
Unit 4 Schema Refinement and  
Normal Forms 

Readings : 

3rd edition: Chapter 19, sections 

19.1-19.6 (except 19.5.2),  or 

2nd edition: Chapter 15 sections 

15.1-15.7 
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In Databases so far …  

What’s great about databases?  

How to create a conceptual design using ER diagrams 

How to create a logical design by turning the ER 

diagrams into a relational schema including “minimizing“   

the data and relations created 

Now showing …  

Are we done (with the logical design)?  

How to refine that schema to reduce duplication of 

information 



Learning Goals  

Discuss pros and cons of redundancy in a database. 

Provide examples of update, insertion, and deletion 

anomalies. 

Given a set of tables and a set of functional 

dependencies over them, determine all the keys for the 

tables. 

Show that a table is/isn’t in 3NF or BCNF. 

Prove/disprove that a given table decomposition is a 

lossless join decomposition.  Justify why lossless join 

decompositions are preferred decompositions. 

Decompose a table into a set of tables that are in 3NF, 

or BCNF. 
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Consider the following entity set for mailing 
addresses at UBC: 
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Mailing address 

Name Department Address 

Meets all the criteria that we have for an entity 

There is nothing wrong with this entity 



What would an instance look like? 
Name Department Mailing Location 

Ed Knorr Computer Science 201-2366 Main Mall 

Raymond Ng Computer Science 201-2366 Main Mall 

Laks V.S. Lakshmanan Computer Science 201-2366 Main Mall 

Meghan Allan Computer Science 201-2366 Main Mall 

Joel Friedman Computer Science 201-2366 Main Mall 

Joel Friedman Math 121-1984 Mathematics Rd 

Brian Marcus Math 121-1984 Mathematics Rd 
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Problems?  1. space.  2. typos 3. changes (e.g., departments move, or  

change names) 

0,1 



Okay, that’s bad.  But how do I know if a 
department has just one address? 

Databases allow you to say that one attribute 

determines another through a functional dependency 

(FD).   

So if Department determines MailingLocation but not 

Name, we say that there’s a functional dependency from 

Department to MailingLocation.  But Department is NOT 

a key. 

 

Another example:  

Address(House#, Street, City,  

Province, PostalCode).  

PostalCode determines City, and  

    Province, but is NOT a key either.  
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Address House # 

Street City 

Province Postal code 
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Functional Dependencies (FDs) – 
technically speaking 

A functional dependency  XY   

(where X & Y are sets of attributes) 

holds if for every legal instance,   

for all tuples t1, t2 :   

if    t1.X = t2.X     then       t1.Y =  t2.Y 

Example:  

PostalCode  City, Province if: 

for each possible t1, t2, if t1.PostalCode = t2.PostalCode then  

                            (t1.{City,Province} = t2.{City,Province}) 

i.e., given two tuples in r, if the X values agree, then the Y 

values must also agree 

Also can be read as X determines Y 

 

Address House # 

Street City 

Province Postal code 



FDs made precise  

You’ve already seen a special case of FDs – Key 

Constraints.  

The FD Department  MailingLocation is supposed to 

hold for mailingAddress(Name, Department, 

MailingLocation).  

In Datalog notation, this means 

𝑚𝑎𝑖𝑙𝑖𝑛𝑔𝐴𝑑𝑑𝑟𝑒𝑠𝑠 _, 𝐷, 𝐴 ,𝑚𝑎𝑖𝑙𝑖𝑛𝑔𝐴𝑑𝑑𝑟𝑒𝑠𝑠 _, 𝐷, 𝐴′  
→ 𝐴 = 𝐴′.  

