3. (w, w, Cj , 2), 1 ≤ j ≤ n, with w a new symbol.

Consider the following set FD of FDs: X → Y , expressing that each propositional variable cannot
have more than one truth value, and also Z → W . It holds that ϕ is satisfiable iff for D, FD, and
k = 1, the answer to our decision instance is Yes.

Just to mention another complexity result, even for one FD, the problem of deciding if
the max-min-answer to COUNT(A) ≤ k is NP-complete. Several results of this kind are presented
in [Arenas et al., 2003b].The table in Figure 5.3 summarizes the complexity results for the different
scalar aggregate queries, depending on the number of FDs.

max-min-answer min-max-answer
|FD| = 1 |FD| ≥ 2 |FD| = 1 |FD| ≥ 2

MIN(A) PTIME PTIME PTIME NP-complete
MAX(A) PTIME NP-complete PTIME PTIME
COUNT(*) PTIME NP-complete PTIME NP-complete
COUNT(A) NP-complete NP-complete NP-complete NP-complete
SUM(A) PTIME NP-complete PTIME NP-complete
AVG(A) PTIME NP-complete PTIME NP-complete

Figure 5.3: Complexity results for scalar aggregate queries.

Some normalization conditions, e.g., BCNF, have been identified under which, in some cases,
more efficient algorithms can be obtained. Similar improvements are possible when certain condi-
tions on the conflict hold, e.g., being claw-free [Arenas et al., 2003b].

Consistently answering aggregate queries under the range semantics was retaken as an
extension of the work on conjunctive queries and their classification in terms of the class
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CTree [Fuxman et al., 2005] (cf. Section 3.4). Group-by was considered. Additional complexity results
on consistent answering of queries with aggregation are obtained in [Bertossi et al., 2008, Sec. 6].
Still the range semantics is used, but the repairs are attribute-based (cf. Sections 2.5.6 and 5.8.1.1).

A different research direction emerges with aggregation appearing in the ICs, obtaining
aggregation constraints. For example, the aggregation constraint,

SUM(A1 : A2 < 3) > 100, (5.6)

requires that the sum of the values of attribute A1 in the tuples where attribute A3 takes a value smaller
than 3 has to be greater than 100. Under the attribute-based repair semantics of numerical databases
under denial constraints, deciding the existence of repairs becomes undecidable [Bertossi et al., 2008,
Sec. 7.3].

A more systematic investigation of attribute-based repairs and consistent query answering
under aggregation constraints is provided by Flesca et al. [2010a] (cf. Section 5.8.2).

5.7 CARDINALITY-BASED REPAIRS
With a few exceptions, most of the research on CQA has used the tuple- and set-oriented repair
semantics for relational databases (cf. Section 2.5.1). Among the exceptions, we find two alternative
repair semantics for which some results have been obtained. One is the cardinality-based repair
semantics (cf. Section 2.5.5) that we consider here. The other is the attribute-based repair semantics
(cf. Section 2.5.6), which we describe in Section 5.8.

A cardinality-based repair, C-repair in short, of an instance D is a tuple-oriented repair D′
that minimizes the cardinality |�(D, D′)| [Arenas et al., 2003a].

Example 5.3 For the schema P(X, Y, Z), with FD : X → Y , the instance D =
{P(a, b, c), P (a, c, d), P (a, c, e)} has two repairs wrt set inclusion, i.e., that minimize �(D, D′)
wrt set inclusion:

1. D1 = {P(a, b, c)}, with �(D, D1) = {P(a, c, d), P (a, c, e)}.
2. D2 = {P(a, c, d), P (a, c, e)}, with �(D, D2) = {P(a, b, c)}.

Only D2 is a C-repair: |�(D, D2)| is minimum. �

Remark 5.4 In the next two sections we will be sometimes making comparisons between different
kinds of repairs (or, more precisely, repair semantics). To ease this comparison, we will refer to them
using the following short forms:
S-repairs: Repairs based on minimal set difference.
C-repairs: Repairs based on minimum cardinality set difference.
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A-repairs: Repairs obtained through changes of attribute values and based on some sort of mini-
mization of those changes (cf. Section 5.8). �

The repair semantics of choice may depend on the application domain and databases at hand.
For example, the C-repair semantics may be better when a few tuples are in conflict with many
others. Also, the general properties of a repair semantics may be considered. For example, C-repairs
are a subset of S-repairs, so more consistent answers can be obtained.

The same computational problem can be considered according to a particular repair semantics,
say S.For example, if Rep(D, IC, S) denotes the class of repairs of D wrt IC , and the repair semantics
S, we could consider the decision problem

CQA(Q, IC, S) := { D | D′ |= Q for all D′ ∈ Rep(D, IC, S) } .

Lopatenko and Bertossi [2007] undertake the first systematic analysis of C-repairs, and pro-
vide complexity results. Some of these are discussed in the rest of this section.

We concentrate mostly on denial ICs, which include functional dependencies. In consequence,
C-repairs are obtained by tuple deletions only; and the class formed by them can be represented by
means of a conflict-hypergraph (cf. Section 3.3). More precisely, there is a one-to-one correspondence
between C-repairs of D wrt IC and the maximum independent sets of HG(D, IC), i.e., independent
sets of maximum cardinality (MIS). Here, an independent set in a hypergraph is a set of vertices
that does not contain any hyperedge.

Figure 5.4: A conflict-hypergraph.

Example 5.5 For the set IC = {∀xyz¬(R(x, y) ∧ R(x, z) ∧ y 
= z), ∀xyzw¬(R(x, y) ∧
S(y, z) ∧ T (z, w))}, and the instance D = {R(a, b), R(a, c), R(a, e), R(c, b), S(b, c), T (c, e)},we
have the conflict-hypergraph in Figure 5.4. �
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More generally, it is easy to verify that the following hold.

(a) A ground atomic query is consistently true if it is a vertex in every MIS. This is the usual
“certain" semantics for CQA.

(b) Every tuple in D belongs to an S-repair, but not necessarily to a C-repair.

In consequence, testing membership of vertices to some MIS (the “possible" semantics for CQA)
becomes relevant. For these two problems, we have the following useful polynomial-time self-
reducibility properties for MIS: (the reductions should be clear from the corresponding figures)

(A) For every v ∈ G: v ∈ some MIS of G iff v ∈ all MIS of G ′ iff |MIS|(G) and |MIS|(G ′)
differ by one. Here, |MIS|(G) denotes the size of a MIS of G.

G

‘

G
v

v
v

’

Figure 5.5: Reduction from possible to certain semantics.

(B) For every v ∈ G: v ∈ all MIS of G iff v ∈ some MIS of G ′.

G

‘

G
v v

Figure 5.6: Reduction from certain to possible semantics.

We are formulating the results in terms of (conflict) graphs, but they carry over to (conflict)
hypergraphs. As a consequence, of these general results we obtain that: The problems of CQA under the
certain and the possible C-repair semantics are polynomially reducible to each other.This is not necessarily
true for the S-repair semantics.

With this result it is possible to bundle together the two problems in terms of their complexity.
Actually, it holds that the problems of deciding for a vertex in a graph if it belongs to some MIS and if
it belongs to all MISs are both in P NP(log(n)) (the class of problems that can be solved in polynomial
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time with a logarithmic number of calls to an NP oracle). This result is obtained by using as a
subroutine an algorithm for computing the size of a maximum clique in a graph, which belongs to
FPNP(log(n)) [Krentel, 1988]. (The F in the complexity class name stands for “functional" problems,
i.e., about function computation, as opposed to decision problems.) As a consequence, we can
conclude that: For denial constraints and ground atomic queries, CQA under the C-repair semantics
belongs to P NP(log(n)).

