
CPSC 404, Laks V.S. Lakshmanan 1

Tree-Structured Indexes
BTrees -- ISAM

Chapter 10 – Ramakrishnan & Gehrke

(Sections 10.1-10.2)

CPSC 404, Laks V.S. Lakshmanan 2

What will I learn from this
lecture?

 Basics of indexes

 What are data entries?

 Basics of tree-structured indexing
– ISAM (Indexed Sequential Access Method).

– and its limitations.

 ISAM – precursor for B-trees.

CPSC 404, Laks V.S. Lakshmanan 3

Motivation

 On the one hand, user wants to keep as
much data as possible, e.g., set of songs and
reviews, 100 million records, …

 On the other hand, user also wants
performance e.g., searching 100 million
records in real time

 Key: indexing

 Two main categories to be considered
– Tree-structured

– Hashing

CPSC 404, Laks V.S. Lakshmanan 4

Basics – Data Entries
 Example table: reviews(revid:integer,

sname:string, rating:integer, time:time)
 Field op value ----Index-- data entries.
 For any index, there are 3 alternatives for

data entries k*:
• Data record with key value k
• <k, rid of data record with search key value k>

e.g., <revid, sname> (typically, primary key)
• <k, list of rids of data records with search key

k> e.g., rating or time (typically secondary key)

 Choice is orthogonal to the indexing
technique used to locate data entries k*.

 When would you choose which option?

CPSC 404, Laks V.S. Lakshmanan 5

Basics – Clustered Index

 What about the physical address of the records?

 Strictly speaking, pairs <rid, addr> but omit addr for
simplicity

 If the data records are physically sorted on
indexed attr A, we say A has a clustered index

 Otherwise, we call the index non-clustered (or
unclustered)
– Implication: records not contiguously stored, may need one

disk access (i.e., random I/O) per record in the worst case

– Remember, random I/O is much more expensive than
sequential I/O.

CPSC 404, Laks V.S. Lakshmanan 6

A schematic view of a clustered
index

A
=

1
6

7

A
=

1
0

0

…

Consider a file of records with fields A, B, …, sorted on A.

Here is a clustered index on A.

CPSC 404, Laks V.S. Lakshmanan 7

A schematic view of an
unclustered index

B
=

3
2

B
=

2
0

These schematics are for illustrative purposes only. Actual
structures may vary depending on details of implementation.

If file is sorted on A, it is not sorted on B, in general.

CPSC 404, Laks V.S. Lakshmanan 8

Basics – Tree-structured
Indexing
 Tree-structured indexing techniques

support both range searches and equality
searches
– range: e.g., find all songs with rating >= 8
– equality:

 ordered domains: degenerate case of a range
 unordered domains: e.g., sname=“International love”

– But, for unordered domains, hierarchies may
induce natural ranges: e.g., song_genre =“hiphop”;
B-trees don’t handle that!

 ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

CPSC 404, Laks V.S. Lakshmanan 9

Range Searches

 ``Find all songs with at least one rating >=8’’
– If data is sorted on rating, do binary search to

find first such song, then scan to find others.

– Cost of binary search can be quite high. (Why?)

 Simple idea: Create an `index’ file.

 Can do binary search on (smaller) index file!

Page 1 Page 2 Page N Page 3 Data File

k2 kN k1
Index File

CPSC 404, Laks V.S. Lakshmanan 10

ISAM

 Index file may still be quite large. But we
can apply the idea repeatedly!

 Leaf pages contain data entries.

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

CPSC 404, Laks V.S. Lakshmanan 11

Example ISAM Tree

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

CPSC 404, Laks V.S. Lakshmanan 12

After Inserting 23*, 48*, 41*,
42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Suppose we now delete 42*, 51*, 97*.

CPSC 404, Laks V.S. Lakshmanan 13

...Then Deleting 42*, 51*,
97*

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41* Overflow

Pages

Leaf

Index

Pages

Pages

Primary

note that 51 still appears in the index page!

CPSC 404, Laks V.S. Lakshmanan 14

Comments on ISAM

 File creation: Leaf (data) pages allocated
sequentially, sorted by search key; then index pages
 allocated, then space for overflow pages.

 Index entries: <search key value, page id>; they
 `direct’ search for data entries, which are in leaf
 pages.

 Search: Start at root; use key comparisons to go to leaf.
Cost log F N ; F = # pointers/index pg, N = # leaf pgs

 Insert: Find leaf that data entry belongs to, and put it there,
which may be in the primary or overflow area.

 Delete: Find and remove from leaf; if empty overflow page,
de-allocate.

 Static tree structure: inserts/deletes affect only leaf pages.



Data Pages

Index Pages

Overflow Pages

CPSC 404, Laks V.S. Lakshmanan 15

Evaluation of ISAM

 is a static indexing structure

 works well for certain applications
– few updates, e.g., dictionary

 frequent updates may cause the structure
to degrade
– index pages never change

– some range of values may have too many overflow
pages

– e.g., inserting many values between 40 and 51.

CPSC 404, Laks V.S. Lakshmanan 16

Lead up to B-Trees

 ISAM done right!

 Improve upon ISAM idea using lessons
learned.

 Don’t leave index structure static.

 Adapt it to changes (i.e., updates to
underlying data).

 ISAM – almost certainly won’t be used for
any current apps.