• The FD PostalCode  {City, Province} is supposed to 

hold for 

address(House#,Street,City,Province,PostalCode). In 

Datalog notation, 

𝑎𝑑𝑑𝑟𝑒𝑠𝑠 _, _, 𝐶, _, 𝑃𝐶 , 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 _, _, 𝐶′, _, 𝑃𝐶 → 𝐶 = 𝐶′. and 

• 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 _, _, _, 𝑃, 𝑃𝐶 , 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 _, _, _, 𝑃′, 𝑃𝐶 → 𝑃 = 𝑃′. 
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1.5 



Let’s see some more instances 
House # Street City Province Postal Code 

101 Main Street Vancouver BC V6A 2S5 

103 Main Street Vancouver BC V6A 2S5 

101 Cambie Street Vancouver BC V6B 4R3 

103 Cambie Street Vancouver BC V6B 4R3 

101 Main Street Delta BC V4C 2N1 

103 Main Street Delta BC V4C 2N1 
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Note: Key House#, Street, Postal Code 

FD:  

It looks like maybe CityProvince, but there’s a Victoria  

in BC, Newfoundland, and Ontario & a Delta in Ontario:  

Moral: can’t tell from instances 
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Which functional dependencies. again? 

A FD is a statement about all allowable instances. 

Must be identified by application semantics and at 

design time.  

Given some instance r1 of R, we can check if r1 

violates some FD f, but we cannot tell if f holds over 

R! 

We’ll concentrate on cases where there’s a single 

attribute on the RHS: (e.g., PostalCode  Province) 

There are boring, trivial cases: 

e.g.  PostalCode, House#  PostalCode 

Our focus: the non-boring ones 

 

 

Postal code  street?  Department  mailingLocation? 

Recall, r denotes instance and R denotes schema. 



Naming the Evils of Redundancy 

Let’s consider Postal Code  City, Province 

 

 

 

 

 

 

Update anomaly: Can we change Delta’s province? 

Insertion anomaly:  What if we want to insert that V6T 

1Z4 is in Vancouver? 

Deletion anomaly: If we delete all addresses with V6A 

2S5, we lose that V6A 2S5 is in Vancouver!  
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House # Street City Province Postal Code 

101 Main Street Vancouver BC V6A 2S5 

103 Main Street Vancouver BC V6A 2S5 

101 Cambie Street Vancouver BC V6B 4R3 

103 Cambie Street Vancouver BC V6B 4R3 

101 Main Street Delta BC V4C 2N1 

103 Main Street Delta BC V4C 2N1 

Nunavut 

Can we do better? 

Can’t do now without full address 



Once more try  

What if we tried… 

 

 

 

 

 

 

Did we lose anything?   

Are our problems fixed? 
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House # Street Postal Code 

101 Main Street V6A 2S5 

103 Main Street V6A 2S5 

101 Cambie Street V6B 4R3 

103 Cambie Street V6B 4R3 

101 Main Street V4C 2N1 

103 Main Street V4C 2N1 

City Province Postal 

 Code 

Vancouver BC V6A 2S5 

Vancouver BC V6B 4R3 

Delta BC V4C 2N1 

Okay, that worked pretty well.  

Would be nice to understand why it worked!  

Would be even better to understand when it would work.  



What do we need to know to split apart 

addresses without losing information?  

FDs tell us when we’re storing redundant information 

Reducing redundancy helps eliminate anomalies and 

save storage space 

We’d like to split apart tables without losing information 

 

 

13 

Suppose a schema R(A,B,C,D) is not known to satisfy any FDs.  

Can we split R in a lossless way?  



What do we need to know to split apart 

addresses without losing information?  

FDs tell us when we’re storing redundant information 

Reducing redundancy helps eliminate anomalies and 

save storage space 

We’d like to split apart tables without losing information 
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Suppose a schema R(A,B,C,D) does satisfy some FDs.  

Will any split of R be a lossless split?  



What do we need to know to split apart 

addresses without losing information?  

FDs tell us when we’re storing redundant information 

Reducing redundancy helps eliminate anomalies and 

save storage space 

We’d like to split apart tables without losing information 

 

 

But first, we need to know:  

what FDs are explicit (given) and  

what FDs are implicit (can be derived) 

Among other things, this can help us derive additional 

keys from the given keys (spare keys are handy in 

databases, just like in real life – we’ll see why shortly) 
15 
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The Key’s the key!  
As a reminder, a key is a minimal set of attributes that 
uniquely identify tuples in a relation 

i.e., a key is a minimal set of attributes that functionally 
determines all the attributes  

e.g., House#, Street, PostalCode is a key 

A superkey for a relation uniquely identifies the relation, but 
does not have to be minimal 

i.e.,: key  superkey  

E.g.,: 

House#, Street, PostalCode is a key and a super key 

House#, Street, PostalCode, Province is a superkey, 
but not a key 

2 
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Deriving Additional FDs:  
the basics 

Given some FDs, we can often infer additional FDs: 

sid city,  city acode implies    sid acode.  