In order to obtain a hardness result, we can make good use of a a representation lemma: There
is a fixed database schema S and a denial constraint, such that for every graph G, there is an instance
D for S , whose C-repairs are in one-to-one correspondence with the MISs of G. Actually, D can be
built in polynomial time in the size of G [Lopatenko and Bertossi, 2007, Lemma 4].

For hardness, we establish first an auxiliary polynomial-time graph construction, associated
to a given graph G, the block Bk(G, t), with k ∈ N, that is shown in Figure 5.7.

t

b

I k

I k+1

G1

G2

Figure 5.7: The block Bk(G, t).

Bk(G, t) is built as follows:

1. G1, G2 are copies of the given graph G.

2. t is a distinguished vertex.

3. Two internally disconnected subgraphs Ik, Ik+1, with k and k + 1 nodes, resp.

4. Every vertex in G1 (G2) is connected to every vertex in Ik (Ik+1).
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By construction, it holds that the cardinality of an MIS of G is equal to k iff t belongs to all MISs
of Bk(G, t). This construction and property allow us to obtain the following.

Proposition 5.6 [Lopatenko and Bertossi, 2007] Deciding if a vertex belongs to all MISs of a
graph G is P NP(log(n))-hard. �

The proof is by reduction from the following P NP(log(n))-complete problem [Krentel, 1988]:
Given a graph G and an integer k, is the size of a maximum clique in G equivalent to 0 mod k?

The reduction takes the complement graph of G and creates a graph G ′ that is a combination
of a number of versions of the block construction, so that counting sizes of maximum independent
sets can be represented.

By the representation lemma mentioned above, the graph in Proposition 5.6 can be repre-
sented as (or reduced to) a database consistency problem. In this way we obtain the main result:
For denial constraints, CQA for ground atomic queries under the C-repair semantics is P NP(log(n))-
complete [Lopatenko and Bertossi, 2007].

We should contrast this result with the one for the S-repair semantics already mentioned in
Section 5.2: The very same problem can be solved in polynomial time. And for conjunctive boolean
queries and denial ICs, CQA is coNP-complete [Chomicki and Marcinkowski, 2005]. In contrast
to the S-repair semantics, the C-repair semantics also has a higher complexity repair checking
problem, namely coNP-complete vs. PTIME. Afrati and Kolaitis [2009] provide additional results
on repair checking under the C-repair semantics. We will see in Section 5.9 that, on the other side,
the C-repairs behave better in a dynamic scenario.

To finalize this section, we should mention that C-repairs can be captured as models of
disjunctive logic programs with stable model semantics. The programs are basically as those used to
represent S-repairs (cf.Section 4.1). However, weak program constraints have to be used [Arenas et al.,
2003a, Sec. 8]. They can be minimally violated by the stable models of the program, as opposed to
(hard) program constraints that have to be fully satisfied, like those in 5. in Example 4.2. This gives
us an immediate upper-bound of �P

3 (log(n)) in data complexity for CQA [Buccafurri et al., 2000].

5.8 ATTRIBUTE-BASED REPAIRS

The attribute-based repair semantics, or A-repair semantics (cf. Remark 5.4), comes in different
forms depending on how attribute-values are changed and how a general distance measure between
instances is defined. Usually, the number of changes is minimized, but the distance function may be
more general. The distance usually depends on some aggregate numerical function, specially if the
attribute-values are numerical themselves. Actually, the latter is the case we describe in more detail
in this section (cf. Section 5.8.1). Cf. Section 5.9 for some additional, general results on CQA under
the A-repair semantics, e.g., Proposition 5.15.
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A-repairs are natural in some scenarios, e.g., with census-like data. There, new and different
ontological assumptions, data fixes2, and computational needs appear in comparison with traditional
data management [Franconi et al., 2001]. For example:3

(a) Many attributes take numerical values.

(b) The most natural form of fix is to change some of the values of attributes in tuples.

(c) The tuples are identified by a key, e.g., a household identifier, that is fixed and not subject to
changes. The identifiers are kept in any repaired version of the database (or census form).

(d) Constraints are expressed as prohibitions on combined positive data.

(e) We find few relations in the database. Actually, it is not uncommon to have one single relation.

(f ) Most importantly, the computation of fixes (repairs) becomes crucial. In census applications this
is a common, editing, task. The repairs become important per se, possibly more than consistent
answers.

(g) Aggregate queries become most important, rather than queries about individual properties.

Franconi et al. [2001] specify attribute-based repairs by means of logic programs with stable
model semantics. Different changes of attribute values are considered and generated when a de-
nial constraint, that prohibits certain combinations of values in a census form (e.g., being 5 years
old and married), is violated. The minimization of the number of changes is enforced by means
of weak program constraints, to filter out all stable models where the number of changes is not
minimum [Buccafurri et al., 2000].

Bohannon et al. [2005] investigate attribute-based repairs for violations of FDs and (not
necessarily full) inclusion dependencies. FD violations are solved by changes of attribute values;
whereas inclusion dependencies, by tuple insertions. Tuples have weights that reflect the confidence
in them or the cost of changing values in them. Actually, the real cost of such a change is multiplied
by the distance between the old and the new value. Inserting a tuple into a table has a fixed cost
associated to the table. With all these elements, a (minimal) repair of an instance D is a new instance
that does satisfy the ICs and has a minimum cost.

As we can see, the repairs in [Bohannon et al., 2005] are A-repairs on the FD side. Still on
that side, what is minimized is an aggregation function over triples 〈R(t̄), A, v〉 (indicating that the
original value for attribute A in tuple t̄ of table R was changed to value v). This function rather
complex in comparison to the sheer counting of changes.

Much motivated by data cleaning, actually also bringing several data cleaning elements into
the repair framework, the emphasis in [Bohannon et al., 2005] is on computing a minimal repair
2Repairs were called fixes in (the previous conference version of ) Wijsen [2005].They were obtained by via database (value) updates.
In this Section, we keep this term, to distinguish them from tuple-oriented repairs.

3Cf. United Nations Economic Commission for Europe, Work Session on Statistical Data Editing (Ottawa, May 16-18, 2005):
http://www.unece.org/stats/documents/2005.05.sde.htm



5.8. ATTRIBUTE-BASED REPAIRS 73

(as opposed to CQA). The problem of deciding if there is a repair for an instance D with cost not
greater than a budget C turns out to be NP-complete (in the size of D).This results holds for a fixed
set of FDs, and separately, for a fixed set of inclusion dependencies [Bohannon et al., 2005]. On the
basis of this results, the authors present an efficient approximation algorithm.

5.8.1 DENIAL CONSTRAINTS AND NUMERICAL DOMAINS
Bertossi et al. [2008] study A-repairs that minimize a numerical aggregation function over dif-
ferences between numerical attribute values in the original tuples and in their repaired versions.
Additional assumptions, or elements of this framework, are the following:

(a) The schemas have key constraints that are always satisfied, i.e., they are hard constraints.

(b) Only some numerical attributes may take erroneous values.

(c) The ICs that can be violated, i.e., soft constraints, are denial constraints; they prohibit certain
combinations of data values.

(d) Only changes of values in fixable numerical, actually integer, attributes are allowed to restore
consistency.

(e) A quadratic distance is kept to a minimum.

Example 5.7 [Bertossi et al., 2008] Consider the following denial constraints and an inconsistent
database instance, D:

IC1 : ∀ID, P , A, M¬(Buy(ID, I, P ), Client(ID, A, M), A < 18, P > 25),

IC2 : ∀ID, A, M¬(Client(ID, A, M), A < 18, M > 50).

D: Client ID A M
1 15 52
2 16 51
3 60 900

Buy ID I P
1 CD 27
1 DVD 26
3 DVD 40

The denial constraints tell us that: People younger than 18 cannot spend more than 25 on one item nor
spend more than 50 in the store.

