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Tree-Structured Indexes 
BTrees -- ISAM  

Chapter 10 – Ramakrishnan & Gehrke 

(Sections 10.1-10.2)   
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What will I learn from this 
lecture? 

 Basics of indexes  

 What are data entries?  

 Basics of tree-structured indexing  
– ISAM (Indexed Sequential Access Method).  

– and its limitations.  

 ISAM – precursor for B-trees.  
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Motivation 

 On the one hand,  user wants to keep as 
much data as possible, e.g., set of songs and 
reviews, 100 million records, … 

 On the other hand, user also wants 
performance  e.g., searching 100 million 
records in real time 

 Key: indexing  

 Two main categories to be considered 
– Tree-structured 

– Hashing  
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Basics – Data Entries  
 Example table: reviews(revid:integer, 

sname:string, rating:integer,  time:time)  
 Field op value ----Index-- data entries.  
 For any index, there are 3 alternatives for 

data entries k*: 
•  Data record with key value k 
•  <k, rid of data record with search key value k>            

e.g., <revid, sname> (typically, primary key)  
•  <k, list of rids of data records with search key 

k>    e.g., rating or time (typically secondary key)  

 Choice is orthogonal to the indexing 
technique used to locate data entries k*. 

 When would you  choose which option?  
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Basics – Clustered Index 

 What about the physical address of the records? 

 Strictly speaking, pairs <rid, addr> but omit addr for 
simplicity 

 If the data records are physically sorted on       
indexed attr A, we say A has a clustered index 

 Otherwise, we call the index non-clustered (or 
unclustered)  
– Implication: records not contiguously stored, may need one 

disk access (i.e., random I/O) per record in the worst case 

– Remember, random I/O is much more expensive than 
sequential I/O.  
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A schematic view of a clustered 
index  
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Consider a file of records with fields A, B, …, sorted on A.  

Here is a clustered index on A.  
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A schematic view of an  
unclustered index 
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These schematics are for illustrative purposes only. Actual  
structures may vary depending on details of implementation.  

If file is sorted on A, it is not sorted on B, in general.  
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Basics – Tree-structured 
Indexing 
 Tree-structured indexing techniques 

support both range searches and equality 
searches 
– range: e.g.,  find all songs with rating >= 8 
– equality:  

 ordered domains: degenerate case of a range 
 unordered domains: e.g., sname=“International love”  

– But, for unordered domains, hierarchies may 
induce natural ranges: e.g., song_genre =“hiphop”; 
B-trees don’t handle that!  

 ISAM:  static structure;  B+ tree:  dynamic, 
adjusts gracefully under inserts and deletes. 
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Range Searches 

 ``Find all songs with at least one rating >=8’’  
– If data is sorted on rating, do binary search to 

find first such song, then scan to find others. 

– Cost of binary search can be quite high. (Why?) 

 Simple idea:  Create an `index’ file. 

 Can do binary search on (smaller) index file! 

Page 1 Page 2 Page N Page 3 Data File 

k2 kN k1 
Index File 
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ISAM 

 Index file may still be quite large.  But we 
can apply the idea repeatedly! 

 Leaf pages contain data entries. 
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Example ISAM Tree 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 
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After Inserting 23*, 48*, 41*, 
42* ... 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

23* 48* 41* 

42* 

Overflow 

Pages 

Leaf 

Index 

Pages 

Pages 

Primary 

Suppose we now delete 42*, 51*, 97*. 
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...Then Deleting 42*, 51*, 
97* 

10* 15* 20* 27* 33* 37* 40* 46* 55* 63* 

20 33 51 63 

40 

Root 

23* 48* 41* Overflow 

Pages 

Leaf 

Index 

Pages 

Pages 

Primary 

note that 51 still appears in the index page! 
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Comments on ISAM 

 File creation:  Leaf (data) pages allocated                  
sequentially, sorted by search key; then index pages 
 allocated, then space for overflow pages. 

 Index entries:  <search key value, page id>;  they     
 `direct’ search for data entries, which are in leaf 
 pages. 

 Search:  Start at root; use key comparisons to go to leaf.  
Cost     log F N ; F = # pointers/index pg, N = # leaf pgs 

 Insert:  Find leaf that data entry belongs to, and put it there, 
which may be in the primary or overflow area.  

 Delete:  Find and remove from leaf; if empty overflow page, 
de-allocate.  

 Static tree structure:  inserts/deletes affect only leaf pages. 



Data Pages 

Index Pages 

Overflow Pages 
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Evaluation of ISAM 

 is a static indexing structure 

 works well for certain applications 
– few updates, e.g., dictionary 

 frequent updates may cause the structure 
to degrade 
– index pages never change 

– some range of values may have too many overflow 
pages 

– e.g., inserting many values between 40 and 51.  
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Lead up to B-Trees  

 ISAM done right!  

 Improve upon ISAM idea using lessons 
learned.  

 Don’t leave index structure static.  

 Adapt it to changes (i.e., updates to 
underlying data).  

 ISAM – almost certainly won’t be used for 
any current apps.  