An FD f is implied by a set of FDs F if f  holds whenever all 
FDs in F hold. 

(Consequence) closure of F :  the set of all FDs implied 
by F. 

Armstrong’s Axioms (X, Y, Z are sets of attributes): 

Reflexivity:  If  Y  X,  then   X  Y  
e.g., city,majorcity  

Augmentation:  If  X  Y,  then   X Z  Y Z   for any Z 
e.g., if sidcity, then sid,major  city,major 

Transitivity:  If  X  Y  and  Y  Z,  then   X  Z 
sid city,  city acode   implies    sid acode 

These are sound and complete inference rules for FDs. 

William W. Armstrong.  

Canadian, eh?  
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Deriving Additional FDs 

Couple of additional rules (that follow from axioms): 

Union:   If XY  and  XZ,   then  XY Z 

e.g., if sidacode and sidcity, then sidacode,city 

Decomposition:   If XY Z,   then  XY  and  XZ 

e.g., if sidacode,city then sidacode, and sidcity 

Examples:  

Derive union rule from axioms (Reflexivity, 

Augmentation, and Transitivity)  

Drive Decomposition rule from Reflex and Trans.  

Corollary: Given any set of FDs F, can convert F into an 

equivalent set of FDs F’, s.t. every FD in F’ is of the form 

XA, where X is a set of attributes and A is a single 

attribute.  

W
h
y
 d

o
 w

e care? G
reatly

 sim
p
lifies an

aly
sis!  
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Example: Supplier-Part DB  

Suppliers supply parts to projects. 

supplier attributes:  sname, city, status 

part attributes:  p#, pname 

supplier-part attributes:  qty: 

SupplierPart(sname,city,status,p#,pname,qty) 

 Functional dependencies:  

fd1: sname  city 

fd2: city  status 

fd3: p#  pname 

fd4: sname, p#  qty  
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Supplier-Part Key: Part 1: 
Determining all attributes 

Exercise: Show that (sname, p#) is a key of 

SupplierPart(sname,city,status,p#,pname,qty)  

 

 

 

 

 

 

 

 

 

 

 

  

fd1: sname  city 

fd2: city  status 

fd3: p#  pname 

fd4: sname, p#  qty 
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Supplier-Part Key: Part 1: 
Determining all attributes 

Exercise: Show that (sname, p#) is a key of 

SupplierPart(sname,city,status,p#,pname,qty)  

Proof has two parts: 

a.    Show: sname, p# is a (super)key 

1. sname, p#  sname,  p#       reflex 

2. sname  city      fd1.  

3. sname  status      2, fd2, trans 

4. sname,p#  city, p#                  2, aug 

5. sname,p#  status, p#         3, aug 

6. sname,p#  sname, p#, status    1, 5, union 

7. sname,p#  sname, p#, status, city    4, 6, union 

8. sname,p#  sname, p#, status, city, qty   7, fd4, union  

9. sname,p#sname,pname    fd3, aug.  

10. sname,p#  sname, p#, status, city, qty, pname 8, 9, union 

fd1: sname  city 

fd2: city  status 

fd3: p#  pname 

fd4: sname, p#  qty 
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Supplier-Part Key: Part 2: 
Minimality  

b. Show: (sname, p#) is a minimal superkey of 
SupplierPart(sname,city,status, p#,pname,qty) 

1. p# does not appear on the RHS of  
any FD therefore except for p# itself,  
nothing else determines p# 

3.  specifically, sname  p# does not hold 

4.  therefore, sname is not a key 

5. similarly, p# is not a key  

 

fd1: sname  city 

fd2: city  status 

fd3: p#  pname 

fd4: sname, p#  qty 



Functional dependencies & keys 
In a functional dependency, a set of attributes determines other 

attributes, e.g., ABC, means A and B together determine C 

A trivial FD determines what you already have, eg., ABB 

A key is a minimal set of attributes determining the rest of the 

attributes of a relation, e.g.,  

 R(House #, Street, City, Province, Postal Code) 

A super key is a set of attributes determining the rest of the 

attributes in the relation, but does NOT have to be minimal (e.g., the 

key above, or adding in either of City and Province) 

Given a set of (explicit) functional dependencies, we can derive 

others.  We’d covered how to do so using Armstrong’s axioms 

Theorem: R satisfying FDs F, decomposed into R1 and R2. It is 

lossless join (LLJ) iff one of these FDs is implied by F:  

R1   R2  R1 OR  

R1   R2  R2.  