In order to restore consistency, values for attributes A, M, and P can be changed, in such a
way the the sum of the squares of the differences between old and new values is minimized. In this
case, a (minimal) repair is D′ with cost = 12 + 22 + 12 + 22 = 10. Another (minimal) repair is D′′,
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D′ Client ID A M
1 15 
52 50
2 16 
51 50
3 60 900

Buy ID I P
1 CD 
27 25
1 DVD 
26 25
3 DVD 40

D′′ Client ID A M
1 
15 18 52
2 16 
51 50
3 60 900

Buy ID I P
1 CD 27
1 DVD 26
3 DVD 40

Figure 5.8: Two minimal fixes.

also with cost = 12 + 32 = 10. They are shown in Figure 5.8. Notice that the key constraints are
satisfied in all of D, D′, D′′. �

In the rest of this section we describe results obtained in [Bertossi et al., 2008] for the class of
linear denial constraints (LDCs), i.e., those of the form ∀x̄¬(A1 ∧ . . . ∧ Am), where Ai are database
atoms, or built-in atoms of the form Xθc, with θ ∈ {=, 
=, <, >, ≤, ≥}, or X=Y (the latter can
be replaced by different occurrences of the same variable). When they contain atoms of the form
X 
=Y , they are called extended linear denial constraints (ELDs).

In order to introduce a distance function between instances, we impose the condition that,
when numerical values are updated to restore consistency, the smallest overall variation of the original
values must be achieved. These variations can be computed, because a database and a fix share the
same key values. In consequence, key values can be used to compute associated numerical variations.

More precisely, to compare instances, we need a common relational schema R, a set of key
constraints K, assumed to be satisfied by all the instances, the set of attributes A, and a subset of
fixable, integer attributes F that does not contain any attributes in the key. A combination of key
values can be used as a tuple identifier. That is, for a tuple k̄ of key values in relation R in instance
D, t̄ (k̄, R, D) denotes the unique tuple t̄ in relation R in D whose key value is k̄.

Example 5.8 (Example 5.7 continued) We have the following relational predicates
Client(ID,A, M ) and Buy(ID, I , P), with their key underlined. Here,F = {A, M , P}. For example,
t̄ ((1, CD), Buy, D) = Buy(1, CD, 27), etc. �

For instances D, D′ over the same schema and same key values for each predicate R ∈ R,
their square distance is

d(D, D′) =
∑

αA[πA(t̄(k̄, R, D)) − πA(t̄(k̄, R, D′))]2,

where the sum is over all predicates R, fixable numerical attributes A ∈ F , and tuples of key values
k̄. Here, πA denotes the projection on attribute A, and αA is the application-dependent weight of
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attribute A. Other numerical distance functions can be considered, obtaining results similar to those
described below [Bertossi et al., 2008].

Given an instance D, with D |= K, and a set of possibly violated ELDCs IC , a least-squares
fix (LS-fix) for D wrt IC is an instance D′, such that:

(a) it has the same schema and domain as D;

(b) it has the same values as D in the non-fixable attributes A � F (in particular in key attributes);

(c) D′ |= K ∪ IC ;

(d) d(D, D′) is minimum over all the instances that satisfy (a) - (c).

If we require just conditions (a)-(c), we say that D′ is a fix of D.
For a given set IC and a given instance D, we define:

LS-Fix(D, IC) := {D′ | D′ is an LS-fix of D wrt IC},
Fix(D, IC) := {D′ | D′ is a fix of D wrt IC}.

Of course, if D has fixes, it also has LS-fixes, which makes us concentrate mostly on fixes rather
than LS-fixes.

As indicated above, in this scenario new issues and problems appear, not considered in previous
sections.For example, in contrast to the“classical” case of CQA,there may be no fixes.So,determining
the existence of fixes becomes relevant. Other related problems gain prominence, like the repair
checking problem, computing database fixes,determining the existence of fixes within a certain distance
from the original instance; consistent query answering to aggregate queries.

For a fixed set IC of ELDCs, NE(IC) := {D | Fix(D, IC) 
= ∅}, the problem of existence of
fixes, is NP-complete [Bertossi et al., 2008]. However, the most interesting problem is the database
fix problem:

DFP(IC) := {(D, k) | k ∈ N and there is D′ ∈ Fix(D, IC) with d(D, D′) ≤ k}. (5.7)

This problem is important for the transformation of an inconsistent database into the closest consis-
tent state, which involves asking about the distance to the closest consistent state. Also, computations
are made more efficient by cutting off incorrect (or too expensive) branches during computation or
materialization of a consistent state.The DFP problem turns out to be NP-complete [Bertossi et al.,
2008]. The membership of NP is obtained from the fact that the possible values in repaired tuples
are determined by the constants in the ELDCs, and the computation of the distance function is in
PTIME. Hardness can be obtained by reduction from the Vertex Cover problem. Actually, one LDC
with three database atoms plus two built-ins is good enough for this.

Considering this result and the relevance of computing a good fix in this kind of applications,
it is natural to ask about the possibility of obtaining an efficient approximate solution.To investigate
this problem, it is natural to refer to an associated optimization problem: DFOP denotes the
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optimization problem of finding the minimum distance to a fix. In this regard, it is possible to
prove that, for a fixed set of LDCs, DFOP is MAXSNP-hard [Bertossi et al., 2008]. The proof
is by reduction from Minimum Vertex Cover for Graphs of Bounded Degree, which is MAXSNP-
complete. The MAXSNP-hardness property implies (unless P=NP) that there exists a constant δ

such that DFOP for LDCs cannot be efficiently approximated within an approximation factor less
than δ [Papadimitriou, 1994].

The next question is about the existence of efficient approximations within an arbitrarily small
constant factor, for a restricted, hard, and still interesting class of LDCs. Example 5.7 hints at such
a class.

Example 5.9 (Example 5.7 continued) We will introduce names for the tuples in the database.
They are shown in an extra column in each table. In the initial instance D:

Client ID A M
1 15 52 t1
2 16 51 t2
3 60 900 t3

Buy ID I P
1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

IC1 is violated by {t1, t4} and {t1, t5}; IC2 by {t1}
and {t2}. Assuming that αA = αM = αP = 1, we
find the two LS-fixes, D′ and D′′, we had before:

Client ID A M
1 15 
 52 50 t ′1
2 16 
 51 50 t2

′
3 60 900 t3

Buy ID I P
1 CD 
 27 25 t4

′
1 DVD 
 26 25 t5

′
3 DVD 40 t6

Client ID A M
1 
 15 18 52 t1

′′
2 16 
 51 50 t2

′′
3 60 900 t3

Buy ID I P
1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

In this case, it was possible to obtain LS-fixes by performing direct, local changes in the original
conflictive tuples alone. No new, intermediate inconsistencies are introduced in the repair process.
For other classes of LDCs this might not be always the case. �

A set of LDCs IC is local if: (a) equalities between attributes and joins involve only non-fixable
attributes; (b) there is a built-in with a fixable attribute in each IC; (c) no attribute A appears in IC
both in comparisons of the form A < c1 and A > c2 [Bertossi et al., 2008]. For example, the set of
LDCs in Example 5.7 is local.

Local sets of LDCs are interesting, because inconsistencies can be fixed tuple by tuple, with-
out introducing new violations; and LS-fixes always exist. Furthermore, local LDCs are the most
common in census-like applications [Franconi et al., 2001].

It can be proved that DFP is still NP-complete and MAXSNP-hard for local
LDCs [Bertossi et al., 2008]. However, it is still possible to provide a useful efficient approximation
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to DFP for local sets of LDCs.This can be done by reduction of DFOP , the associated optimization
problem, to the Weighted Set Cover Problem (WSCP).

