

UNIT 6

Structured Query Language

(SQL)

Text: Chapter 5

Unit 6 2

Learning Goals

Given a database (a set of tables) you will be able to

 express a query in SQL, involving set operators, subqueries and
aggregations

 rewrite SQL queries in one style (with one set of operators) with
queries in a different style (using another set of operators)

 show that two SQL queries (with or without null values)
are/aren’t equivalent

 translate RA (or Datalog) queries to SQL queries and vice versa

 write SQL statements to insert, delete, update the database and
define views

 write SQL statements to set certain constraints

 (in the project) use JDBC and Java to design DB transactions for
the database users

Unit 6 3

Outline

 Data Definition Language

 Basic Structure

 Set Operations

 Aggregate Functions

 Null Values

 Nested Subqueries

 Modification of the Database

 Views

 Integrity Constraints

 Embedded SQL, JDBC

Unit 6 4

The SQL Query Language

 Developed by IBM (System R) in the 1970s
 Often pronounced as SEQUEL!
 Need for a standard since relational queries are used

by many vendors
 Standards:

 SQL-86
 SQL-89 (minor revision)
 SQL-92 (major revision, current standard)
 SQL-99 (major extensions)

 Consists of several parts:
 Data Definition Language (DDL)
 Data Manipulation Language (DML)

o Data Query
o Data Modification

Unit 6 5

 Creating Tables in SQL(DDL)

 A SQL relation schema is defined using the create table command:
 create table r (A1 D1, A2 D2, ..., An Dn,

 (integrity-constraint1),
 ...,
 (integrity-constraintk))

 Integrity constraints (ICs) can be:
 primary and candidate keys
 foreign keys
 general assertions

o e.g., check (grade between 0 and 100)

 Example: CREATE TABLE Student

 (cid CHAR(20) not null,
 name CHAR(20),
 address CHAR(20),

 phone CHAR(8),

 major CHAR(4),

 primary key (cid))

Unit 6 6

Domain Types in SQL

 char(n). Fixed length character string with length n.
 varchar(n). Variable length character strings, with maximum

length n.
 int. Integer (machine-dependent).
 smallint. Small integer (machine-dependent).
 numeric(p,d). Fixed point number, with user-specified precision

of p digits, with d digits to the right of decimal point.
 real, double precision. Floating point and double-precision

floating point numbers, with machine-dependent precision.
 float(n). Floating point number, with user-specified precision of

at least n digits.

 Null values are allowed in all the domain types.
To preclude null values declare attribute to be not null

 create domain in SQL-92 and 99 creates user-defined domain
types
 e.g., create domain person-name char(20) not null

Unit 6 7

Date/Time Types in SQL

 date. Dates, containing a (4 digit) year, month and date
 E.g. date ‘2001-7-27’

 time. Time of day, in hours, minutes and seconds.
 E.g. time ’09:00:30’ time ’09:00:30.75’

 timestamp: date plus time of day
 E.g. timestamp ‘2001-7-27 09:00:30.75’

 Interval: period of time
 E.g. Interval ‘1’ day
 Subtracting a date/time/timestamp value from another gives an

interval value
 Interval values can be added to date/time/timestamp values

 Relational DBMS offer a variety of functions to
 extract values of individual fields from date/time/timestamp
 convert strings to dates and vice versa
 For instance in Oracle (date is a timestamp):

o TO_CHAR(date, format)
o TO_DATE(string, format)
o format looks like: ‘DD-Mon-YY HH:MI.SS’

Unit 6 8

Running Examples

Customer Database
 Customer(cid: integer, cname: string, rating: integer, salary: real)

 Item(iid: integer, iname: string, type: string)

 Order(cid: integer, iid: integer, day:date, qty:real)

Student Database
 Student (sid, name, address, phone, major)

 Course (dept, cno, title, credits)

 Instructor(iname, degree)

 Section (dept, cno, secno, term, ins_name)

 Enrolled (sid, dept, cno, secno, term, mark)

 Prerequisite (dept, cno, pre_dept, pre_cno)

Unit 6 9

Basic SQL Query

 SQL is based on set and relational operations with certain
modifications and enhancements

 A typical SQL query has the form:
 select [distinct] A1, A2, ..., An
 from r1, r2, ..., rm
 where P
 Ais represent attributes

 ris represent relations

 P is a predicate.