Note the Key connection!  
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3 



24 

Do you, by any chance, have  
anything less painful? 

Scared you’re going to mess up? Closure for a set of attributes is a 

fool-proof method of checking FDs. 

Closure for a set of attributes X is denoted X+ 

X+ includes all attributes of the relation IFF X is a (super)key 

Algorithm for finding Closure of X: 

Set Closure = X 

Until Closure doesn’t change do 

 if A1, …, AnB is a FD and 𝐴1, … , 𝐴𝑛 ⊆ 

    Closure 

  then add B to Closure  

 

Ex: {sname,p#}+ =  

      {sname}+ = 

      {p#}+ = 

SupplierPart(sname,city,status,p#,pname,qty) 

fd1: sname  city 

fd2: city  status 

fd3: p#  pname 

fd4: sname, p#  qty 



Here’s a painless method  

Let R be a relation schema, i.e., R = a set of attributes.  

So to check if a set of attributes X ⊆ R is a superkey, 

just check to see if its closure = all the attributes, i.e., 

check if X+  = R     –   this is pretty simple!  

Additionally, if you want to check if X is a key, just check 

that for every subset Y of X, Y+ ≠ R.  

Do we need to do this check for every subset of X?  

If a subset Y of X is not a superkey, does any subset 

of Y have a chance?  

So, ∀𝐴 ∈ X, just check that (X−{𝐴})+ ≠ R.  

MUCH simpler!  
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4 



Flash back – our original question was …  

Name Department Mailing Location 

Ed Knorr Computer Science 201-2366 Main Mall 

Raymond Ng Computer Science 201-2366 Main Mall 

Laks V.S. Lakshmanan Computer Science 201-2366 Main Mall 

Meghan Allan Computer Science 201-2366 Main Mall 

Joel Friedman Computer Science 201-2366 Main Mall 

Joel Friedman Math 121-1984 Mathematics Rd 

Brian Marcus Math 121-1984 Mathematics Rd 
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• Is this a good design? 

• Is there a rule that says if the amount of redundancy that  

  we have is good?   
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Time we achieved some normalcy!  

Role of FDs in detecting redundancy: 

Consider a relation R with 3 attributes, A B C.   

No FDs hold:   There is no redundancy here. 

Given A   B:   Several tuples could have the 

same A value, and if so, they’ll all have the same 

B value! 

Normalization:  the process of removing redundancy 

from data 
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Normal Forms: Why have one rule 
when you can have four? 

Provide guidance for table refinement/reducing 

redundancy. 

Four important normal forms: 

First normal form(1NF) 

Second normal form (2NF) 

Third normal form (3NF) 

Boyce-Codd Normal Form (BCNF) 

If a relation is in a certain normal form, certain problems 

(aka anomalies!) are avoided/minimized.   

Normal forms can help decide whether decomposition (i.e., 

splitting tables) will help. 
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1NF 

Each attribute has only one value 

E.g., for “postal code” you can’t have 

both V6T 1Z4 and V6S 1W6 in the 

same tuple!  

Why do we need it?  Codd’s original vision 

of the relational model allowed multi-

valued attributes 
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2NF 

No partial key dependency 

A relation is in 2NF, if for every FD X→A where X 

is a (not necessarily primary) key and A is a non-

key attribute, then no proper subset of X 

determines A. Here, A is a non-key attribute.   

e.g., the relation 

address(house#,street,city,province,postal_code) 

relation is not in 2NF:  

house#, street, postal_code is a key 

postal_code  province  2NF-violating FD 

Other examples of 2NF violation?  

 



3NF 
A relation R is in 3NF if: 

     If X  A is a non-trivial dependency in R,    
    then X is a superkey for R 
    or A is part of a key.  