The WSCP is as follows. First, an instance is of the form (U,S, w), where S is a collection
of subsets of set U with

⋃
S = U ; and w assigns numerical weights to elements of S . The problem

is to find a sub-collection of S with minimum weight that still covers U . It is known that WSCP is
also MAXSNP-hard. However, starting from the DFOP problem, it is possible to produce a “good”
instance of WSCP , as follows.

1. A set I of database atoms (tuples) from D is a violation set for ic ∈ IC if I 
|= ic, and for every
I ′ � I , I ′ |= ic, i.e., a minimal set of tuples that participate in the violation of an IC. Next,
the basic set for the WSCP is defined by U := set of violation sets for D, IC .

2. I(D, ic, t) denotes the set of violation sets for ic in D that contain tuple t . Now, we consider
S(t, t ′) := {I | exists ic ∈ IC, I ∈ I(D, ic, t) and ((I � {t}) ∪ {t ′}) |= ic}.These are the vio-
lations sets containing tuple t that are solved by changing t to t ′. Next, the cover for U becomes
S := collection of S(t, t ′)’s such that t ′ is a local fix of t , i.e., (a) t, t ′ share same values in non-
fixable attributes; (b) S(t, t ′) 
= ∅ (some inconsistency is solved); (c) d({t}, {t ′}) is minimum
(relative to (a) and (b)).

3. Finally, the last element of the WSCP is w(S(t, t ′)) := d({t}, {t ′}).
This reduction has some interesting properties: (a) local fixes and the whole reduction can be done in
polynomial time; (b) there is a one-to-one correspondence between solutions to DFOP and solutions
to the associated WSCP that keeps the optimum values; (c) each set cover corresponds to a consistent
instance. It is interesting to indicate that the correspondence may be lost when applied to non-local
sets of LDCs.

Example 5.10 (Example 5.7 continued) The violation sets associated to instance D are shown in
the figure: {t1, t4}, {t1, t5} for IC1; and {t1}, {t2} for IC2. (Notice the similarity with the conflict
hypergraphs of Section 3.3.)

t1 t2 t3

t4 t5 t6

A

B C D

Client ID A M
1 15 52 t1
2 16 51 t2
3 60 900 t3

Buy ID I P
1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

Tuple t1 has one local fix wrt IC1, and one wrt IC2. Tuple t2 has one local fix, and tuples t4, t5 have
one local fix each. The tuples, their local fixes, and weights are shown in the following table:
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Set cover els. S(t1, t ′1) S(t1, t ′′1 ) S(t2, t ′2) S(t4, t ′4) S(t5, t ′5)

Local Fix t ′1 t ′′1 t ′2 t ′4 t ′5
Weight 4 9 1 4 1
Violation set A 0 1 0 1 0
Violation set B 1 1 0 0 0
Violation set C 0 1 0 0 1
Violation set D 0 0 1 0 0

Here, the values 1 or 0 associated to a violation sets indicate if the latter belongs or not to S(t, t ′). �

An approximation to DFOP can be obtained by approximating the associated WSCP. In
general, WSCP can be approximated within a factor O(log(n)) using a greedy algorithm [Chvatal,
1979]. However, in our case, the frequency (i.e., the number of elements of S covering an element
of U ) is bounded by the maximum number of atoms in the LDCs (which is usually small). Un-
der these conditions, WSCP can be efficiently approximated within a constant factor given by the
maximum frequency [Hochbaum, 1997]. Actually, the approximation algorithm always returns a
cover, from which it is possible to compute an instance. This instance always satisfy the LDCs, but
it may not be optimal. (In Example 5.7, we get D′ though.) Details can be found in [Bertossi et al.,
2008]. An implementation and experiments with this approximation algorithm have been reported
by Lopatenko and Bravo [2003].

5.8.1.1 Attribute-based repairs and CQA
In this section, so far we have concentrated on decision and computational problems related to the
existence of a repair. Now, in relation to consistent query answering we also have several compu-
tational problems that are decision or optimization problems depending on the (consistent) query
answering semantics.

Natural alternatives for a semantics to consider in this kind of applications are the:

(a) Certain answers: Answers from every LS-fix (this is the usual and default semantics).

(b) Possible answers: Answers from some LS-fix.

(c) Range answer: The shortest numerical interval where the answers from all the LS-fixes can be
found, as in the case of aggregation (cf. Section 5.6)

The range semantics is natural when we have numerical domains and/or aggregate queries. As we
saw in Section 5.6, this semantics gives rise to two optimization problems, those of finding the
extremes of the interval.

Several complexity results are reported by Bertossi et al. [2008], and several of them for 1-
atom linear denial constraints (1ALDCs), which have one database atom plus built-ins. For example,
∀u∀c1∀c2¬(R(u, c1, c2) ∧ c1 < 1 ∧ c2 < 1). They are a common case in census-like applications.
For example, for 1ALDCs, atomic (non-aggregate) ground queries and the certain semantics, CQA
falls in PTIME (this result can be generalized to a broad class of boolean conjunctive queries). Still
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under the certain semantics, for arbitrary ELDCs, and atomic non-aggregate queries, CQA becomes
P NP -hard, but in �P

2 .
Now, for aggregate queries, with one of SUM, COUNT DISTINCT, AVERAGE, and the possible

semantics, we may consider the problem of deciding if the aggregate value satisfies in some LS-fix
a comparison to a given constant. It holds that for 1ALDCs and acyclic conjunctive queries the
problem becomes coNP-hard.

The same coNP-hardness result can also be obtained for the range semantics. That the query
involved is conjunctive means that the aggregate value is defined via a conjunctive query, e.g.,
q(COUNT(z)) ← R(u, x, y), S(u, z, x), whose body is conjunctive. This is a scalar query (it re-
turns a single number). GROUP BYs can be captured by directly collecting in the head and without
aggregation, other variables that appear in the body.

For example, for the range semantics, aggregate acyclic conjunctive queries using COUNT
DISTINCT, and 1ALDCs, CQA is coNP-complete. This result follows by reduction from MAX-
SAT, the optimization problem of finding a truth assignment that maximizes the number of satisfied
clauses in a propositional formula in CNF; or correspondingly, deciding if there exists an assignment
for which the number of clauses satisfied is at least k, a given number. This reduction is briefly
described below.

We start with a set P of propositional variables, C is a finite collection of clauses over P ,
and k a positive integer. For such an instance of MAX-SAT, the following database instance can be
created, by introducing the following:

1. A relation Var(P , C1, C2), with tuple (p, 0, 0) for every variable p appearing in C. C1 and
C2 are fixable attributes, taking values 0 or 1 (this range can be enforced with fixed 1ALDCs).
There is the indicated hard key-constraint on Var .

2. A non-fixable relation Clause(P, C, S), with tuple (p, c, s) for every occurrence of p ∈ P in
clause c ∈ C, s is a truth assignment (giving values 0 or 1) for p that satisfies clause c.

3. The 1AD: ∀p∀c1∀c2¬(Var(p, c1, c2) ∧ c1 < 1 ∧ c2 < 1).

Notice that the database schema and the 1ALDC are fixed; only the database instance depends upon
the set of clauses. We now consider the also fixed query

q(COUNT(DISTINCT c)) ← Var(u, c1, c2), Clause(u, c, s), c1 = s ,

that is asking for the number of clauses that are satisfied in the instance where it is evaluated (in this
case, the fixes). In consequence, the min-max value over the class of fixes is the maximum number
of clauses that can be simultaneously satisfied. The decision problem to solve on the database side
is then: min-max(COUNT(DISTINCT C)) ≥ k (cf. the discussion right after Definition 5.2).
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5.8.2 ATTRIBUTE-BASED REPAIRS AND AGGREGATION CONSTRAINTS
Repairs of databases with special numerical attributes have also been investigated by Flesca et al.
[2010a,b]. The integrity constraints considered are aggregation constraints, which impose conditions
on aggregation of numerical data as captured by aggregate queries of the kind described in Section
5.6. More precisely, the aggregation constraints considered are of the form

∀x̄(ψ(x̄) → �n
i=1ci · χ(ȳi) ≤ K), (5.8)

where ψ(x̄) is a quantifier-free conjunctive query, possibly with constants; the ci, K are rational
coefficients,χ(ȳi) is a scalar aggregateSUM-query over a relational attribute,possibly with a condition,
like the one in (5.6).

