Review

DB Design

- Entities, Relationships, and Attributes
 - (Primary) Keys of entities
 - Datalog-like notation & EGDs
 - Cardinality Constraints on Relationships
 - (Primary) Keys of relationships
 - Participation Constraints & TGDs
 - Weak and strong entities
 - ISA hierarchies generalization & specialization (disjoint vs overlapping; partial vs total)
 - Aggregation
- Designing a conceptual DB schema involves picking features and constructs from the above to specify the DB schema
- Several constraints of application not captured in a ER diagram

Relational DB design

- Basic concepts
 - Creating & altering tables in SQL
 - Specifying constraints
 - Primary vs candidate keys
 - Foreign keys and referential integrity constraints (RICs)
 - Converting an ER diagram to a relational db schema in SQL
 - Specifying constraints in SQL and in Datalog
 - Use of views

Schema Refinement (Normalization)

- Pitfalls in DB scheme design redundancy & anomalies
 - FDs
 - Lossless-join split (decomposition)
 - Armstrong's Axioms, FD Inference, super keys and (candidate) keys
 - Proofs, Closure, Finding all candidate keys
 - Normal Forms
 - 3NF
 - BCNF
 - Lossless-join decomposition into BCNF
 - ... into 3NF
 - 3NF design via synthesis (need Minimal Cover)
 - FD-preserving designs

RA & Datalog

- RA: basic ops and additional/derived ops.
 - − Diff. b/w − and \neq .
 - Various joins, division, ∩, and assignment.
 - Beyond division.
 - Max/min queries.
- Datalog Lite and Datalog Full.
 - Basic (SPJ) queries.
 - ¬ VS ≠.
 - Queries with multiple rules.
 - Max/min queries.

SQL

- Full-fledged data manipulation language
- Queries
 - Duplicate elimination using DISTINCT
 - String manipulation, Ordering output
 - Set ops and their bag variants
 - IN, NOT IN, op ANY, op ALL, EXISTS, NOT EXISTS, UNIQUE, NOT UNIQUE
 - Aggregation, Group By, Having
 - Null Values
 - Views, WITH clause, special Joins
 - Integrity Constraints
- Insert, Delete, Update & Transactions

Concurrency Control

- ACID properties of transactions
- Schedules and Conflicts
 - RW, WR, and WW
 - (un)recoverable schedules and cascaded aborts
 - Conflict serializability
 - View serializability
- protocols for ensuring CC
 - Regular, strict, conservative 2PL
 - Deadlocks detection, resolution, and prevention
 - Phantom problem
 - Timestamp based

Crash Recovery

- Buffer management
 (no) steal, (no) force
- Key steps of ARIES algorithm
- Logging and Checkpointing
- Undo/Redo Logging
- Recovering from a crash
- Interaction w/ CC mechanism