Note: Being part of a super key doesn’t count! Why? 
Super Key could contain “junk”.  

Example: address(Street, City, PostalCode), abbreviated 
to: address(S,C,P).  

FDs: SCP.  

  PC.  

Keys: SC, SP.  

Does it satisfy 3NF? What about 2NF?  

We will return to 3NF  a little later.  

 31 

i.e., whenever X  

determines a non-key  

attr, X better be a  

super key.  



32 

     Boyce-Codd Normal Form (BCNF) 

A relation R is in BCNF if: 

     If X  A is a non-trivial FD in  R,    

         then X is a superkey for R  

(Must be true for every such FD) 

 

Recall: A FD is trivial if the LHS contains  

the RHS, e.g., City, Province City is a trivial dependency 

In English:  

   Only (super)keys should determine other attributes.  

Ex: Address(House#, Street, City, Province, PostalCode) 

FD: PostalCode  City 

Is it in BCNF?  Why (not)? 

Raymond Boyce & Ted Codd 
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What do we want? 
Guaranteed freedom from redundancy! 

How do we get there?   

 

A relation may be in BCNF already!  

Interesting fact: all two attribute relations are in BCNF!  

Hint: What are the only possible non-trivial FDs in a 2-

attribute relation schema?  

 

If not, decomposition is the answer!  
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Decomposing a Relation 

A decomposition of R replaces R by two  

or more relations s.t.: 

Each new relation contains a subset of  

the attributes of R (and no attributes  

not appearing in R), and 

Every attribute of R appears in at least one new relation. 

Intuitively, decomposing R means storing instances of the 

relations produced by the decomposition, instead of 

instances of R. 

E.g., Address(House#,Street,City,Province,Postal Code) 

How can we decompose without losing information? 



How can we decompose a relation w/o 
losing information?  

Address(House#,Street,City,Province,Postal Code).  
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Address(House#,Street#,PostalCode) PC(City, Province, PostalCode) 

Does the above decomposition lose information?  

What does it mean to lose information?  

How can we tell if we lose?  

We need to know how the JOIN operation in  

Relational Algebra works, for this purpose.  
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A sneak preview: the join 

Definition: R1⋈  R2  is the join of the two relations; i.e., each 

tuple of R1 is concatenated with every tuple in R2 having the 

same values on the common attributes. 

 

A B C 

1 2 3 

4 5 6 

7 2 8 

1 2 8 

7 2 3 
 

 

B C 

2 3 

5 6 

2 8 
 

 

A B 

1 2 

4 5 

7 2 
 

 

R1 

R2 

R1⋈ R2 
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Lossless-Join Decompositions: 
Definition 

Informally: If we break a relation, R,  into bits, when we put the 

bits back together, we should get exactly R back again 

 

Formally: Decomposition of R into X and Y is lossless-join w.r.t. a 

set of FDs F if, for every instance r that satisfies F: 

If we JOIN the X-part of r with the Y-part of r the result is 

exactly r  

It is always true that r is a subset of the JOIN of its X-part 

and Y-part  

In general, the other direction does not hold!  If it does, the 

decomposition is a lossless-join.  

 

All decompositions used to resolve redundancy must be lossless!   
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Example Lossy-Join Decomposition 

A B C 

1 2 3 

4 5 6 

7 2 8 

1 2 8 

7 2 3 
 

 

A B C 

1 2 3 

4 5 6 

7 2 8 
 

 

(join) 

Note tuples 1 2 8  

and 7 2 3 not in 

original. 

B C 

2 3 

5 6 

2 8 
 

 

A B 

1 2 

4 5 

7 2 
 

 

decompose 

So what did we lose? 

⋈ 
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How do we decompose into BCNF 
losslessly? 

Let r be a relation with attributes R, and F be a set of 

FDs on R s.t. all FDs have a single attribute on the RHS.  

Pick any f  FD of the form XA that violates BCNF  

Decompose R into two relations: R1(R-A)  & R2(XA) 

Recurse on R1 and R2 using FDs 

   

   Pictorially: 

 

 

Note: answer may vary depending on order you choose.  

That’s okay  -- All final answers guaranteed to be in 

BCNF.  