 This query is nearly equivalent to the relational algebra expression.

 A1, A2, ..., An(P (r1 x r2 x ... x rm))

 The result of a SQL query is a table (relation).

 If distinct is used, duplicates are eliminated.
By default duplicates are not eliminated!

RA’s projection

RA’s selection

RA’s join is done

explicitly in P

Dup-elim is

expensive.

How would

you implement it?

Basic SQL Query

 Called conjunctive query.
 Equivalent RA expression involves select, project, and

join.

 So, also called SPJ query.

 SPJ/conjunctive queries correspond in Datalog to:

𝑝 𝑋 ← 𝑟1 𝑌 ,… , 𝑟𝑘 𝑍 , 𝑉𝑖𝑜𝑝 𝑈𝑗 , … , 𝑉ℓ 𝑜𝑝 𝑐, …

 Union of SPJ queries (i.e., SPJU) queries => set of

Datalog rules with the same head 𝑝 𝑋 .

 SPJ with aggregation => SPJA queries; no counterpart
in (pure datalog), although researchers have extended
Datalog with aggregation (we won’t cover this).

Unit 6 10

Unit 6 11

Conceptual Evaluation Strategy

 Typical SQL query:
 SELECT [DISTINCT] attr-list
 FROM relation-list
 WHERE qualification

 Semantics of a SQL query defined in terms of the
following conceptual evaluation strategy (in order):
 Compute the cross-product of relation-list.

 Discard any resulting tuples that fail qualifications.

 Drop attributes that are not in attr-list.

 If DISTINCT is specified, eliminate duplicate rows.

 This strategy is not a super efficient way to compute a
query! An optimizer will find more efficient strategies
to compute the same answers.

Unit 6 12

Example Instances

cid cname rating salary

40 J. Justin 7 70

35 G. Grumpy 8 90

50 R. Rusty 10 80

iid iname type

100 Inspiron6400 laptop

102 LatituteD520 laptop

105 DimensionE520 desktop

110 CanonMP830 printer

cid iid day qty

40 102 10/10/06 2

50 105 11/12/06 5

Item Customer

Order

 We will use these instances of the Customer, Item and Order relations in our
examples.

Unit 6 13

Example of Conceptual Evaluation

SELECT cname
FROM Customer, Order
WHERE Customer.cid=Order.cid AND iid=105

(cid) cname rating salary (cid) iid day qty

40 J. Justin 7 70 40 102 10/10/06 2

40 J. Justin 7 70 50 105 11/12/06 5

35 G. Grumpy 8 90 40 102 10/10/06 2

35 G. Grumpy 8 90 50 105 11/12/06 5

50 R. Rusty 10 80 40 102 10/10/06 2

50 R. Rusty 10 80 50 105 11/12/06 5

Customer X Order

1

Unit 6 14

Renaming Attributes in Result

 SQL allows renaming relations and attributes using the
as clause:
 old-name as new-name

 Example: Find the name of customers who have
ordered item 105 and the day they placed the order;
rename cname to “customer_name”:

SELECT cname AS customer_name, day

FROM Customer, Order

WHERE Customer.cid=Order.cid AND iid=105

Unit 6 15

Range Variables

 We can use variables to name relations in the FROM
clause
 Usually used when same relation appears twice.

 The previous query can also be written as:

SELECT cname, day
FROM Customer C, Order R
WHERE C.cid=R.cid AND iid=105

OR

SELECT C.cname, R.day
FROM Customer C, Order R
WHERE C.cid=R.cid AND R.iid=105

Nothing but
𝑎𝑛𝑠 𝑁, 𝐷 ← 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐼, 𝑁, 𝑅, 𝑆 , 𝑜𝑟𝑑𝑒𝑟 𝐼, `105′, 𝐷, 𝑄 .

Unit 6 16

Using DISTINCT

 Would adding DISTINCT to this query make a
difference?

