
Unit 4 Schema Refinement and
Normal Forms

Readings :

3rd edition: Chapter 19, sections

19.1-19.6 (except 19.5.2), or

2nd edition: Chapter 15 sections

15.1-15.7

2

In Databases so far …

What’s great about databases?

How to create a conceptual design using ER diagrams

How to create a logical design by turning the ER

diagrams into a relational schema including “minimizing“

the data and relations created

Now showing …

Are we done (with the logical design)?

How to refine that schema to reduce duplication of

information

Learning Goals

Discuss pros and cons of redundancy in a database.

Provide examples of update, insertion, and deletion

anomalies.

Given a set of tables and a set of functional

dependencies over them, determine all the keys for the

tables.

Show that a table is/isn’t in 3NF or BCNF.

Prove/disprove that a given table decomposition is a

lossless join decomposition. Justify why lossless join

decompositions are preferred decompositions.

Decompose a table into a set of tables that are in 3NF,

or BCNF.

 3

Consider the following entity set for mailing
addresses at UBC:

4

Mailing address

Name Department Address

Meets all the criteria that we have for an entity

There is nothing wrong with this entity

What would an instance look like?
Name Department Mailing Location

Ed Knorr Computer Science 201-2366 Main Mall

Raymond Ng Computer Science 201-2366 Main Mall

Laks V.S. Lakshmanan Computer Science 201-2366 Main Mall

Meghan Allan Computer Science 201-2366 Main Mall

Joel Friedman Computer Science 201-2366 Main Mall

Joel Friedman Math 121-1984 Mathematics Rd

Brian Marcus Math 121-1984 Mathematics Rd

5

Problems? 1. space. 2. typos 3. changes (e.g., departments move, or

change names)

0,1

Okay, that’s bad. But how do I know if a
department has just one address?

Databases allow you to say that one attribute

determines another through a functional dependency

(FD).

So if Department determines MailingLocation but not

Name, we say that there’s a functional dependency from

Department to MailingLocation. But Department is NOT

a key.

Another example:

Address(House#, Street, City,

Province, PostalCode).

PostalCode determines City, and

 Province, but is NOT a key either.

6

Address House #

Street City

Province Postal code

7

Functional Dependencies (FDs) –
technically speaking

A functional dependency XY

(where X & Y are sets of attributes)

holds if for every legal instance,

for all tuples t1, t2 :

if t1.X = t2.X then t1.Y = t2.Y

Example:

PostalCode  City, Province if:

for each possible t1, t2, if t1.PostalCode = t2.PostalCode then

 (t1.{City,Province} = t2.{City,Province})

i.e., given two tuples in r, if the X values agree, then the Y

values must also agree

Also can be read as X determines Y

Address House #

Street City

Province Postal code

FDs made precise

You’ve already seen a special case of FDs – Key

Constraints.

The FD Department  MailingLocation is supposed to

hold for mailingAddress(Name, Department,

MailingLocation).

In Datalog notation, this means

𝑚𝑎𝑖𝑙𝑖𝑛𝑔𝐴𝑑𝑑𝑟𝑒𝑠𝑠 _, 𝐷, 𝐴 ,𝑚𝑎𝑖𝑙𝑖𝑛𝑔𝐴𝑑𝑑𝑟𝑒𝑠𝑠 _, 𝐷, 𝐴′
→ 𝐴 = 𝐴′.

• The FD PostalCode  {City, Province} is supposed to

hold for

address(House#,Street,City,Province,PostalCode). In

Datalog notation,

𝑎𝑑𝑑𝑟𝑒𝑠𝑠 _, _, 𝐶, _, 𝑃𝐶 , 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 _, _, 𝐶′, _, 𝑃𝐶 → 𝐶 = 𝐶′. and

• 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 _, _, _, 𝑃, 𝑃𝐶 , 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 _, _, _, 𝑃′, 𝑃𝐶 → 𝑃 = 𝑃′.
8

1.5

Let’s see some more instances
House # Street City Province Postal Code

101 Main Street Vancouver BC V6A 2S5

103 Main Street Vancouver BC V6A 2S5

101 Cambie Street Vancouver BC V6B 4R3

103 Cambie Street Vancouver BC V6B 4R3

101 Main Street Delta BC V4C 2N1

103 Main Street Delta BC V4C 2N1

9

Note: Key House#, Street, Postal Code

FD:

It looks like maybe CityProvince, but there’s a Victoria

in BC, Newfoundland, and Ontario & a Delta in Ontario:

Moral: can’t tell from instances

10

Which functional dependencies. again?