Others A X 

R1 R2 
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BCNF Example 
Recall def. of BCNF: For all non-trivial FDs XA, X must be a superkey .  

 

E.g.: Relation: R(ABCD)             FD: BC, DA 

Keys? 

 A+ = A;   B+ = BC;   C+ = C;   D+ = AD;   BD+ = BDCA 

 BD is the only key 

Process R(ABCD).  

 Look at FD B C.  Is B a superkey?   
No.  Decompose R into R1(B,C), R2(A,B,D)  

BC is the only FD that applies to R1. R1 is in BCNF. Process R2(ABD).  

Look at FD D A. Is D a superkey for R2?   

 No. Decompose R2 into 

 R3(D,A), R4(D,B) 

Final answer: R1(B,C), R3(D,A), R4(D,B) 

{R1, R3, R4} is a LLJ decomposition of R.  

R1, R3, R4 are each in BCNF.  

B C AD 

D A B 
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Another BCNF Example 

R(ABCDE) 

FD: ABC,   DE.  

Generate the BCNF (lossless-join) decomposition of R. 

IOW, split up R into smaller relation schemas s.t. each 

of them is in BCNF and together they are LLJ.  



After you decompose, how do you 
know which FDs apply? 

Take the closure of the attributes using all FDs 

For an FD XA, if the decomposed relation S contains 

XA (i.e., X U {A}), then the FD holds for S: 

E.g., Consider relation R(A,B,C,D,E) with FDs AB → C, 

BC → D, CD → E, and DE → A. Is CD a super key? 

(CD)+ = CDEA ≠ R.  

Split R into R1(CDE) and R2(ABCD).  

Does CDA hold for R2?  

We need this knowledge in successfully completing a 

LLJ BCNF decomp. of R.  

42 

Yes.  Closure 
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Yet Another BCNF Example: 

R(A,B,C,D,E,F)   

FD =  

        AB 

        DE F,  

    BC 

Is it in BCNF?  If so, why.  If not, decompose into BCNF 
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This BCNF stuff is great and easy! 

Guaranteed that there will be no redundancy of data 

Easy to understand (just look for superkeys) 

Easy to do. 

So why are there more normal forms? 

For one thing, BCNF may not “preserve all 

dependencies”… 

      What does that mean?  
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An illustrative BCNF example 

Unit  Company 

Company, Product  Unit 

Key(s)? 

We lose the FD: Company, Product  Unit  !! 

Unit Company Product 

Unit Company Unit Product 

Unit  Company 

Company, Product 

Unit, Product 

BCNF:  

A must be superkey 
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So What’s the Problem? 

No problem so far. All local FD’s are satisfied. 

Let’s put all the data back into a single table again: 

Unit Company 

SKYWill UBC 

Team Meat UBC 

Unit Product 

SKYWill Databases 

Team Meat Databases 

Unit Company Product 

SKYWill UBC Databases 

Team Meat UBC Databases 

Unit  Company 

Company, Product  Unit Violates the FD: 

How could the dbms check if an update  

would violate the FD Company,Product 

Unit?  
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3NF to the rescue! 
Recall: A relation R is in 3NF if: 

     If X  A is a non-trivial dependency in R,    
    then X is a superkey for R 
    or A is part of a key.  

(must be true for every such functional dependency) 

 

Note: A must be part of a key not part of a superkey (if a 
key exists, all attributes are part of a superkey!) 

Example: R(Unit,Company, Product) 
FDs: Unit  Company  
        Company, Product  Unit 
Keys: {Company, Product}, {Unit,Product} 

Is it in BCNF?  3NF? 

