

 Laks VS Lakshmanan; Based on Ramakrishnan & Gehrke, DB Management Systems

The Relational Model

Read Text Chapter 3

Unit 3 2

Learning Goals

 given an ER model of an application, design a minimum

number of correct tables that capture the information in it

 given an ER model with inheritance relations, weak

entities and aggregations, design the right tables for it

 given a table design, create correct tables for this design

in SQL, including primary and foreign key constraints

 compare different table designs for the same problem,

identify errors and provide corrections

Unit 3 3

Historical Perspective

 Introduced by Edgar Codd (IBM) in 1970

 Most widely used model today.

 Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.

 “Legacy systems” are usually hierarchical or network

models (i.e., not relational)

 e.g., IMS, IDMS, …

Historical Perspective

 Competitor: object-oriented model

 ObjectStore, Versant, Ontos

 A synthesis emerging: object-relational model

o Informix Universal Server, UniSQL, O2, Oracle, DB2

 Recent competitor: XML data model

 In all cases, relational systems have been extended to

support additional features, e.g., objects, XML, text,

images, …

Unit 3 4

Unit 3 5

Main Characteristics of the Relational Model

 Exceedingly simple to understand

 All kinds of data abstracted and represented as a table

 Simple query language separate from application

language

 Lots of bells and whistles to do complicated things

Unit 3 6

Structure of Relational Databases

 Relational database: a set of relations

 Relation: made up of 2 parts:
 Schema : specifies name of relation, plus name and domain

(type) of each field (or column or attribute).

o e.g., Student (sid: string, name: string, address: string,
phone: string, major: string).

 Instance : a table, with rows and columns.
#Rows = cardinality,

 #fields = dimension / arity / degree

Structure of Relational Databases

 Can think of a relation as a set of rows or tuples (i.e., all
rows are distinct)

 Relational Database Schema: collection of schemas in
the database

 Database Instance: a collection of instances of its
relations

Unit 3 7

Unit 3 8

Example of a Relation Instance

sid name address phone major

99111120 G. Jones
1234 W. 12

th

Ave., Van.
889-4444 CPSC

92001200 G. Smith
2020 E. 18

th
 St.,

Van
409-2222 MATH

94001020 A. Smith
2020 E. 18

th
 St.,

Van
222-2222 CPSC

94001150
Campeau

J.
null null null

 Cardinality = 4, degree/arity = 5, all rows distinct
 Order of rows isn’t important
 Order of fields – logically speaking not important,

but may be important for some query languages

Student

attribute/

column name/

field

column/

active

domain of

attribute

address

domain

value

tuple/

row/

record

relation

 name

Unit 3 9

Formal Structure

 Formally, an 𝑛-ary relation 𝑟 is a set of 𝑛-tuples

 (𝑎1, 𝑎2, … , 𝑎𝑛)

where 𝑎i is in 𝐷𝑖 , the domain (set of allowed values) of

the 𝑖-th attribute.

 Attribute values are atomic

 i.e., integers, floats, strings.

 Each attribute domain contains a special value null

indicating that the value is not known.

An entry cannot be a set or a tuple.

0

Formal Structure

 If 𝐴1,
, … , 𝐴𝑛 are attributes with domains 𝐷1, . . . 𝐷𝑛, then

 (𝐴1: 𝐷1, … , 𝐴𝑛: 𝐷𝑛) or 𝑅(𝐴1: 𝐷1, … , 𝐴𝑛: 𝐷𝑛)
is a relation schema that defines a relation type

 𝑟(𝑅) is a relation over the schema 𝑅 (or, of type 𝑅).

 Formally, 𝑟 ⊆ 𝐷1 × ⋯ × 𝐷𝑛, i.e., 𝑟 is a subset of the cross

product of its attribute domains.

Unit 3 10

Example of a formal definition

11

sid name address phone major

99111120 G. Jones
1234 W. 12th

Ave., Van.
889-4444 CPSC

92001200 G. Smith
2020 E. 18th St.,

Van
409-2222 MATH

94001020 A. Smith
2020 E. 18th St.,

Van
222-2222 CPSC

94001150 S. Wang null null null

 Student(sid: integer, name: string, address: string, phone:
string, major: string)

Or, without the domains:
 Student (sid, name, address, phone, major)

Student

1

What if

address

had to be

structured

into no,

street

and city?