 Suppose we replace C.cid by C.cname in the SELECT
clause. Would adding DISTINCT to this variant of the
query make a difference?

 What if we use * in SELECT (* selects whole tuples)?

SELECT *
FROM Customer C, Order R
WHERE C.cid=R.cid

SELECT C.cid
FROM Customer C, Order R
WHERE C.cid=R.cid

 Find customers (id’s) who’ve ordered at least one item :

Unit 6 17

Expressions and Strings

 Illustrates use of arithmetic expressions and string
pattern matching:
Returns triples of values, each consisting of
 the salary
 the income tax deducted (30% of salary minus 10K)
and
 the professional fees (1% of the salary)
for customers whose names begin and end with B and
contain at least three characters.

 AS and = are two ways to name fields in result.

SELECT C.salary, tax=(C.salary-10)*0.3, C.salary*0.01 AS prof_ fees
FROM Customer C
WHERE C.cname LIKE ‘B_%B’

Unit 6 18

More on Strings

 LIKE is used for string matching:

`_’ stands for any one character and

`%’ stands for 0 or more arbitrary characters.

 To match the name “Strange%”, need to use an escape
character:

 like ‘Strange\%’ escape ‘\’

 SQL supports a variety of string operations such as
 concatenation (using “||”)

 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

2

Unit 6 19

Ordering of Tuples

 List in alphabetic order the names of the customers
who have ordered a laptop

 select cname
 from Customer, Item, Order
 where Customer.cid = Order.cid and
 Item.iid= Order.iid and type=‘laptop’
 order by cname

 Order is specified by:
 desc for descending order or

 asc for ascending order; ascending order is the default.

 E.g., order by cname desc

Ordering goes beyond RA and Datalog!

Unit 6 20

Set Operations

 union, intersect, and except operate on tables
(relations) and correspond to the RA operations


 Each of the above operations automatically eliminates
duplicates;
To retain all duplicates use the corresponding multiset
versions:

 union all, intersect all and except all.
 Suppose a tuple occurs m times in r and n times in s,

then, it occurs:
 m + n times in r union all s
 min(m,n) times in r intersect all s
 max(0, m – n) times in r except all s

Unit 6 21

Set Operations : UNION

 Example: Find cid’s of customers who’ve ordered a laptop or a desktop

SELECT C.cid

FROM Customer C, Item I, Order R

WHERE C.cid=R.cid AND R.iid=I.iid AND (I.type=‘laptop’ OR

I.type=‘desktop’)

 UNION can be used to compute the union of any two compatible (corresponding

attributes have same domains) sets of tuples (which are themselves the result of

SQL queries):

SELECT C.cid

FROM Customer C, Item I, Order R

WHERE C.cid=R.cid AND R.iid=I.iid AND I.type=‘laptop’

UNION

SELECT C.cid

FROM Customer C, Item I, Order R

WHERE C.cid=R.cid AND R.iid=I.iid AND I.type=‘desktop’

What do we get If

we replace OR by

AND here ?

Unit 6 22

Set Operations : EXCEPT

 EXCEPT can be used to compute the difference of two compatible
sets of tuples

 Some systems use MINUS instead of EXCEPT

 What does the following query return?

 SELECT C.cid

FROM Customer C, Item I, Order R

WHERE C.cid=R.cid AND R.iid=I.iid AND I.type=‘laptop’

EXCEPT

SELECT C.cid

FROM Customer C, Item I, Order R

WHERE C.cid=R.cid AND R.iid=I.iid AND I.type=‘desktop’

What does EXCEPT remind you of in Datalog?

Unit 6 23

Set Operations: INTERSECT

 Example: Find cid’s of customers who’ve ordered a laptop and a desktop item :

SELECT C.cid

FROM Customer C, Item I1, Order R1, Item I2, Order R2

WHERE C.cid=R1.cid AND R1.iid=I1.iid

 AND C.cid=R2.cid AND R2.iid=I2.iid

 AND I1.type=‘laptop’ AND I2.type=‘desktop’)

 INTERSECT can be used to compute the intersection of two compatible sets of
tuples (included in SQL/92, but some systems may not support it).