Example 5.11 [Flesca et al., 2010a] In the following table, attribute Value is numerical and contains
both detailed and aggregate values. The latter are expected to coincide with the addition of the
corresponding detailed values. For example, in the third tuple, the “aggr" value (250) should be the
same as the sum of the “det" values in the first two tuples (100 and 120).

BalanceSheets Year Section Subsection Type Value
2008 Receipts cash sales det 100
2008 Receipts receivables det 120
2008 Receipts total cash receipts aggr 250
2008 Disbursements payment of accounts det 120
2008 Disbursements capital expenditure det 20
2008 Disbursements long-term financing det 80
2008 Disbursements total disbursements aggr 220

That is, the aggregation constraint is (the universal closure of )

BalanceSheets(x1, x2, x3, x4, x5) → SUM(x5 : Year = x1 ∧ Section = x2 ∧ Type = ’det’) =
SUM(x5 : Year = x1 ∧ Section = x2 ∧ Type = ’aggr’),

which can be easily represented by a pair of formulas of the form (5.8). The given relation is
inconsistent wrt the aggregation constraint. �

Under violations of the aggregation constraints, repairs are obtained by changing numerical
attribute values, making a minimum number of changes.

Given an instance,D, and a set of aggregation constraints, AC , it is not guaranteed that a repair
exists. Actually, deciding that if a repair exists is NP-complete (in the size of the given instance).
Another natural decision problem is repair checking, i.e., given D, AC and an instance D′, deciding
if D′ is a repair of D wrt AC . Repair checking turns out to be coNP-complete [Flesca et al., 2010a].

Now, wrt CQA, it holds that deciding if a FO ground atomic query Q is true in all repairs of
D wrt AC is �P

2 [log n]-complete (in the size n of given instance) [Flesca et al., 2010a]. This result
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can be obtained using complexity results for belief revision [Eiter and Gottlob, 1992]. (Connections
between CQA and belief revision/update were already discussed by Arenas et al. [1999, 2003a].)

Flesca et al. [2010b] consider aggregate queries in the above framework. The (consistent)
query answer semantics is a range semantics, as in [Arenas et al., 2003b].That is, the consistent answer
to a scalar {MIN,MAX, SUM}-aggregate query, possibly with (WHERE) a condition, is the shortest
numerical interval whose end points are taken by same repair (not necessarily the same repair), and
the answer to the query obtained from any of the repairs falls within the interval (cf. Section 5.6).
The consistent answer is the empty interval if there is no repair. Deciding if the consistent answer
to a query is contained in a given interval �P

2 [log n]-complete [Flesca et al., 2010b].
Flesca et al. [2010a,b] put the repairs of an instance wrt a set of aggregation constraints in

correspondence with the solutions to a integer linear programming problem. This connection is used
to establish complexity results and developing algorithms for repair computation and CQA.

5.9 DYNAMIC ASPECTS, FIXED-PARAMETER
TRACTABILITY AND COMPARISONS

Lopatenko and Bertossi [2007] investigate some dynamic aspects of repairs and CQA, including
a first investigation of fixed-parameter complexity in this scenario. In the rest if this section, we
describe some of the results obtained, which include comparative results for all the three (families
of ) semantics mentioned in Remark 5.4.

The general problem is to study the impact on CQA of the fact that the database instance may
have undergone some updates. More precisely, the problem is as follows: Assuming that the database
instance D is already consistent wrt the given set of ICs, before the updates, what is the complexity of CQA
from the instance U (D) obtained by applying a finite sequence U of update operations to D?

This work was initially motivated by the analysis of this form of incremental complexity. C-
repairs seemed to have better properties from this point of view. Eventually a more general picture
emerged, including the static aspects of C-repairs mentioned in Section 5.7.

Example 5.12 Consider the relational predicate P(X, Y, Z) with the FD : X → Y . The instance
D1 = {P(a, c, d), P (a, c, e)} is consistent.

For the update operation U : insert(P (a, f, d)), U(D1) becomes inconsistent; and the only
C-repair of U(D1) is D1 itself. Thus, CQA from U(D1) amounts to classic query answering from
D1.

If we start from the consistent instance D2 = {P(a, c, d)}, the same update action U leads
to two C-repairs: D2, but also {P(a, f, d)}. Now CQA from U(D2) is different from classic query
answering from D2 since two repairs have to be considered. �

These problems can be made more precise. Actually, they are about incremental CQA and
parameterized complexity.Given: (a) D, IC ,with D |= IC , and (b) U : U1, . . . , Um,with m < c · |D|,
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and each Ui being an insertion,deletion or change of attribute value,we want to determine incremental
CQA, i.e., CQA from U(D) wrt IC .

This problem has several dimensions: the repair semantics, the kind of ICs, and the kind of
update actions in U (e.g., only insertions). Some results for several combinations of these dimensions
are known [Lopatenko and Bertossi, 2007]. For example, in contrast to the “static" case:

Proposition 5.13 [Lopatenko and Bertossi, 2007] For the C-repair semantics, first-order boolean
queries, and denial constraints, incremental CQA is in PTIME in the size of D. �

A natural question is how does the algorithm do in terms of m, the size of the update sequence.
Actually, a naive algorithm provides an upper bound of O(n × nm), which is exponential in m. The
next question is as to whether it is possible to do better, say in time O(f (m) × nc).This is a question
about fixed-parameter tractability [Flum and Grohe, 2006]. More precisely, we consider the decision
problem where the special parameter is the update sequence U , or better, its size m:

CQAp(Q, IC, S) := {(D, U) | U is an update sequence, and Q is consistently true
in U(D) under repair semantics S}.

It is possible to prove that: Incremental CQA for ground atomic queries and functional de-
pendencies under the C-repair semantics is in FPT , actually in time O(log(m) × (1.2852m + m ·
n)) [Lopatenko and Bertossi, 2007].

The algorithm calls a subroutine for Vertex Cover, that belongs to FPT. One starts with the
conflict graph G, which is totally disconnected by the initial consistency assumption. After the
update, consisting of m tuples inserted, the conflict graph becomes G ′. A subroutine VC(G ′, k)

decides if there is a vertex cover of size not greater than k (this is in FPT). Next, binary search can
be used, starting from m with VC(G ′, _), to determine the size of a minimum vertex cover. This is
the minimum number of tuples that have to be removed to restore consistency.

Now, a ground atomic query (a vertex v ∈ G ′) is consistently true if it does not belong to any
minimum vertex cover. The answer is yes iff the sizes of minimum vertex covers for G ′ and G ′ � {v}
are the same.

For FDs, conflict graphs are used, but for more general denial constraints (DCs), we find
hypergraphs. However, for DCs the membership of FPT of incremental CQA still holds. This is
based on the observation that: (a) Since the DCs are fixed, the maximum number d of atoms in them
is fixed. This bounds the size of the hyperedges. (b) It is possible to use the membership of FPT
of the d-Hitting Set: Finding the size of a minimum hitting set for a hypergraph with hyperedges
bounded in size by d [Niedermeier and Rossmanith, 2003].