Unit 3 12

Relational Query Languages

 A major strength of the relational model: supports simple,

powerful querying of data.

 Queries can be written intuitively, focusing on the what

and the DBMS is responsible for efficient evaluation, i.e.,

the how.

 Precise semantics for relational queries.

 Allows the optimizer to extensively re-order operations, and still

ensure that the answer does not change.

Unit 3 13

The SQL Query Language

 Developed by IBM (System R) in the 1970s

 Standards:

 SQL-86

 SQL-89 (minor revision)

 SQL-92 (major revision, current standard)

 SQL-99 (major extensions)

Unit 3 14

The SQL Query Language

 To find the id’s, names and phones of all CPSC students, we can write:

SELECT sid, name, phone
FROM Student
WHERE major=“CPSC”

To select whole rows , replace “SELECT sid, name, phone ”
 with “SELECT * ”

Student

sid name address phone major

99111120 G. Jones
1234 W. 12th

Ave., Van.
889-4444 CPSC

92001200 G. Smith
2020 E. 18th St.,

Van
409-2222 MATH

94001020 A. Smith
2020 E. 18th St.,

Van
222-2222 CPSC

sid name phone

99111120 G. Jones 889-4444

94001020 A. Smith 222-2222

Unit 3 15

Querying Multiple Tables

 To select id and names of the students who have taken

some CPSC course, we write:

sid name address phone major

99111120 G. Jones … … CPSC

… … …. … …

Student
sid dept course# mark

99111120 CPSC 122 80

… … …. …

Grade

SELECT sid, name

FROM Student, Grade

WHERE Student.sid = Grade.sid AND dept = ‘CPSC’

 Note: This query “joins” two tables.

 Need to create/define and populate tables first though…

Unit 3 16

Creating Relations in SQL/DDL

 The statement on right
 creates Student relation

 observe that the type (domain) of
each attribute is specified, and is
enforced by the DBMS whenever
tuples are added or modified

 The statement on right
 creates Grade relation

 information about courses that a
student takes

CREATE TABLE Student

 (sid CHAR(8),
 name CHAR(20),
 address CHAR(30),

 phone CHAR(13),
 major CHAR(4))

CREATE TABLE Grade

 (sid CHAR(8),
 dept CHAR(4),
 course# CHAR(3),
 mark INTEGER)

Just table name, its attributes and their types.

Unit 3 17

Destroying and Altering Relations

 Destroys the relation Student. The schema

information and the tuples are deleted.

DROP TABLE Student

 The schema of Students is altered by adding a new

attribute; every tuple in the current instance is

extended with a null value for the new attribute. Why

null?

ALTER TABLE Student
 ADD COLUMN gpa REAL;

Unit 3 18

Adding and Deleting Tuples

 Can insert a single tuple using:

INSERT

INTO Student (sid, name, address, phone, major)
VALUES (‘52033688’, ‘G. Chan’, ‘1235 W. 33, Van’,
 ‘604-882-4444’, ‘PHYS’)

 Can delete all tuples satisfying some condition (e.g.,
name = ‘Smith’):

DELETE
FROM Student
WHERE name = ‘Smith’

 Powerful variants of these commands are available; more later

Unit 3 19

Integrity Constraints (ICs)

 IC: condition that must be true for any instance of the

database; e.g., domain constraints

 ICs are specified when schema is defined

 ICs are checked when relations are modified

 A legal instance of a relation is one that satisfies all

specified ICs

 DBMS should not allow illegal instances

 Avoids data entry errors, too!

 The kinds of ICs depend of the data model.

 Our focus: ICs for relational databases

ICs

 We will several different kinds of ICs for relational DBs,

including

 Domain constraints: e.g., name must belong to char(40); salary

must be float.

 Key constraints: same meaning as in ER model.

 Functional Dependencies: generalization of key constraints.

 Foreign Key constraints.

 Ad hoc constraints can also be imposed: e.g., salary

cannot be negative.

Unit 3 20

Unit 3 21

Keys Constraints (for Relations)

 Similar to those for entity sets in the ER model

 A set 𝑆 = {𝐴1, 𝐴2, … , 𝐴𝑚} of attributes in an 𝑛-ary relation

(1 𝑚 ≤ 𝑛) is a key (or candidate key) for the relation if :

1. No two distinct tuples can have the same values in all

key attributes, and

2. No subset of 𝑆 is itself a key (according to (1)).

(If such a subset exists, then S is a superkey and not a key.)