SELECT C.cid

FROM Customer C, Item I, Order R

WHERE C.cid=R.cid AND R.iid=I.iid AND I.type=‘laptop’

INTERSECT

SELECT S.cid

FROM Customer S, Item I, Order R

WHERE C.cid=R.cid AND R.iid=I.iid AND I.type=‘desktop’

Important to
include the
Key!

Unit 6 24

Nested Queries

 A very powerful feature of SQL:
a WHERE clause can itself contain a SQL query! (Actually, so can FROM
and HAVING clauses.)

 To find customers who’ve not ordered item #105, use NOT IN.

 To understand semantics of nested queries, think of a nested loops
evaluation:
 For each Customer tuple, check the qualification by computing the

subquery.

SELECT C.cname
FROM Customer C
WHERE C.cid IN (SELECT R.cid
 FROM Order R
 WHERE iid=105)

Find names of customers who’ve ordered item #105:

3

Unit 6 25

Nested Queries with Correlation

 EXISTS is another set operator: returns true if the set is not empty.
 UNIQUE checks for duplicate tuples: returns true if there are no

duplicates.
 If UNIQUE is used above, and * is replaced by iid, finds customers

with at most one order for item #105.
 (* denotes all attributes. Why do we have to replace * by iid?)

 Ilustrates why, in general, subquery must be re-computed for each
Customer tuple.

SELECT C.cname
FROM Customer C
WHERE EXISTS (SELECT *
 FROM Order R
 WHERE iid=105 AND C.cid=R.cid)

Find names of customers who’ve ordered item #105:

Unit 6 26

More on Set-Comparison Operators

 We’ve already seen IN, EXISTS and UNIQUE. Can also use
NOT IN, NOT EXISTS and NOT UNIQUE.

 Also available: op ANY, op ALL,
where op is one of: >, <, =, <=, >=, <>

 Find customers whose salary is greater than that of every
customer with last name “Rusty”:

SELECT *
FROM Customer C
WHERE C.salary > ALL (SELECT C2.salary
 FROM Customer C2
 WHERE C2.cname LIKE ‘% Rusty’)

3a

How did we write such queries in RA?

How about Datalog?

Unit 6 27

Rewriting INTERSECT Queries Using IN

 Similarly, EXCEPT queries can be re-written using NOT IN.

 To find names (not cid’s) of customers who’ve ordered
both laptops and desktops, just replace C.cid by C.cname in
SELECT clause. Could we replace cid by cname throughout?
(What about INTERSECT query?)

Find cid’s of customers who’ve ordered both a laptop and a desktop:

SELECT C.cid
FROM Customer C, Item I, Order R
WHERE C.cid=R.cid AND R.iid=I.iid AND I.type=‘laptop’
 AND C.cid IN (SELECT C2.cid
 FROM Customer C2, Item I2, Order R2
 WHERE C2.cid=R2.cid AND R2.iid=I2.iid
 AND I2.type=‘desktop’)

Unit 6 28

Division in SQL

Let’s do it the hard way

without EXCEPT:

select customer C such that ...

there is no item I…

which is not ordered by C

Find customers who’ve ordered all
items.

SELECT cname
FROM Customer C
WHERE NOT EXISTS
 ((SELECT I.iid
 FROM Item I)
 EXCEPT
 (SELECT R.iid
 FROM Order R
 WHERE R.cid=C.cid))

(2)

SELECT cname
FROM Customer C
WHERE NOT EXISTS (SELECT *
 FROM Item I
 WHERE NOT EXISTS (SELECT *
 FROM Order R
 WHERE R.iid=I.iid
 AND R.cid=C.cid))

(1)

4 How does it compare with RA/Datalog?

Unit 6 29

Aggregate Operators

 These functions operate on the multiset of values of a
column of a relation, and return a value

 AVG: average value
 MIN: minimum value
 MAX: maximum value
 SUM: sum of values
 COUNT: number of values

 The following versions eliminate duplicates before
apply the operation to attribute A:

 COUNT (DISTINCT A)
 SUM (DISTINCT A)
 AVG (DISTINCT A)

Unit 6 30

Aggregate Operators: Examples

SELECT AVG (salary)
FROM Customer
WHERE rating=10

SELECT COUNT (*)
FROM Customer

SELECT AVG (DISTINCT salary)
FROM Customer
WHERE rating=10

SELECT cname
FROM Customer C
WHERE C.rating= (SELECT MAX(C2.rating)
 FROM Customer C2)

SELECT COUNT (DISTINCT rating)
FROM Customer
WHERE salary BETWEEN 50 AND 100

Unit 6 31

 The first query is wrong!