A FD is a statement about all allowable instances.

Must be identified by application semantics and at

design time.

Given some instance r1 of R, we can check if r1

violates some FD f, but we cannot tell if f holds over

R!

We’ll concentrate on cases where there’s a single

attribute on the RHS: (e.g., PostalCode  Province)

There are boring, trivial cases:

e.g. PostalCode, House#  PostalCode

Our focus: the non-boring ones

Postal code  street? Department  mailingLocation?

Recall, r denotes instance and R denotes schema.

Naming the Evils of Redundancy

Let’s consider Postal Code  City, Province

Update anomaly: Can we change Delta’s province?

Insertion anomaly: What if we want to insert that V6T

1Z4 is in Vancouver?

Deletion anomaly: If we delete all addresses with V6A

2S5, we lose that V6A 2S5 is in Vancouver!
11

House # Street City Province Postal Code

101 Main Street Vancouver BC V6A 2S5

103 Main Street Vancouver BC V6A 2S5

101 Cambie Street Vancouver BC V6B 4R3

103 Cambie Street Vancouver BC V6B 4R3

101 Main Street Delta BC V4C 2N1

103 Main Street Delta BC V4C 2N1

Nunavut

Can we do better?

Can’t do now without full address

Once more try

What if we tried…

Did we lose anything?

Are our problems fixed?

12

House # Street Postal Code

101 Main Street V6A 2S5

103 Main Street V6A 2S5

101 Cambie Street V6B 4R3

103 Cambie Street V6B 4R3

101 Main Street V4C 2N1

103 Main Street V4C 2N1

City Province Postal

 Code

Vancouver BC V6A 2S5

Vancouver BC V6B 4R3

Delta BC V4C 2N1

Okay, that worked pretty well.

Would be nice to understand why it worked!

Would be even better to understand when it would work.

What do we need to know to split apart

addresses without losing information?

FDs tell us when we’re storing redundant information

Reducing redundancy helps eliminate anomalies and

save storage space

We’d like to split apart tables without losing information

13

Suppose a schema R(A,B,C,D) is not known to satisfy any FDs.

Can we split R in a lossless way?

What do we need to know to split apart

addresses without losing information?

FDs tell us when we’re storing redundant information

Reducing redundancy helps eliminate anomalies and

save storage space

We’d like to split apart tables without losing information

14

Suppose a schema R(A,B,C,D) does satisfy some FDs.

Will any split of R be a lossless split?

What do we need to know to split apart

addresses without losing information?

FDs tell us when we’re storing redundant information

Reducing redundancy helps eliminate anomalies and

save storage space

We’d like to split apart tables without losing information

But first, we need to know:

what FDs are explicit (given) and

what FDs are implicit (can be derived)

Among other things, this can help us derive additional

keys from the given keys (spare keys are handy in

databases, just like in real life – we’ll see why shortly)
15

16

The Key’s the key!
As a reminder, a key is a minimal set of attributes that
uniquely identify tuples in a relation

i.e., a key is a minimal set of attributes that functionally
determines all the attributes

e.g., House#, Street, PostalCode is a key

A superkey for a relation uniquely identifies the relation, but
does not have to be minimal

i.e.,: key  superkey

E.g.,:

House#, Street, PostalCode is a key and a super key

House#, Street, PostalCode, Province is a superkey,
but not a key

2

17

Deriving Additional FDs:
the basics

Given some FDs, we can often infer additional FDs:

sid city, city acode implies sid acode.

An FD f is implied by a set of FDs F if f holds whenever all
FDs in F hold.

(Consequence) closure of F : the set of all FDs implied
by F.

Armstrong’s Axioms (X, Y, Z are sets of attributes):

Reflexivity: If Y  X, then X  Y
e.g., city,majorcity

Augmentation: If X  Y, then X Z  Y Z for any Z
e.g., if sidcity, then sid,major  city,major

Transitivity: If X  Y and Y  Z, then X  Z
sid city, city acode implies sid acode

These are sound and complete inference rules for FDs.

William W. Armstrong.

Canadian, eh?

18

Deriving Additional FDs

Couple of additional rules (that follow from axioms):

Union: If XY and XZ, then XY Z

e.g., if sidacode and sidcity, then sidacode,city

Decomposition: If XY Z, then XY and XZ

e.g., if sidacode,city then sidacode, and sidcity

Examples:

Derive union rule from axioms (Reflexivity,

Augmentation, and Transitivity)

Drive Decomposition rule from Reflex and Trans.