 One of the possible keys is chosen (by the DBA) to be the

primary key.

 e.g.

 {sid, gpa} is a superkey

 sid is a key and the primary key for Students

A key is any minimal superkey.

minimal −/→ minimum.

Unit 3 22

Keys Constraints in SQL

 Candidate keys are specified using the UNIQUE

constraint

 values for a group of fields must be unique (if they are not null)

 these fields can be null

 A PRIMARY KEY constraint specifies a table’s primary

key

 values for primary key must be unique

 primary key attributes cannot be null

 Key constraints are checked when

 new values are inserted

 values are modified

1a

A “Key” Note – The Big Picture

 A table has several keys, in general. – called candidate

keys.

 One of them is declared to be the primary key.

 All candidate keys, whenever not null, must be unique.

 Primary key cannot ever be null.

 Where do all these keys come from? IOW, how can we

tell which are the (candidate) keys of a table?

 For now, just based on intuition and our understanding of an

application and of the meaning of attributes.

 In reality, (some) design specs are translated into special integrity

constraints called functional dependencies, from which keys are

derived.

Unit 3 23

Unit 3 24

Key Constraints in SQL (contd.)

CREATE TABLE Grade
 (sid CHAR(8)
 dept CHAR(4), course# CHAR(3),

 mark INTEGER,
 PRIMARY KEY (sid,dept,course#))

 (Ex.1- Normal) “For a
given student and
course, there is a single
grade.”

CREATE TABLE Grade2
 (sid CHAR(8)
 dept CHAR(4), course# CHAR(3),

 mark CHAR(2),
 PRIMARY KEY (sid,dept,course#),
 UNIQUE (dept,course#,mark))

vs.

 (Ex.2 - Silly) “Students
can take a course once,
and receive a single
grade for that course;
further, no two students
in a course receive the
same grade.”

2

This time, not just attributes & types, but also (key) constraints.

Unit 3 25

Foreign Keys (or Referential Integrity)

Constraints

 Foreign key : Set of fields in one relation that is used to
‘reference’ a tuple in another (or same) relation.
 Must correspond to the primary key of the other relation.

 Like a ‘logical pointer’.

 Note: There are no physical pointers in the relational model.

 e.g.:
 Grade(sid string, dept string, course# string, mark integer)
 sid is a foreign key referring to Student:

 (dept, course#) is a foreign key referring to Course

 Referential integrity: All foreign keys reference existing
entities.
 i.e. there are no dangling references

 all foreign key constraints are enforced,.

o e.g, of a “data model” w/o RICs: html!

Some Common Examples of Referential

Integrity

Unit 3 26

Crux: You can’t refer to something that doesn’t exist.

∀entity, there must be a “home table” where you’d look it up to see

if it existed.

You can’t rate a song that doesn’t exist, i.e., is not

listed in the Songs table, say.

Some Examples

There can’t be a grade for something that is not a course nor for

someone who isn’t a registered bona fide student.

You can’t borrow something from a library that is not a publication,

nor return it.

List your examples here.

Unit 3 27

Foreign Keys in SQL

 Only students listed in the Students relation should be

allowed to have grades for courses.

CREATE TABLE Grade
 (sid CHAR(8), dept CHAR(4), course# CHAR(3), mark INTEGER,
 PRIMARY KEY (sid,dept,course#),
 FOREIGN KEY (sid) REFERENCES Student,
 FOREIGN KEY (dept, course#) REFERENCES Course)

sid dept course# mark

53666 CPSC 101 80

53666 RELG 100 45

53650 MATH 200 null

53666 HIST 201 60

Grade
sid name address Phone major

53666 G. Jones …. … …

53688 J. Smith …. … …

53650 G. Smith …. … …

Student

3

Unit 3 28

Enforcing Referential Integrity

 Consider Students and Grade; sid in Grade is a foreign key

that references Student.

 What should be done if a Grade tuple with a non-existent

student id is inserted? (Reject it!)

 What should be done if a Student tuple is deleted?

 Also delete all Grade tuples that refer to it?

 Disallow deletion of this particular Student tuple?