Notice that parameterized complexity analysis naturally appears, and in many forms, in CQA,
both under the static and incremental versions. Several parameters naturally offer themselves, among
them: (a) The number of inconsistencies in the database. (b) The degree of inconsistency, i.e., the
maximum number of violations per database tuple. (c) The complexity of inconsistency, reflected
by the the length of the longest path in the conflict graph or hypergraph, etc. These parameters are



5.9. DYNAMIC ASPECTS, FIXED-PARAMETER TRACTABILITY AND COMPARISONS 83

practically relevant in many applications, where inconsistencies are “local", as those considered in
Section 5.8.

In contrast with the C-repair semantics, for the S-repair semantics (cf. Remark
5.4) it holds: For boolean conjunctive queries and denial ICs, incremental CQA is coNP-
complete [Lopatenko and Bertossi, 2007]. This result can be obtained by reduction from the static
case for the S-repair semantics.

The difference lies in the fact that the cost of a C-repair cannot exceed the size of an update,
whereas the cost of an S-repair may be unbounded wrt the size of an update, as the following example
shows:

Example 5.14 Consider the schema {R(·), S(·)}with the DC∀x∀y¬(R(x) ∧ S(y)).The following
is a consistent instance: D = {R(1), . . . , R(n)}.

After the update U = insert(S(0)), the database becomes inconsistent, and the S-repairs are
{R(1), . . . , R(n)} and {S(0)}. Only the former is a C-repair, at a distance 1 from D. The second
S-repair is at a distance n. �

We now consider the A-repair semantics. It may come in different forms. For comparison with
the static case wrt incremental CQA, we consider first a quite general, weighted version of the A-
repair semantics. Namely, a numerical weight function w on triples of the form (R(t̄), A, newValue),
where: (a) R(t̄) ∈ D, (b) A is an attribute of R, and (c) newValue is a new value for A in R(t̄).

The wA-repairs are consistent instances that minimize an aggregate function g on the values
w(R(t̄), A, newValue). Typically, w(R(t̄), A, newValue) is δ(R(t̄)[A], newValue), which returns 1 or
0 depending on the two arguments being different or not; and g is sum, i.e., only the number of
changes is counted and minimized. As another example, for the case considered in Section 5.8, we
have w(R(t̄), A, newValue) given by (R(t̄)[A] − newValue)2, and g is sum.

In order to be able to compare the complexities of the static vs. the incremental versions of
CQA for the A-repair semantics, we have the following result about the former:

Proposition 5.15 [Lopatenko and Bertossi, 2007] Static CQA for ground atomic queries and
denial constraints under the weighted A-repair semantics is P NP-complete. �

This result can be obtained by reduction from the following P NP -complete problem [Krentel,
1988]: Given a propositional formula ψ(X1, · · · , Xn) in 3CNF, decide if the last variable Xn takes
the value 1 in the lexicographically maximum satisfying assignment. (The answer is No when ψ is not
satisfiable.)

Now, for the incremental part, still under denial constraints, deletions as update actions are
trivial, because they do not introduce any violations.

Proposition 5.16 [Lopatenko and Bertossi, 2007] Incremental CQA for ground atomic queries
and denial constraints under the weighted A-repair semantics is P NP-complete. �
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This is obtained by reduction from static CQA for A-repairs as in [Bertossi et al., 2008] (cf.
Section 5.8). Here one tuple insertion is good enough for the update part.

Dynamic aspects of CQA have been largely ignored, and more research on incremental prop-
erties of- and incremental algorithms for CQA is necessary to make ideas and techniques applicable
in database practice.
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C H A P T E R 6

Repairs and Data Cleaning
Originally, database repairs were introduced with the purpose of characterizing the consistent data in
a possibly inconsistent database, as the data that are invariant under the possible repairs [Arenas et al.,
1999]. Along the way, repairs got a life of their own, and they started to be investigated independently
from the intrinsically consistent data in a database: A repair D′ can be seen as a natural and alternative
“clean" version of the original instance D. In this case, cleaning means getting rid of semantic
violations while staying as close as possible to D.

In Section 5.8, in a concrete scenario, we argued that deciding the existence of repairs, in
general, or within a distance of the initial instance, and computing concrete repairs are natural
problems to consider. For example, Afrati and Kolaitis [2009] study the problem of repair checking
independently from consistent query answering, under different repair semantics. Several recent
publications concentrate on the problem of efficiently computing a “good" repair (or a set thereof )
as a form of data cleaning (cf. Section 6.2).

The logic programming representation of database repairs is a suitable tool to compute one
of the repairs (or all if desired). Every stable model of the program corresponds to a repair. In
this case, we would be asking for one solution to the problem of restoring consistency. Notice that
(non-stratified) logic programs with stable model semantics have been successfully used to encode
NP-complete combinatorial problems [Baral, 2003, Gelfond and Leone, 2002]. Each stable model
corresponds to a solution to the problem, e.g., a coloring of a graph with 3 colors if it exists.

The first paper where repairs and data cleaning are explicitly connected is [Bohannon et al.,
2005].The authors use attribute-based repairs to restore consistency wrt FDs (cf.Section 5.8 for more
technical details). In some sense they are inspired by the fact that FD violations are commonly due to
different ways to refer to the same entity, e.g., Students(103, John Jones) vs. Students(103, J . Jones),
with the first argument expected to be a key. In consequence, a repair, and also a common data
cleaning process know as entity-resolution or record linkage, should match the names John Jones and J.
Jones (cf. below). They explicitly bring data cleaning techniques in the repair process, with the aim
of computing a single repair with a minimum cost or a single approximate repair. The cost of the
repair is measured in terms of the cost of changing values in tuples (some may be more trusted than
others), and the distances between the original and the new values (e.g., between J. Jones and John
Jones if one of the two names will be kept).

The last few years have seen the emergence of more principled approaches to data clean-
ing. They are based on data quality constraints that declaratively express quality conditions that a
database instance has to satisfy [Fan, 2008, Fan et al., 2010]. Some of them, like conditional de-
pendencies [Bravo et al., 2007, Fan et al., 2008], are not conceptually very different from traditional
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semantic integrity constraints. However, they have a clear data cleaning feel, and they have been
used as key components of data cleaning processes.

Example 6.1 [Fan, 2008] Consider a database relation subject to the following functional depen-
dencies: FD1 : [CC, AC, Phone] → [Street, City, Zip], and FD2 : [CC, AC] → [City].

CC AC Phone Name Street City Zip
44 131 1234567 mike mayfield NYC EH4 8 LE
44 131 3456789 rick crichton NYC EH4 8LE
01 908 3456789 joe mtn ave NYC 07974

The FDs are satisfied by the instance above, but they are global integrity constraints, and may not
capture natural data quality requirements, as related to specific data values. Referring to the latter is
important in data quality assessment and data cleaning. For example, we could have the following
conditional functional dependency (CFD):

CFD1 : [CC = 44, Zip] → [Street] .

This is conditional FD in the sense that the functional dependency of Street upon Zip applies when
the country code takes the value 44.

More generally, conditional dependencies can be created by endowing a set of classical ICs
with a tableau (or pattern) that indicates forced data value associations. For example,

CFD2 : [CC = 44, AC = 131, Phone] → [Street, City = ‘EDI ′, Zip] .

This CFD requires that under the indicated conditions in the antecedent (CC=44, AC = 131), Street
and Zip functionally depend upon Phone, and also the city must take the value ‘EDI’.

Conditional inclusion dependencies have also been considered. For example, this could be one
of them:

Order(Title, Price, Type = ‘book′) ⊆ Book(Title, Price) .

It can be expressed in classical FO predicate logic, as follows: ∀x∀y∀z(Order(x, y, z) ∧ z =
‘book′ → Book(x, y)). �

Database repairs and consistent query answering have been considered in the context of
conditional dependencies [Kolahi and Lakshmanan, 2009, 2010] (cf. Section 6.1).