Corollary: Given any set of FDs F, can convert F into an

equivalent set of FDs F’, s.t. every FD in F’ is of the form

XA, where X is a set of attributes and A is a single

attribute.

W
h
y
 d

o
 w

e care? G
reatly

 sim
p
lifies an

aly
sis!

19

Example: Supplier-Part DB

Suppliers supply parts to projects.

supplier attributes: sname, city, status

part attributes: p#, pname

supplier-part attributes: qty:

SupplierPart(sname,city,status,p#,pname,qty)

 Functional dependencies:

fd1: sname  city

fd2: city  status

fd3: p#  pname

fd4: sname, p#  qty

20

Supplier-Part Key: Part 1:
Determining all attributes

Exercise: Show that (sname, p#) is a key of

SupplierPart(sname,city,status,p#,pname,qty)

fd1: sname  city

fd2: city  status

fd3: p#  pname

fd4: sname, p#  qty

21

Supplier-Part Key: Part 1:
Determining all attributes

Exercise: Show that (sname, p#) is a key of

SupplierPart(sname,city,status,p#,pname,qty)

Proof has two parts:

a. Show: sname, p# is a (super)key

1. sname, p#  sname, p# reflex

2. sname  city fd1.

3. sname  status 2, fd2, trans

4. sname,p#  city, p# 2, aug

5. sname,p#  status, p# 3, aug

6. sname,p#  sname, p#, status 1, 5, union

7. sname,p#  sname, p#, status, city 4, 6, union

8. sname,p#  sname, p#, status, city, qty 7, fd4, union

9. sname,p#sname,pname fd3, aug.

10. sname,p#  sname, p#, status, city, qty, pname 8, 9, union

fd1: sname  city

fd2: city  status

fd3: p#  pname

fd4: sname, p#  qty

22

Supplier-Part Key: Part 2:
Minimality

b. Show: (sname, p#) is a minimal superkey of
SupplierPart(sname,city,status, p#,pname,qty)

1. p# does not appear on the RHS of
any FD therefore except for p# itself,
nothing else determines p#

3. specifically, sname  p# does not hold

4. therefore, sname is not a key

5. similarly, p# is not a key

fd1: sname  city

fd2: city  status

fd3: p#  pname

fd4: sname, p#  qty

Functional dependencies & keys
In a functional dependency, a set of attributes determines other

attributes, e.g., ABC, means A and B together determine C

A trivial FD determines what you already have, eg., ABB

A key is a minimal set of attributes determining the rest of the

attributes of a relation, e.g.,

 R(House #, Street, City, Province, Postal Code)

A super key is a set of attributes determining the rest of the

attributes in the relation, but does NOT have to be minimal (e.g., the

key above, or adding in either of City and Province)

Given a set of (explicit) functional dependencies, we can derive

others. We’d covered how to do so using Armstrong’s axioms

Theorem: R satisfying FDs F, decomposed into R1 and R2. It is

lossless join (LLJ) iff one of these FDs is implied by F:

R1  R2  R1 OR

R1  R2  R2.

Note the Key connection!

23

3

24

Do you, by any chance, have
anything less painful?

Scared you’re going to mess up? Closure for a set of attributes is a

fool-proof method of checking FDs.

Closure for a set of attributes X is denoted X+

X+ includes all attributes of the relation IFF X is a (super)key

Algorithm for finding Closure of X:

Set Closure = X

Until Closure doesn’t change do

 if A1, …, AnB is a FD and 𝐴1, … , 𝐴𝑛 ⊆

 Closure

 then add B to Closure

Ex: {sname,p#}+ =

 {sname}+ =

 {p#}+ =

SupplierPart(sname,city,status,p#,pname,qty)

fd1: sname  city

fd2: city  status

fd3: p#  pname

fd4: sname, p#  qty

Here’s a painless method

Let R be a relation schema, i.e., R = a set of attributes.

So to check if a set of attributes X ⊆ R is a superkey,

just check to see if its closure = all the attributes, i.e.,

check if X+ = R – this is pretty simple!

Additionally, if you want to check if X is a key, just check

that for every subset Y of X, Y+ ≠ R.

Do we need to do this check for every subset of X?

If a subset Y of X is not a superkey, does any subset

of Y have a chance?

So, ∀𝐴 ∈ X, just check that (X−{𝐴})+ ≠ R.

MUCH simpler!