 Set sid in Grade tuples that refer to it, to a default sid.

 Set sid in Grade tuples that refer to it, to null, (the special value denoting

`unknown’ or `inapplicable’.)

o problem if sid is part of the primary key

 Similar if primary key of a Student tuple is updated

Unit 3 29

Referential Integrity in SQL/92

 SQL/92 supports all 4 options

on deletes and updates.

 Default is NO ACTION

(delete/update is rejected)

 CASCADE (also

updates/deletes all tuples

that refer to the

updated/deleted tuple)

 SET NULL / SET DEFAULT

(referencing tuple value is

set to the default foreign

key value)

CREATE TABLE Grade
 (sid CHAR(8), dept CHAR(4),
 course# CHAR(3), mark INTEGER,
 PRIMARY KEY (sid,dept,course#),
 FOREIGN KEY (sid)
 REFERENCES Student
 ON DELETE CASCADE

 ON UPDATE CASCADE

 FOREIGN KEY (dept, course#)
 REFERENCES Course
 ON DELETE SET DEFAULT

 ON UPDATE CASCADE);

Unit 3 30

More ICs in SQL

 SQL supports two types of IC’s

 table constraints

 assertions

 Table constraints

 are part of the table definition

 domain, key, referential constraints, etc

 Checked when a table is created or modified

 Assertions

 Involve more than one table

 Checked when any of the tables is modified

 SQL constraints can be named

 CONSTRAINT studentKey PRIMARY KEY (sid)

 Constraints can be set to be

 DEFERRED (applied at the end of the transaction

 IMMEDIATE (applied at the end of a SQL statement)

 More on constraints when we discuss SQL in depth.

Which among EGDs and

TGDs do Key constraints

and RICs resemble?

Unit 3 31

Where do ICs Come From?

 ICs are based upon the semantics of the real-world enterprise

being described (using the database relations).

 We can check a database instance to verify a given IC, but we

cannot tell what the ICs are just by looking at the instance.

 For example, even if all student names differ, we cannot

assume that name is a key.

 An IC is a statement about all possible (i.e., legal) instances.

 What if we added (`Jane Doe’, 123-7654, `765 Fraser’)?

Name Phone Address

John Doe 123-4567 123 Main St.

Peter Bloe 765-4321 765 Cambie St.

Jane Doe 234-5678 234 Oak St.

Where do ICs come from?

 All constraints must be identified during the conceptual design.

 Some constraints can be explicitly specified in the conceptual model

 Primary Key and foreign key ICs are shown on ER diagrams.

 Others are written in a more general language.

Unit 3 32

Unit 3 33

Logical DB Design: ER to Relational

Entity sets to tables.

 Each strong entity set is mapped to a table.

 entity attributes = table attributes

 entity keys = table keys

 CREATE TABLE Employee
 (sin CHAR(11),
 name CHAR(20),
 salary FLOAT,
 PRIMARY KEY (sin))

Employee

sin
name

salary

Unit 3 34

Relationship Sets to Tables: Simple Case

 Relationship set has no constraints

(i.e., many-to-many partial)

 In this case, it is mapped to a new

table.

 Attributes of the table must include:

 Keys for each participating

entity set as foreign keys.

o This set of attributes forms

a key for the relation.

 All descriptive attributes.

CREATE TABLE Works_In(
 sin CHAR(11),
 did INTEGER,
 since DATE,
 PRIMARY KEY (sin, did),
 FOREIGN KEY (sin)
 REFERENCES Employee,
 FOREIGN KEY (did)
 REFERENCES Department)

salary

dname

budget did

since
name

Works_In Department Employee

sin

sin and did

CANNOT

be null

Unit 3 35

Relationship Sets to Tables (contd.)

 In some cases, we need to use the

roles:

Prerequisite

title

no

Course

prereq course

dept CREATE TABLE Prerequisite(
 course_dept CHAR(4),
 course_no CHAR(3),
 prereq_dept CHAR(4),
 prereq_no CHAR(3),
 PRIMARY KEY (course_dept, course_no,
 prereq_dept, prereq_no),
 FOREIGN KEY (course_dept, course_no)
 REFERENCES Course(dept, course#),
 FOREIGN KEY (prereq_dept, prereq_no)
 REFERENCES Course(dept, course#))

Pay attention to the

roles in case of

self-relationship

sets.