WHY?

 Second query is fine: can use

 value = subquery

only if subquery returns single

value.

 The third query is equivalent to

the second query, and is allowed

in the SQL/92 standard, but is

not supported in some systems.

SELECT cname, MAX (salary)
FROM Customer

SELECT cname, salary
FROM Customer
WHERE salary =
 (SELECT MAX (salary)
 FROM Customer)

SELECT cname, salary
FROM Customer
WHERE (SELECT MAX (salary)
 FROM Customer)
 = salary

Aggregate Operators: Examples(cont)

Find name and salary of the richest customer(s)

Unit 6 32

GROUP BY and HAVING

 Often, we want to divide tuples into groups and apply
aggregate operations to each group.

 Example: Find the average salary of the customers in
each rating level.
 Suppose we know that rating values go from 1 to 10; we can

write 10 queries that look like this (!):

SELECT AVG (salary)
FROM Customer
WHERE rating = i

For i = 1, 2, ... , 10:

 Problem:

 We don’t know how many rating levels exist, and what the
rating values for these levels are!

 Solution:
 Use “GROUP BY” and/or “HAVING” clauses

Unit 6 33

GROUP BY and HAVING (cont)

 The target-list contains
(i) attribute names
(ii) terms with aggregate operations (e.g., AVG (salary)).

 Attributes in (i) must also be in grouping-list.
 each answer tuple corresponds to a group,
 a group is a set of tuples that have the same value for all attributes in

grouping-list
 selected attributes in (i) must have a single value per group.

 Attributes in group-qualification are either in grouping-list or are
arguments to an aggregate operator.

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification
ORDER BY target-list

Unit 6 34

Conceptual Evaluation of a Query

1. compute the cross-product of relation-list

2. keep only tuples that satisfy qualification

3. partition selected tuples into groups by the value of
attributes in grouping-list

4. keep only the groups that satisfy group-qualification
(expressions in group-qualification must have a single
value per group!)

5. keep only the fields that are in target-list

6. generate one answer tuple per qualifying group.

Unit 6 35

GROUP BY Example

 Example1: For each item, find the salary of the poorest customer who
has ordered this item:

 SELECT iid, MIN (salary)

 FROM Customer C, Order R

 WHERE C.cid= R.cid

 GROUP BY iid

Unit 6 36

GROUP BY Example: Default Evaluation

(cid) cname rating salary (cid) iid day qty

40 J. Justin 7 70 40 102 10/10/06 2

40 J. Justin 7 70 40 102 25/06/07 3

35 G. Grumpy 8 90 35 102 30/06/07 5

50 R. Rusty 10 80 50 105 11/12/06 5

C.cid=R.cid (Customer X Order)

Order
cid iid day qty

40 102 10/10/06 2

50 105 11/12/06 5

40 102 25/06/07 3

35 102 30/06/07 5

Customer

cid cname rating salary

40 J. Justin 7 70

35 G. Grumpy 8 90

50 R. Rusty 10 80

Unit 6 37

GROUP BY Example (cont’)

(cid) cname rating salary (cid) iid day qty

40 J. Justin 7 70 40 102 10/10/06 2

40 J. Justin 7 70 40 102 25/06/07 3

35 G. Grumpy 8 90 35 102 30/06/07 5

50 R. Rusty 10 80 50 105 11/12/06 5

C.cid=R.cid (Customer X Order) and grouped by iid

iid Min(salary)

102 70

105 80

Result

5,

5a

Unit 6 38

GROUP BY and HAVING Example

 Example2: For each item that has more than 2 orders, find
the salary of the poorest customer who has ordered this item:

 SELECT iid, MIN (salary)
 FROM Customer C, Order R
 WHERE C.cid= R.cid
 GROUP BY iid
 HAVING COUNT (*) > 2

6

Unit 6 39

Grouping Examples (contd.)