25

4

Flash back – our original question was …

Name Department Mailing Location

Ed Knorr Computer Science 201-2366 Main Mall

Raymond Ng Computer Science 201-2366 Main Mall

Laks V.S. Lakshmanan Computer Science 201-2366 Main Mall

Meghan Allan Computer Science 201-2366 Main Mall

Joel Friedman Computer Science 201-2366 Main Mall

Joel Friedman Math 121-1984 Mathematics Rd

Brian Marcus Math 121-1984 Mathematics Rd

26

• Is this a good design?

• Is there a rule that says if the amount of redundancy that

 we have is good?

27

Time we achieved some normalcy! 

Role of FDs in detecting redundancy:

Consider a relation R with 3 attributes, A B C.

No FDs hold: There is no redundancy here.

Given A  B: Several tuples could have the

same A value, and if so, they’ll all have the same

B value!

Normalization: the process of removing redundancy

from data

28

Normal Forms: Why have one rule
when you can have four?

Provide guidance for table refinement/reducing

redundancy.

Four important normal forms:

First normal form(1NF)

Second normal form (2NF)

Third normal form (3NF)

Boyce-Codd Normal Form (BCNF)

If a relation is in a certain normal form, certain problems

(aka anomalies!) are avoided/minimized.

Normal forms can help decide whether decomposition (i.e.,

splitting tables) will help.

29

1NF

Each attribute has only one value

E.g., for “postal code” you can’t have

both V6T 1Z4 and V6S 1W6 in the

same tuple!

Why do we need it? Codd’s original vision

of the relational model allowed multi-

valued attributes

30

2NF

No partial key dependency

A relation is in 2NF, if for every FD X→A where X

is a (not necessarily primary) key and A is a non-

key attribute, then no proper subset of X

determines A. Here, A is a non-key attribute.

e.g., the relation

address(house#,street,city,province,postal_code)

relation is not in 2NF:

house#, street, postal_code is a key

postal_code  province  2NF-violating FD

Other examples of 2NF violation?

3NF
A relation R is in 3NF if:

 If X  A is a non-trivial dependency in R,
 then X is a superkey for R
 or A is part of a key.

Note: Being part of a super key doesn’t count! Why?
Super Key could contain “junk”.

Example: address(Street, City, PostalCode), abbreviated
to: address(S,C,P).

FDs: SCP.

 PC.

Keys: SC, SP.

Does it satisfy 3NF? What about 2NF?

We will return to 3NF a little later.

 31

i.e., whenever X

determines a non-key

attr, X better be a

super key.

32

 Boyce-Codd Normal Form (BCNF)

A relation R is in BCNF if:

 If X  A is a non-trivial FD in R,

 then X is a superkey for R

(Must be true for every such FD)

Recall: A FD is trivial if the LHS contains

the RHS, e.g., City, Province City is a trivial dependency

In English:

 Only (super)keys should determine other attributes.

Ex: Address(House#, Street, City, Province, PostalCode)

FD: PostalCode  City

Is it in BCNF? Why (not)?

Raymond Boyce & Ted Codd

33

What do we want?
Guaranteed freedom from redundancy!

How do we get there?

A relation may be in BCNF already!

Interesting fact: all two attribute relations are in BCNF!

Hint: What are the only possible non-trivial FDs in a 2-

attribute relation schema?

If not, decomposition is the answer!

34

Decomposing a Relation

A decomposition of R replaces R by two

or more relations s.t.:

Each new relation contains a subset of

the attributes of R (and no attributes

not appearing in R), and

Every attribute of R appears in at least one new relation.

Intuitively, decomposing R means storing instances of the

relations produced by the decomposition, instead of

instances of R.

E.g., Address(House#,Street,City,Province,Postal Code)

How can we decompose without losing information?

How can we decompose a relation w/o
losing information?

Address(House#,Street,City,Province,Postal Code).

35

Address(House#,Street#,PostalCode) PC(City, Province, PostalCode)

Does the above decomposition lose information?

What does it mean to lose information?

How can we tell if we lose?

We need to know how the JOIN operation in

Relational Algebra works, for this purpose.

36

A sneak preview: the join

Definition: R1⋈ R2 is the join of the two relations; i.e., each

tuple of R1 is concatenated with every tuple in R2 having the

same values on the common attributes.