Unit 3 36

Relationship Sets with Cardinality

Constraints

 Each dept has at most one manager, according to the key constraint

on Manages.

 How should we represent Manages?

dname

budget did

since

salary

name

sin

Manages Employee Department

Unit 3 37

Translating ER Diagrams with Key Constraints

 WRONG WAY:

 Create a separate table
for Manages:

 Note that did is the key
now!

 Create separate tables
for Employee and
Department.

CREATE TABLE Manages(
 sin CHAR(11),
 did INTEGER,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (sin) REFERENCES Employee,
 FOREIGN KEY (did) REFERENCES Department)

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 sin CHAR(11),
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (sin) REFERENCES Employee)

 RIGHT WAY

 Since each department

has a unique manager,

we can combine

Manages and

Department into one

table.

 Create another table for

Employee
4

Qn: how can we state

the participation constraint

Every dept must have a manager?

Unit 3 38

Translating Participation Constraints

 Every department must have a (unique) manager.

 Every did value in Department table must appear in a row of the

Manages table (with a non-null sin value)

 How can we express that in SQL?

dname

budget did

since

salary

name

sin

Manages Employee Department

Unit 3 39

Participation Constraints in SQL

 Using the right method for Manages (add Manages relation in the Department
table), we can capture participation constraints by

 ensuring that each did is associated with a sin that is not null

 not allowing to delete a manager before he/she is replaced

CREATE TABLE Dept_Mgr(
 did INTEGER,

 dname CHAR(20),
 budget REAL,
 sin CHAR(11) NOT NULL,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (sin) REFERENCES Employee,
 ON DELETE NO ACTION

 ON UPDATE CASCADE)
 Note: We cannot express this easily if the wrong method was used for

Manages.

Unit 3 40

Participation Constraints in SQL (contd.)

 How can we express that

“every employee works in one or more departments and every

department has one or more employees in it”?

 Neither foreign-key nor not-null constraints in Works_In can do the

job.

 We need assertions (to be discussed later)

dname

budget did

since

salary

name

sin

Works-In Employee Department

𝐷𝑒𝑝𝑡 𝐷𝑖𝑑, 𝐷𝑛, 𝐵 → ∃𝑆, 𝑆𝑖𝑛 𝑊𝐼 𝑆𝑖𝑛, 𝐷𝑖𝑑, 𝑆 .

Unit 3 41

Translating Weak Entity Sets

 A weak entity is identified by considering the primary key of the owner

(strong) entity.

 Owner entity set and weak entity set participates in a one-to-many

identifying relationship set.

 Weak entity set has total participation.

 What is the best way to translate it?

salary

name

birthday pname

Dependent Employee

sin

Policy

allowance

Unit 3 42

Translating Weak Entity Sets (contd.)

 Weak entity set and its identifying relationship set are translated into a
single table.

 Primary key would consist of the owner’s primary key and week entity’s
partial key

 When the owner entity is deleted, all owned weak entities must also be
deleted.

CREATE TABLE Dependent (
 pname CHAR(20),
 birthday DATE,
 allowance REAL,
 sin CHAR(11) NOT NULL,
 PRIMARY KEY (sin, pname),
 FOREIGN KEY (sin) REFERENCES Employees,
 ON DELETE CASCADE,

 ON UPDATE CASCADE)
5

Could ON

DELETE

NO ACTION

ever make

sense for this

case?

Unit 3 43

Translating ISA Hierarchies to Tables

 What is the best way to translate this into tables?

Contract_Emp

name

sin

Employee

salary

hourly_rate

Hourly_Emp

contractid

hours

Unit 3 44

First Attempt : Totally unsatisfactory

One table per entity. Each has all attributes:

Employee(sin, name, salary)

Hourly_Emp(sin, name, salary, hourly_rate, hours)

Contract_Emp(sin, name, salary, contractid)

Contract_Emp

name

ssn

Employee

salary

hourly_rate

Hourly_Emp

contractid

hours

 Safe but with
lots of
duplication

 Not a good
answer!