To decompose into 3NF we rely on the minimal cover 

Company, Product = superkey 
BCNF, no. Company part of a key so 3nf 

BCNF 
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Minimal Cover for a Set of FDs 

Goal: Transform FDs to be as compact as possible 

Minimal cover  G for a set of FDs F: 

Closure of F  =  closure of G (i.e., imply the same FDs) 

RHS of each FD in G is a single attribute 

If we delete an FD in G or delete attributes from an FD in 

G, the closure changes 

Intuitively, every FD in G is needed, and is “as slim as 

possible’’ in order to get the same closure as F 

e.g.,  AB,  ABCDE,  EFGH,  ACDFEG has the 

following minimal cover: 

AB,  ACDE,  EFG  and  EFH 

We’ll see how to derive this on the next slide 



49 

Finding minimal covers of FDs 

1. Put FDs in standard form (have only one attribute on 

RHS) 

2. Minimize LHS of each FD 

3. Delete Redundant FDs 

 

Example: 

AB, ABCDE, EFGH, ACDF  EG 

1. Need ACDFE, ACDFG ?  

2. ABCDE goes to ACDE (closure) 

3. Redundant: ACDFE, ACDFG  

(take closure of ACDF w/o rule ACDFE) 

In the end: AB, ACDE, EFG, EFH 
 



Another minimal cover example 

Consider the relation R(CSJDPQV) with FDs 

CSJDPQV, JPC, SDP, JS 

 

Find a minimal cover 
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Decomposition into 3NF  
using Minimal Cover 

Decomposition into 3NF: 

1. Given the FDs  F, compute F': the minimal cover for F  

2. Obtain a BCNF decomposition of 𝑅, say 𝑅1, … , 𝑅𝑘.  

3. Clearly, this is also an LLJ 3NF decomp. of 𝑅 but may 

not preserve some FDs. So:  

3a. Project 𝐹 onto each 𝑅𝑖        𝐹𝑖.  

3b. 𝐹 ∖ ( 𝐹𝑖)1≤𝑖≤𝑘
+ is the set of FDs that are not 

preserved.  

3c. ∀such FD 𝑋 → 𝐴, add a scheme 𝑋𝐴 to the decomp. 
above. All FDs are obviously preserved now.   

Need an efficient algorithm for step 3b.  

Example: R(ABCDE)  FD: ABC, CD 

      



Synthesis of 3NF from scratch 

Conceptually simpler.  

Given a set of FDs 𝐹, obtain a minimal cover 𝐹’.  

∀FD 𝑋 → 𝐴 ∈ 𝐹′, create a scheme 𝑋𝐴.  

Resulting decomp. is guaranteed to preserve all FDs 

(trivially) and each scheme is in 3NF. But no guarantee 

for LLJ!  

Easy fix: add any scheme that contains a key of the 

original relation scheme 𝑅.  

Revisit previous example: R(ABCDE)  FD: ABC, CD. 
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Comparing BCNF & 3NF 

BCNF guarantees removal of all anomalies 

3NF has some anomalies, but preserves all 

dependencies 

If a relation R is in BCNF it is in 3NF.  

A 3NF relation R may not be in BCNF if all 3 of the 

following conditions are true:  

a. R has multiple keys 

b. Keys are composite (i.e. not single-attributed) 

c. These keys overlap  

 
                                            1NF                                  2NF                    3NF BCNF 
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On the one hand… 
Normalization and Design 

Most organizations go to 3NF or better 

If a relation has only 2 attributes, it is automatically in 3NF 

and BCNF 

Our goal is to use lossless-join for all decompositions and 

preserve dependencies 

BCNF decomposition is always lossless, but may not 

preserve dependencies 

Good heuristic : 

Try to ensure that all relations are in at least 3NF 

Check for dependency preservation  
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On the other hand… 
Denormalization 

Process of intentionally violating a normal form to gain 

performance improvements 

Performance improvements: 

Fewer joins 

Reduces number of foreign keys 

 Since FDs are often indexed, the number of indexes 

may be reduced 

Useful if certain queries often require (joined) results, and 

the queries are frequent enough 



Learning Goals Revisited  

Debate the pros and cons of redundancy in a database. 

Provide examples of update, insertion, and deletion 

anomalies. 

Given a set of tables and a set of functional 

dependencies over them, determine all the keys for the 

tables. 

Show that a table is/isn’t in 3NF or BCNF. 

Justify why lossless join decompositions are preferred 

decompositions. 

Decompose a table into a set of tables that are in 3NF, 

or BCNF. 

Additionally …  
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Given a set of FDs, find all keys of a relation scheme 

and prove that we have found them all.  

Find the minimal cover for a set of FDs.  

Test if a decomp. Is LLJ.  

Test if a decomp. is dependency preserving, i.e., 

preserves all FDs.  
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