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

B C

2 3

5 6

2 8

A B

1 2

4 5

7 2

R1

R2

R1⋈ R2

37

Lossless-Join Decompositions:
Definition

Informally: If we break a relation, R, into bits, when we put the

bits back together, we should get exactly R back again

Formally: Decomposition of R into X and Y is lossless-join w.r.t. a

set of FDs F if, for every instance r that satisfies F:

If we JOIN the X-part of r with the Y-part of r the result is

exactly r

It is always true that r is a subset of the JOIN of its X-part

and Y-part

In general, the other direction does not hold! If it does, the

decomposition is a lossless-join.

All decompositions used to resolve redundancy must be lossless!

38

Example Lossy-Join Decomposition

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

(join)

Note tuples 1 2 8

and 7 2 3 not in

original.

B C

2 3

5 6

2 8

A B

1 2

4 5

7 2

decompose

So what did we lose?

⋈

39

How do we decompose into BCNF
losslessly?

Let r be a relation with attributes R, and F be a set of

FDs on R s.t. all FDs have a single attribute on the RHS.

Pick any f  FD of the form XA that violates BCNF

Decompose R into two relations: R1(R-A) & R2(XA)

Recurse on R1 and R2 using FDs

 Pictorially:

Note: answer may vary depending on order you choose.

That’s okay -- All final answers guaranteed to be in

BCNF.

Others A X

R1 R2

40

BCNF Example
Recall def. of BCNF: For all non-trivial FDs XA, X must be a superkey .

E.g.: Relation: R(ABCD) FD: BC, DA

Keys?

 A+ = A; B+ = BC; C+ = C; D+ = AD; BD+ = BDCA

 BD is the only key

Process R(ABCD).

 Look at FD B C. Is B a superkey?
No. Decompose R into R1(B,C), R2(A,B,D)

BC is the only FD that applies to R1. R1 is in BCNF. Process R2(ABD).

Look at FD D A. Is D a superkey for R2?

 No. Decompose R2 into

 R3(D,A), R4(D,B)

Final answer: R1(B,C), R3(D,A), R4(D,B)

{R1, R3, R4} is a LLJ decomposition of R.

R1, R3, R4 are each in BCNF.

B C AD

D A B

41

Another BCNF Example

R(ABCDE)

FD: ABC, DE.

Generate the BCNF (lossless-join) decomposition of R.

IOW, split up R into smaller relation schemas s.t. each

of them is in BCNF and together they are LLJ.

After you decompose, how do you
know which FDs apply?

Take the closure of the attributes using all FDs

For an FD XA, if the decomposed relation S contains

XA (i.e., X U {A}), then the FD holds for S:

E.g., Consider relation R(A,B,C,D,E) with FDs AB → C,

BC → D, CD → E, and DE → A. Is CD a super key?

(CD)+ = CDEA ≠ R.

Split R into R1(CDE) and R2(ABCD).

Does CDA hold for R2?

We need this knowledge in successfully completing a

LLJ BCNF decomp. of R.

42

Yes. Closure

43

Yet Another BCNF Example:

R(A,B,C,D,E,F)

FD =

 AB

 DE F,

 BC

Is it in BCNF? If so, why. If not, decompose into BCNF

44

This BCNF stuff is great and easy!

Guaranteed that there will be no redundancy of data

Easy to understand (just look for superkeys)

Easy to do.

So why are there more normal forms?

For one thing, BCNF may not “preserve all

dependencies”…

 What does that mean?

45

An illustrative BCNF example

Unit  Company

Company, Product  Unit

Key(s)?

We lose the FD: Company, Product  Unit !!

Unit Company Product

Unit Company Unit Product

Unit  Company

Company, Product

Unit, Product

BCNF:

A must be superkey

46

So What’s the Problem?

No problem so far. All local FD’s are satisfied.

Let’s put all the data back into a single table again:

Unit Company

SKYWill UBC

Team Meat UBC

Unit Product

SKYWill Databases

Team Meat Databases

Unit Company Product

SKYWill UBC Databases

Team Meat UBC Databases

Unit  Company

Company, Product  Unit Violates the FD:

How could the dbms check if an update

would violate the FD Company,Product

Unit?

47

3NF to the rescue!
Recall: A relation R is in 3NF if:

 If X  A is a non-trivial dependency in R,
 then X is a superkey for R
 or A is part of a key.

(must be true for every such functional dependency)

Note: A must be part of a key not part of a superkey (if a
key exists, all attributes are part of a superkey!)

Example: R(Unit,Company, Product)
FDs: Unit  Company
 Company, Product  Unit
Keys: {Company, Product}, {Unit,Product}

Is it in BCNF? 3NF?