Unit 3 45

Method 1 : One table

 One table which has all attributes and a type field which can have values

to identify the type of the employee:

 Employee(sin, name, salary, hourly_rate, hours, contractid, type)

Contract_Emp

name

ssn

Employee

salary

hourly_rate

Hourly_Emp

contractid

hours

 Wastes a lot of
space for null
values

 Worse when there
are many
subclasses with
many attributes

 Excellent method
if subclasses do not
have any new
attributes and
relationships

If subclasses do not have special attrs of their own, was it

necessary to model diff. categories of emp’s as subclasses?

Unit 3 46

Method 2: Tables for superclass and subclasses

 Superclass table contains all superclass attributes

 Each subclass table contains primary key of superclass and the

subclass attributes

Employee(sin, name, salary)

Hourly_Emp(sin, hourly_rate, hours)

Contract_Emp(sin, contractid)

Contract_Emp

name

sin

Employee

salary

hourly_rate

Hourly_Emp

contractid

hours

• Works well for queries

involving only

superclass attributes or

only the extra subclass

attributes

• Have to combine two

tables to get all

attributes for a

subclass

Unit 3 47

Method 3: Only subclass tables

 No table for superclass

 One table per subclass containing
 all superclass and subclass attributes

 Hourly_Emp(sin, name, salary, hourly_rate, hours)

 Contract_Emp(sin, name, salary, contractid)

Contract_Emp

name

sin

Employee

salary

hourly_rate

Hourly_Emp

contractid

hours

 If ISA-relation is partial, it

cannot be applied (may

loose entities)

 Works poorly if the

superclass participates in

any relationship (should

not be applied in that

case)

 If ISA-relation is not

disjoint, it duplicates info

Summary for Translating ISA to Tables

 If subclasses have no new attributes or if they all
have the same attributes and relationships

 One table with all attributes and an extra category
attribute for the subclasses

 If we need the subclasses, we can define them as
views

 If ISA is total and disjoint, subclasses have different
attributes or different relationships and there is no
need to keep the superclass

 No table for the superclass

 One table for each subclass with all attributes

 Otherwise (if ISA is partial or overlapping and
subclasses have new and different attributes….)

 A table for the superclass and one for each subclass

Unit 3 48 6

Unit 3 49

Translating Aggregation

 Use standard mapping of

relationship sets

 Tables for our example :

 Visits(sin, bname)

 Drinks(sin, bname, dname, date)

 Special Case:

 If Drinks is total on Visits and

Visits has no descriptive attributes

we could keep only the Drinks table

(discard Visits).

type bname

Bar Visits

name

Person

sin

date
Drinks

Drink dname

Unit 3 50

Views

 A view is just a virtual table, often defined using a query:

Normally, we only store the view’s definition, rather than

the rows in the view query’s result.

CREATE VIEW CourseWithFails(dept, course#, title, mark) AS
 SELECT C.dept, C.course#, title, mark
 FROM Course C, Enrolled E
 WHERE C.dept = E.dept AND
 C.course# = E.course# AND mark<50

 Views can be used as any other table.

 System usually evaluates them on the fly.

 Views can be dropped using the DROP VIEW command.

Unit 3 51

Views and Security

 Views can be used to present necessary information

(or a summary), while hiding details in underlying

relation(s).

 Given CourseWithFails, but not Course or Enrolled, we can

find the course in which some students failed, but we can’t find

which students failed.

 What kind of users might such a view be appropriate for?

 Views can be used to define subsets of entities and

relationships that have to satisfy certain constraints.

Unit 3 52

View Updates

 View updates must occur at the base tables.
 Ambiguous

 Difficult

 DBMS’s restrict view updates only to some simple views
on single tables (called updatable views)

 How to handle DROP TABLE if there’s a view on the
table?

 DROP TABLE command has options to prevent a table
from being dropped if views are defined on it:
 DROP TABLE Student RESTRICT

o drops the table, unless there is a view on it

 DROP TABLE Student CASCADE

o drops the table, and recursively drops any view defined on it

7

Unit 3 53

Relational Model: Summary

 A tabular representation of data.

 Simple and intuitive, currently the most widely used.

 Integrity constraints can be specified, based on

application semantics. DBMS checks for violations.

 Important ICs: primary and foreign keys

 Additional constraints can be defined with assertions

(but are expensive to check)

 Powerful and natural query languages exist.

 Rules to translate ER to relational model

 SQL lets us specify ICs more general than just primary

keys.

 SQL ICs are still restricted special cases of EGDs and

TGDs.