An important and well-studied problem in data cleaning is about detecting tuples that refer
to the same real-world entity, and matching them, producing a single, unified representation for
that entity. Different names are given to this problem, e.g., entity resolution, duplicate detection,
reference reconciliation, data fusion, etc. [Benjelloun et al., 2009, Bleiholder and Naumann, 2008,
Elmagarmid et al., 2007]. In relation to this problem, a different class of data quality constraints has
been recently introduced and studied. They are the matching dependencies (MDs), that express and
generalize entity resolution concerns, in a declarative manner [Fan, 2008, Fan et al., 2009].
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Matching dependencies are used to express which values should be matched under certain
conditions. For example, the following can be an MD for the schema {R1(X, Y ), R2(X, Y )}:

∀X1X2Y1Y2(R1[X1] ≈ R2[X2] −→ R1[Y1] .= R2[Y2]).1
It specifies that, when the values for attributes X1 in R1 and X2 in R2 in two tuples are similar, then
the values in those two tuples for attribute Y1 in R1 and Y2 in R2 must be made equal (matched). Of
course, R1 and R2 can be same predicate. The similarity relations are domain-dependent, reflexive
and symmetric.

Although declarative, MDs have a procedural feel and a “dynamic” semantics.That is, an MD
is satisfied by pairs of databases (D, D′): One, D, where the antecedent is satisfied, and a second
one, D′, where the matching indicated in the consequent is realized [Fan et al., 2009]. Alternative
semantics for MDs and computational methods for obtaining clean instances wrt a set of MDs
have been proposed by Bertossi et al. [2011] and Gardezi et al. [2011]. The idea is to apply a non-
deterministic chase procedure that reaches a stable instance, Dn, i.e., one such that the pair (Dn, Dn)

satisfies all the MDs. This would be a clean instance. Some comparisons between clean instances
wrt MDs and database repairs wrt FDs have been established [Gardezi et al., 2011].

The interaction of classical ICs and database repairs with quality constraints of the kinds
considered above has been investigated by Fan et al. [2011].

In Section 6.1, we consider (conditional) FDs, and we describe some results that have to do
with the existence of good approximations, and obtaining approximations to minimal repairs. The
“cleaning" process involved is based on changes of attribute values. In Section 6.2, we describe some
approaches to database repairs, data cleaning, and consistent query answering for relational databases
subject to uncertainty conditions.

6.1 DATA CLEANING AND QUERY ANSWERING FOR FD
VIOLATIONS

Here, we describe some research on the problem of repairing an inconsistent database that violates
a set of integrity constraints formed by conditional and classical functional dependencies. A repair
is obtained by making the smallest possible quantity of modifications to the attribute values in
the instance. At this point, the quantity can be just the number of changes or an aggregation of
numerically weighted changes. This is a form of attribute-based repair as introduced in Section 5.8.

Since the repair process is based on making changes to attribute values in individual tuples,
we need tuple identifiers, to refer to a tuple and its updated version in the repair. An instance D of
relational schema is associated with a set of positions Pos(D). Each position in Pos(D) is of the form
p = (R, t, A), where R specifies relation name, t is a tuple identifier, and A is an attribute name.
Then, D(p) can be used to denote the value of t[A] for the tuple identified by t in instance D.

For an inconsistent database instance D that violates a set of (conditional) FDs �, a repair
is another instance D′ with the same set of positions, but possibly different values stored in some
1Most frequently, the symbol � is used instead of .=.



88 6. REPAIRS AND DATA CLEANING

positions, that satisfies �.2 The distance between instance D and a repair D′, denoted by d(D, D′),
is obtained by adding up the cost of updating the positions whose values have been changed in D′.
That is,

d(D, D′) =
∑

p∈Pos(D),D(p)
=D′(p)

w(p) ,

where w(p) for position p = (R, t, A) is the weight of making any update to tuple t . For example,
it can represent the the level of confidence on the fact provided by t , or may be assigned to a
default value, e.g., 1, if such information is not available. Then an optimum repair is a repair D∗ that
minimizes distance d.

The complexity of computing exact and approximate solutions to the optimum repair problem
has been studied [Kolahi and Lakshmanan, 2009]. When approximating the optimum repair for an
inconsistent instance D, we are typically looking for a (possibly non-optimum) repair D′, such that
d(D, D′) ≤ α · d(D, D∗), for a small α > 1. A related decision problem is about the existence of a
consistent instance D′ that approximates an optimum repair of D within a given factor. This is the
Approximating the Optimum Repair decision problem. The results can be summarized as follows.

Theorem 6.2 [Kolahi and Lakshmanan, 2009] 1. There is a set of FDs � for which checking the
existence of a repair D′ with d(D, D′) ≤ k, for input instance D and k > 0, is NP-complete.
2. Let α > 1 be any constant. The problem of approximating the optimum repair within a factor of
α, with a set of FDs and an inconsistent instance as inputs, is NP-hard.
3. There is a set of FDs � and ε > 0, for which approximating the optimum repair within a factor
of (1 + ε) for an input instance D is NP-hard. That is, the optimum repair problem is MAXSNP-
hard [Papadimitriou, 1994]. �

Despite the hardness results for approximations just presented, we briefly show here that, for
a fixed set of FDs �, it is possible to generate a repair D′ for an input instance D in polynomial
time, such that d(D, D′) ≤ α� · d(D, D∗), for some α� > 1 that depends on the set of FDs.

For an instance D that violates a set of FDs �, a basic conflict is a subset-minimal set of
positions T ⊆ Pos(D), such that there is no repair D′ of D, with D(p) = D′(p) for every position
p ∈ T . Intuitively, a basic conflicts shows a set of attribute values that cannot remain unchanged in
any repair.

For instance, for � = {A → C, B → C},
the positions corresponding to the underlined
values in the following instance form a basic con-
flict (assuming c2 
= c3).

A B C

a1 b1 c1

a1 b2 c2

a3 b1 c3

It is observed that, in general, the cardinality of a basic conflict can grow arbitrarily
large [Kolahi and Lakshmanan, 2010]. However, under certain syntactic conditions on the set of
2Notice that in this section, a repair is just a consistent instance with the same positions as D. Minimality is explicitly stated when
needed.
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FDs, the cardinality of each basic conflict in any input instance is bounded by a constant α� that
depends on the set of FDs. As a consequence, the collection of basic conflicts can be computed in
polynomial time in the size of the input instance.

It is also shown that, given a hitting set H for the collection of basic conflicts of an instance
D (i.e., H is a subset-minimal set of positions that intersects with every basic conflict), it is possible
to compute a repair D′ that differs from D only in the values stored in positions in H .

These observations give us an approximation algorithm [Kolahi and Lakshmanan, 2010] for
the optimum repair problem that works as follows:

1. Find the collection of basic conflicts in D.

2. Find an approximate solution H for the minimum hitting set of the collection of basic conflicts.

3. Find a repair D′ by changing the values in H .

Notice that the minimum hitting set problem can be approximated within a constant factor α� when
the cardinality of each set in the collection is bounded by α� .

Another approximation algorithm [Kolahi and Lakshmanan, 2009] starts by finding a subset
of the basic conflicts in the inconsistent instance. After making changes to the positions in the
(approximate) minimum hitting set, an extra step is required to take care of the remaining FD
violations in such a way that the repair does not get far away from an optimum repair.

The notion of basic conflict has also been used for CQA, more specifically, for query
answering over inconsistent databases that violate a set of (conditional) functional dependen-
cies [Kolahi and Lakshmanan, 2010]. The conflict-aware query answering approach uses annotated
databases and simple provenance management rules to propagate the basic conflicts in an inconsistent
instance to the answer of a query.