 Grouping over a join of two relations.
 What do we get if we:

(a) remove I.type=‘laptop’ from the WHERE clause, and then
(b) add a HAVING clause with this dropped condition?

 What if we replace
 COUNT (DISTINCT R.cid)
with
 COUNT (*) ?

SELECT I.iid, COUNT (DISTINCT R.cid) AS scount
FROM Item I, Order R
WHERE R.iid=I.iid AND I.type=‘laptop’
GROUP BY I.iid

For each laptop item, find the number of (distinct) customers who
ordered this item

Unit 6 40

More Grouping Examples

 Only rating can appear alone in the

SELECT and/or HAVING clauses.

 2nd column of result is unnamed.

(Use AS to name it.)

SELECT rating, AVG (salary)
FROM Customer
WHERE salary >= 50
GROUP BY rating
HAVING COUNT (*) > 1

cid cname rating salary

22 J. Justin 7 50

31 R. Rubber 8 55

71 Z. Zorba 10 16

64 H. Hasty 7 80

29 B. Brutus 1 50

58 R. Rusty 10 100

 rating salary

7 50

8 55

7 80

1 50

10 100

rating

7 55.0 65

For each rating that has at least 2
customers whose salary is at

least 50K, find the average salary
of these customers for that rating

Answer

relation

Customer

7

Unit 6 41

Grouping Examples (cont’)

 Shows HAVING clause can also contain a subquery.
 Compare this with the query where we concidered only ratings with

at least 2 customers with salary at least 50K!
 What if HAVING clause is replaced by:

 HAVING COUNT(*) >1

SELECT C.rating, AVG (C.salary)
FROM Customer C
WHERE C.salary >= 50
GROUP BY C.rating
HAVING 1 < (SELECT COUNT (*)
 FROM Customer C2
 WHERE C2.rating=C.rating)

For each rating that has at least 2 customers (of any salary), find the

average salary among the customers with that rating whose salary is

at least 50K.

8

Unit 6 42

Grouping Examples (contd.)

 WRONG! Aggregate operations cannot be nested!

 Correct solution (in SQL/92 and SQL/99)

SELECT C.rating
FROM Customer C
WHERE C.salary = (SELECT MIN (AVG (C2.salary)) FROM Customer C2)

SELECT Temp.rating, Temp.avgsalary
FROM (SELECT C.rating, AVG (C.salary) AS avgsalary
 FROM Customer C
 GROUP BY C.rating) AS Temp
WHERE Temp.avgsalary = (SELECT MIN (Temp.avgsalary)
 FROM Temp)

Find those ratings for which their average salary is the minimum
over all ratings

Unit 6 43

Null Values

 Tuples may have a null value, denoted by null, for some of
their attributes

 Value null signifies an unknown value or that a value does
not exist.

 The predicate IS NULL (IS NOT NULL) can be used
to check for null values.
 E.g., Find the names of the customers whose salary is not

known.

 SELECT cname
 FROM Customer
 WHERE salary IS NULL

 The result of any arithmetic expression involving null is
null
 E.g., 5 + null returns null.

Null Values and Three-Valued Logic

 To deal with null values we need a three-valued logic
using the truth value unknown:

 OR False Unknown True

 False F U T

Unknown U U T T

 True T T T U

Classical Logic is 2-valued. F

 Lattice of truth values in
 Kleene’s 3-valued logic.
Unit 6 44

Null Values and Three-Valued Logic

 To deal with null values we need a three-valued logic
using the truth value unknown:

 AND False Unknown True

 False F F F

Unknown F U U T

 True F U T U

Classical Logic is 2-valued. F

 Lattice of truth values in
 Kleene’s 3-valued logic.
Unit 6 45

Null Values and Three-Valued Logic

 To deal with null values we need a three-valued logic
using the truth value unknown:

 False Unknown True

 NOT T U F

 T

 U

Classical Logic is 2-valued. F

 Lattice of truth values in
 Kleene’s 3-valued logic.
Unit 6 46

Unit 6 47

Null Values and Three-Valued Logic

 In particular, note:
 OR: (unknown or true) = true, (unknown or false) = unknown

 (unknown or unknown) = unknown

 AND: (true and unknown) = unknown, (false and unknown) = false,
 (unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to unknown

 Any comparison with null returns unknown
 E.g. 5 < null or null <> null or null = null

 Result of where clause predicate is treated as false if predicate
evaluates to unknown

 All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes.