To decompose into 3NF we rely on the minimal cover

Company, Product = superkey
BCNF, no. Company part of a key so 3nf

BCNF

48

Minimal Cover for a Set of FDs

Goal: Transform FDs to be as compact as possible

Minimal cover G for a set of FDs F:

Closure of F = closure of G (i.e., imply the same FDs)

RHS of each FD in G is a single attribute

If we delete an FD in G or delete attributes from an FD in

G, the closure changes

Intuitively, every FD in G is needed, and is “as slim as

possible’’ in order to get the same closure as F

e.g., AB, ABCDE, EFGH, ACDFEG has the

following minimal cover:

AB, ACDE, EFG and EFH

We’ll see how to derive this on the next slide

49

Finding minimal covers of FDs

1. Put FDs in standard form (have only one attribute on

RHS)

2. Minimize LHS of each FD

3. Delete Redundant FDs

Example:

AB, ABCDE, EFGH, ACDF  EG

1. Need ACDFE, ACDFG ?

2. ABCDE goes to ACDE (closure)

3. Redundant: ACDFE, ACDFG

(take closure of ACDF w/o rule ACDFE)

In the end: AB, ACDE, EFG, EFH

Another minimal cover example

Consider the relation R(CSJDPQV) with FDs

CSJDPQV, JPC, SDP, JS

Find a minimal cover

50

51

Decomposition into 3NF
using Minimal Cover

Decomposition into 3NF:

1. Given the FDs F, compute F': the minimal cover for F

2. Obtain a BCNF decomposition of 𝑅, say 𝑅1, … , 𝑅𝑘.

3. Clearly, this is also an LLJ 3NF decomp. of 𝑅 but may

not preserve some FDs. So:

3a. Project 𝐹 onto each 𝑅𝑖 𝐹𝑖.

3b. 𝐹 ∖ (𝐹𝑖)1≤𝑖≤𝑘
+ is the set of FDs that are not

preserved.

3c. ∀such FD 𝑋 → 𝐴, add a scheme 𝑋𝐴 to the decomp.
above. All FDs are obviously preserved now.

Need an efficient algorithm for step 3b.

Example: R(ABCDE) FD: ABC, CD

Synthesis of 3NF from scratch

Conceptually simpler.

Given a set of FDs 𝐹, obtain a minimal cover 𝐹’.

∀FD 𝑋 → 𝐴 ∈ 𝐹′, create a scheme 𝑋𝐴.

Resulting decomp. is guaranteed to preserve all FDs

(trivially) and each scheme is in 3NF. But no guarantee

for LLJ!

Easy fix: add any scheme that contains a key of the

original relation scheme 𝑅.

Revisit previous example: R(ABCDE) FD: ABC, CD.

52

54

Comparing BCNF & 3NF

BCNF guarantees removal of all anomalies

3NF has some anomalies, but preserves all

dependencies

If a relation R is in BCNF it is in 3NF.

A 3NF relation R may not be in BCNF if all 3 of the

following conditions are true:

a. R has multiple keys

b. Keys are composite (i.e. not single-attributed)

c. These keys overlap

 1NF 2NF 3NF BCNF

55

On the one hand…
Normalization and Design

Most organizations go to 3NF or better

If a relation has only 2 attributes, it is automatically in 3NF

and BCNF

Our goal is to use lossless-join for all decompositions and

preserve dependencies

BCNF decomposition is always lossless, but may not

preserve dependencies

Good heuristic :

Try to ensure that all relations are in at least 3NF

Check for dependency preservation

56

On the other hand…
Denormalization

Process of intentionally violating a normal form to gain

performance improvements

Performance improvements:

Fewer joins

Reduces number of foreign keys

 Since FDs are often indexed, the number of indexes

may be reduced

Useful if certain queries often require (joined) results, and

the queries are frequent enough

Learning Goals Revisited

Debate the pros and cons of redundancy in a database.

Provide examples of update, insertion, and deletion

anomalies.

Given a set of tables and a set of functional

dependencies over them, determine all the keys for the

tables.

Show that a table is/isn’t in 3NF or BCNF.

Justify why lossless join decompositions are preferred

decompositions.

Decompose a table into a set of tables that are in 3NF,

or BCNF.

Additionally …

 57

Given a set of FDs, find all keys of a relation scheme

and prove that we have found them all.

Find the minimal cover for a set of FDs.

Test if a decomp. Is LLJ.

Test if a decomp. is dependency preserving, i.e.,

preserves all FDs.

58