After this propagation process, one checks whether a set of tuples in the query answer is
created by a conflicting set of values, by looking at the provenance of the tuples. If the tuples do
not contain traces of the basic conflicts, then they form a possible answer, meaning that they can
be obtained from a minimal repair. For restricted classes of positive relational algebra queries, this
approach can be used to precisely decide whether or not a given set of tuples in the answer can be
obtained from running the query against one of the possibly many minimal repairs.

6.2 REPAIRS AND DATA CLEANING UNDER UNCERTAINTY
The quality of real world data is impaired by several errors and anomalies, such as duplicate records,
violation of integrity constraints, and missing values. Most data cleaning approaches concentrate
on producing a single clean database instance, i.e., a repair. However, the data cleaning process
involves several uncertain aspects, e.g., uncertainty in determining whether two records are dupli-
cates. Beskales et al. [2010] and Beskales et al. [2009] leverage the awareness of such uncertainty
by adopting a probabilistic approach to data cleaning. Specifically, data cleaning is viewed as a
probabilistic process whose possible outcomes are multiple possible repairs.
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The concept of uncertain data cleaning has been applied in the context of two data quality
problems: duplicate records elimination [Beskales et al., 2009], and violations of functional depen-
dencies [Beskales et al., 2010].

6.2.1 UNCERTAIN DUPLICATE ELIMINATION
The goal of the duplicate elimination process is removing duplicate tuples from a given relation.
More specifically, the duplicate elimination process is divided into two tasks: (1) identifying sets
of tuples that refer to the same real-world entity; and (2) merging each set of such tuples into a
single tuple. The outcome of the first stage is a clustering (i.e., partitioning) of tuples such that each
cluster contains a set of tuples that are believed to be duplicates. In the second stage, members of
each cluster are coalesced into a single representative tuple that replaces the member tuples in the
relation. The result is a relation instance that is believed to be duplicate-free.

Due to the noise in real-world data, it is unlikely to find a perfect classifier that determines
whether two tuples are duplicates, with no false positives or false negatives. To avoid information
loss and degradation in data quality due to classification errors, Beskales et al. [2009] propose a
framework that generates and stores a number of possible duplicate-free instances. That is, a set
of possible clusterings are generated by the system, and their corresponding relation instances are
compactly stored.

Considering all possible clusterings of tuples is both intractable (there may be exponentially
many clusters in the relation size), and undesirable as many clusterings are very unlikely to be correct.
Therefore, Beskales et al. [2009] propose an approach to constrain the space of possible clusterings:
Given a parameterized clustering algorithm A, they only consider clusterings that are valid outcomes
of A using a set of possible parameter values. In other words, uncertainty in duplicate elimination
process boils down to uncertainty in determining the most suitable value of the clustering algorithm
parameter.

A family of clustering algorithms, namely hierarchical clustering algorithms [Jain and Dubes,
1988], exhibits some interesting properties that allow efficient generation of all possible instances
for a range of possible parameter values. Hierarchical clustering algorithms cluster input tuples in
a hierarchy, which represents a series of possible clusterings starting from a clustering containing
each tuple in a separate cluster (the leafs level), to a clustering containing all tuples in one cluster
(the root level). The algorithms use specific criteria, usually depending on a parameter, to determine
which clustering to return. Given a range of possible parameter values, it is possible to generate
all possible outcomes by invoking the clustering algorithm only once. The key idea is to use the
maximum parameter value while constructing the clustering hierarchy, and capturing all clusterings
that are encountered between the minimum and the maximum parameter values.

The instances corresponding to the generated clusterings are stored compactly by observing
that each tuple in a duplicate-free instance also appears in a large number of instances. Therefore,
each distinct tuple is stored only once, and annotated with metadata that captures the clustering
algorithm parameter range in which such tuple is valid.
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Given a set of possible instances, Beskales et al. [2009] define relational query answering, e.g.,
selection,projection, join and aggregation,according to the possible worlds semantics [Dalvi and Suciu,
2007]. Query processing is implemented using a query rewriting mechanism.That is, each relational
query is modified to correctly handle the special metadata associated with tuples. An efficient algo-
rithm is proposed to further reduce the complexity of answering aggregate queries. Moreover, new
query types that directly reason about uncertainty in the duplicate elimination process are proposed,
e.g., obtaining the most probable instance, obtaining the tuples that are almost certain to appear in
a duplicate-free instance, and obtaining the probability that a pair of input tuples are duplicates.

6.2.2 UNCERTAIN REPAIRING OF FD VIOLATIONS
Assume that a set, �, of FDs is defined over a relational database schema. Repairing a database
instance that violates � can be achieved by performing a number of modifications to tuple attribute
values such that the resulting instance, called a repair, satisfies the FDs.

Repairing a given data instance with respect to � can be done in several ways. For example,
assume that tuples ti and tj violate A → B. It is possible to fix such violation by changing the
value of attribute B in ti , i.e., ti[B], to be equal to tj [B], or vice versa. Alternatively, it is possible
to change the value of attribute A of ti to be different from tj [A], or vice versa. Several approaches
aim at generating a repair that involves the smallest number of changes [Bohannon et al., 2005,
Kolahi and Lakshmanan, 2009] (cf. Section 6.1). The main hypothesis behind such minimality
constraint is that the largest part of the data is clean, and thus we only need to perform a number of
data changes that is relatively small compared to the data size.The related and sometimes alternative
approach of Consistent Query Answering can be applied: it defines a set of possible repairs, and
focus on obtaining query answers that are correct in every possible repair in an efficient way (cf.
Chapter 3).

A third approach, proposed by Beskales et al. [2010], is to obtain a random sample of repairs
and use such sample to answer user queries. That is, an algorithm is provided to efficiently generate
a repair that is selected at random from the sampling population. The minimality of the number of
changes in sampled repairs is abandoned to avoid reducing the scope of the possible repairs. However,
each generated repair is guaranteed to consists of necessary changes only.That is, if a generated repair
consists of a set of assignments {ti[Aj ] := vij }, any subset of the assignments does not represent a
repair. Additionally, the sampling population is proved to contain all cardinality-set-minimal repairs
(as they are called by Beskales et al. [2010]). These are attribute-based repairs (cf. Section 5.8) that
minimize wrt set inclusion the set of changed tuple attribute values (also called, cells). That is, a
repair that changes a set of cells S is cardinality-set-minimal if there does not exist another repair
that changes a subset of S.

The sampling algorithm is based on maintaining a set of cells that are consistent with �, in
the sense that it is possible to find an instance that satisfies � without changing such cells. Initially,
the set of consistent cells, denoted CL, is equal to the empty set, ∅. The algorithm iteratively selects
a random cell c and checks whether CL ∪ {c} is consistent with �. If that is not the case, the value of
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c is changed to c′ in such a way that CL ∪ {c′} is consistent. The cell c′ is inserted into CL, and the
algorithm proceeds by selecting another cell. The algorithm terminates when all cells are inserted in
CL and return the constructed instance.

Beskales et al. [2010] describe a method to improve the efficiency of the sampling algorithm
by initially partitioning the input database instance into blocks that can be repaired independently.
Blocks consisting of single cells, which are frequently found in practice, are consistent with �, and
thus are not considered by the repairing algorithm.

A modified version of the sampling algorithm has been proposed to allow specifying addi-
tional user constraints that prevent changing parts of the database. Those constraints become hard
constraints and are useful in various scenarios. For example, if data in an input relation is collected
from two different sources, one of which is completely trusted, then it is possible to specify such
knowledge using the provided functionality. The algorithm is modified to respect such constraints
by initially setting CL to the set of cells that should not be altered, and proceeding as before. Another
use of hard constraints was described in Section 5.8.
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