Summary of “impact” of null values

 Represent “unknown” or “inapplicable”.

 Make arithmetic expressions evaluate to “unknown” (U).

 Make logical expressions evaluate to T, U, of F.

 SQL treats truth value U in where clause as F.

 SQL ignores tuples with nulls on aggregated attr when
aggregating using any function save Count.

 SQL counts all tuples regardless of presence of nulls.

 SQL lets you test if a value is null via IS NULL and IS
NOT NULL.

Unit 6 48

Unit 6 49

Database Modification – Insertion

 Can insert a single tuple using:
 INSERT INTO Student
 VALUES (53688, ‘Smith’, ‘222 W.15th ave’, 333-4444, MATH)

 or

 INSERT INTO Student (sid, name, address, phone, major)
 VALUES (53688, ‘Smith’, ‘222 W.15th ave’, 333-4444, MATH)

 Add a tuple to student with null address and phone:

 INSERT INTO Student (sid, name, address, phone, major)
 VALUES (33388, ‘Chan’, null, null, CPSC)

What if there was a “not null” constraint on address or phone?

Unit 6 50

Database Modification – Insertion (contd.)

 Can add values selected from another table?
 Add an order for customer 222 for every laptop item

with date 1/1/07 and quantity 5
 INSERT INTO Order
 SELECT 222, iid, ‘1/1/07’, 5
 FROM Item
 WHERE type =‘laptop’
 The select-from-where statement is fully evaluated

before any of its results are inserted
 So, statements like

 INSERT INTO table1 SELECT FROM table1
are ok.

How would you say add orders for a specific item (iid)
from every customer rated at 6 or above?

Query-driven insert.

Unit 6 51

Database Modification – Deletion

 Note that only whole tuples are deleted.

 Can delete all tuples satisfying some condition (e.g.,
name = Smith):

 DELETE FROM Student

 WHERE name = ‘Smith’

 Delete all Customers whose salary is above the
average sailor salary:

DELETE FROM Customer

WHERE salary > (SELECT avg(salary)
 FROM Customer)

 Do you see any problem with this?

Unit 6 52

Database Modification – Updates

 Increase the rating of all customers by 2 (should not
be more than 10)

 Need to write two updates:
 UPDATE Customer

 SET rating = 10
WHERE rating >= 8

 UPDATE Customer

 SET rating = rating + 2
WHERE rating < 8

 Is the order important?

 How would you raise by 10% the

salary of every customer rated at

8 or above?

Alternatively, use case statement:

UPDATE Customer

SET rating = CASE
 WHEN rating< 8
 THEN rating+2
 WHEN rating >= 8
 THEN 10

 ELSE

 rating
 END

Unit 6 53

Views

 Provide a mechanism to hide certain data from certain
users. To create a view we use the command:

 CREATE VIEW vname AS <query expression>

 where:
 <query expression> is any legal SQL expression

 vname is the view name

 Example:

 CREATE VIEW LDOrder AS
 SELECT cid, iid, type, date
 FROM Item I, Order R
 WHERE I.iid = R.iid AND (type = ‘laptop’ OR
 type = ‘desktop’)

9

Unit 6 54

With Clause

 Allows views to be defined locally to a query, rather
than globally.

 Example:

WITH LDOrder(cid, iid, type, date) AS

 SELECT cid, iid, type, date

 FROM Item I, Order R

 WHERE I.iid = R.iid AND (type = ‘laptop’ OR

 type = ‘desktop’)

SELECT cid, cname

FROM Customer C, LDOrder R

WHERE C.cid = R.cid AND date > ‘1/1/07’

Unit 6 55

SQL’s Join Operators

 Join operations take two relations and return as a result another
relation.

 These additional operations are typically used as subquery
expressions in the from clause

 Join condition – defines which tuples in the two relations match,
and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not match
any tuple in the other relation (based on the join condition) are
treated.

Join Types

inner join

left outer join

right outer join

full outer join

Join Conditions

natural

on <predicate>

Example: SELECT S.name, E.dept, E.cno

 FROM Student S NATURAL LEFT OUTER JOIN Enrolled E
10

Unit 6 56

Integrity Constraints (Review)

 An IC describes conditions that every legal instance of
a relation must satisfy.
 Inserts/deletes/updates that violate IC’s are disallowed.

 Can be used to ensure application semantics (e.g., cid is a key),
or prevent inconsistencies (e.g., cname has to be a string,
salary must be < 200)

 Types of IC’s:

domain constraints,

primary key constraints,

foreign key constraints,

general constraints

Unit 6 57

General Constraints

 Create with a CHECK clause.

 Constraints can be named

 Can use subqueries to express
constraint

CREATE TABLE Customer
 cid INTEGER,
 cname CHAR(10),
 rating INTEGER,
 salary REAL,
 PRIMARY KEY (cid),
 CHECK (rating >= 1
 AND rating <= 10);

CREATE TABLE Order1
 (cid INTEGER,
 iid INTEGER,
 day DATE,
 qty REAL,
 PRIMARY KEY (cid, iid, day),
 CHECK (`Printer’ <>
 (SELECT I.type
 FROM Item I
 WHERE I.iid=iid)));

Check constraints

are checked when

tuples are inserted

or modified

Unit 6 58

Domain Constraints

 User can create a new domain and set constrains for it.

 Example:

 CREATE DOMAIN agedomain INTEGER

 DEFAULT 21

 CHECK (VALUE >= 1 AND VALUE <= 110)

 In current systems distinct domains are not distinct
types.

 New systems support distinct types

Unit 6 59

Constraints Over Multiple Relations

 Cannot be defined in one table.

 Are defined as ASSERTIONs which are not associated
with any one table.

 Example: Every student has taken at least one course.

CREATE ASSERTION totalEnrolment
CHECK
(NOT EXISTS ((SELECT sid FROM student)
 EXCEPT
 (SELECT sid FROM Enrolled)));

What would this IC look like in Datalog-like syntax?

Unit 6 71

Transactions

 A transaction is a sequence of queries and update statements
executed as a single unit
 Transactions are started implicitly and terminated by one of

o commit work: makes all updates of the transaction permanent in the database

o rollback work: undoes all updates performed by the transaction.

 Example
 Transfer of money from account A to account B involves two steps:

o deduct from A and add to B

 If one step succeeds and the other fails, database is in an inconsistent
state

 Therefore, either both steps should succeed or neither should

 If any step of a transaction fails, all work done by the transaction can
be undone by rollback work.

 Rollback of incomplete transactions is done automatically, in case of
system failures

Unit 6 72

Transactions (Contd.)

 In most database systems, each SQL statement that
executes successfully is automatically committed.
 Each transaction consists of only a single statement

 Automatic commit can usually be turned off, but how
to do so depends on the database system

 Another option in SQL:1999: enclose statements
within
 begin atomic
 …
 end

Unit 6 73

Summary

 SQL was an important factor in the early acceptance of
the relational model; more natural than earlier, procedural
query languages.

 Relationally complete; in fact, significantly more
expressive power than relational algebra.

 Consists of a data definition, data manipulation and query
language.

 Many alternative ways to write a query; optimizer looks
for most efficient evaluation plan.
 Holy Grail: users don’t have to care about efficiency, and relegate

finding an efficient plan to QOzer.

 In practice, users need to be aware of how queries are optimized
and evaluated for best results.

Unit 6 74

Summary (Contd.)

 NULL for unknown field values brings many
complications

 SQL allows specification of rich integrity constraints
(and triggers)

 Embedded SQL allows execution within a host
language; cursor mechanism allows retrieval of one
record at a time

 APIs such as ODBC and JDBC introduce a layer of
abstraction between application and DBMS

