
CPSC 404, Laks V.S. Lakshmanan 1

Hash-Based Indexes

Chapter 11 Ramakrishnan & Gehrke

(Sections 11.1-11.4)

CPSC 404, Laks V.S. Lakshmanan 2

What you will learn from this
set of lectures

 Review of static hashing

 How to adjust hash structure dynamically
against inserts and deletes?
– Extendible hashing

– Linear hashing.

– Relative strengths of B+trees and Hashing:
when to use what.

CPSC 404, Laks V.S. Lakshmanan 3

Introduction

 Hash-based indexes are best for equality
selections
– no traversal; direct computation of where k* should

be

– cannot support range searches.

 Static and dynamic hashing techniques exist;
trade-offs similar to ISAM vs. B+ trees, on a
certain level.

CPSC 404, Laks V.S. Lakshmanan 4

Static Hashing
 # primary pages fixed, allocated sequentially, never

de-allocated; overflow pages if needed.

 h(k) mod M = bucket to which data entry with key k
(i.e., k*) belongs. (M = # of buckets)

h(key) mod M

h
key

Primary bucket pages Overflow pages

1

0

M-1

CPSC 404, Laks V.S. Lakshmanan 5

Static Hashing (Contd.)

 Buckets contain data entries.

 Bucket size could be more than 1 block.

 Hash fn works on search key field of record r. Must
distribute values over range 0 ... M-1.

– h(key) = (key mod M) usually works well for prime M.

– lots known about how to tune h.

 Long overflow chains can develop and degrade
performance (when there are updates).

– Extendible and Linear Hashing: two major dynamic techniques
to fix this problem.

CPSC 404, Laks V.S. Lakshmanan 6

Extendible Hashing

 Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of
buckets?
– Reading and writing all pages is expensive!

 and is needlessly prodigal on resource use.

– Idea: Use directory of pointers to buckets, double
of buckets by doubling the directory †, splitting
just the bucket that overflowed!

– Directory much smaller than file, so doubling it is
much cheaper. Only one page of data entries is split.
No overflow page!

– Trick lies in how hash function is adjusted!
†Not always necessary!

CPSC 404, Laks V.S. Lakshmanan 7

Example

 Directory is array of size 4.
 To find bucket for r, take last

`global depth’ # bits of h(r)
– e.g., h(r) = 5 = binary 101, it

is in bucket pointed to by 01.

 hash fn used: h(k) = k (for
illustration only).

 Insert: If bucket is full, split it (allocate new page, re-distribute
 data entries). E.g., consider insert 20*.

 If necessary, double the directory. (As we will see, splitting a
 bucket does not always require doubling; we can tell by
 comparing global depth with local depth for the split bucket.)

13* 00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

CPSC 404, Laks V.S. Lakshmanan 8

Example – Remarks.

 Depth – deals with how many bits from the
hash address suffix we examine at a given
time.

 Global depth = what’s the #bits needed to
correctly find the home bucket for an
arbitrary data entry, in general?

 Local depth of bkt B = how many bits did I
really need to look at to get to bucket B?

 Global depth >= local depth.
 Check this on examples.
 Is this possible: GD > all LDs?

CPSC 404, Laks V.S. Lakshmanan 9

Insert h(r)=20 - Part 1

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12*

•Suppose h(k) = k for this

 example.

•Bucket A split into 2 using

 an extra bit, i.e., 3 bits

• A divisible by 8, i.e., 1000

• A2 divisible by 4, i.e., 100

• note that only one bucket

 needs to be re-distributed,

 i.e., re-hashed

• B, C, D remain unchanged

• Where to link A2?

CPSC 404, Laks V.S. Lakshmanan 10

Insert h(r)=20 – Part 2

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

LOCAL DEPTH

GLOBAL DEPTH
• double the directory
• add 1 to global depth & to
 local depth of A/A2.
• now can distinguish
 between A and A2
• notice the difference
 in local depth between
 buckets
• multiple pointers to the
 same bucket
• Review properties of LD
 & GD.

CPSC 404, Laks V.S. Lakshmanan 11

Points to Note
 20 = binary 10100. Last 2 bits (00) tell us r belongs in A

or A2. Last 3 bits needed to tell which.
– Global depth of directory: min # of bits needed to tell which

bucket an entry belongs to = max{local depths}.

– Local depth of a bucket: # of bits used to determine if an entry
belongs to this bucket.

 When does bucket split cause directory doubling?
– Before insert, local depth of bucket = global depth. Insert causes

local depth to become > global depth; directory is doubled by
copying it over and `fixing’ pointer to split image page. (Use of
least significant bits enables efficient doubling via copying of
directory!)

 What happens when 9* is inserted?

CPSC 404, Laks V.S. Lakshmanan 12

Comments on Extendible
Hashing

 If directory fits in memory, equality search answered
with one disk access; else two.

– 100MB file, 100 bytes/rec, 4K page; contains 1,000,000 records
(as data entries); 40 records/page 106/40 = 25,000 pages of
data entries; as many directory elements; can handle using 15bit
addresses; chances are high that directory will fit in memory.

– Directory grows in spurts, and, if the distribution of hash values
is skewed, directory can grow large.

 Delete: If removal of data entry makes bucket empty,
– check to see whether all `split images’ can be merged

– if each directory element points to the same bucket as its split
image, can halve directory

– rarely done in practice (e.g., leave room for future insertions).

CPSC 404, Laks V.S. Lakshmanan 13

Linear Hashing

 An extension to Extendible Hashing, in spirit.

 LH tries to avoid the creation/maintenance of a
directory.

 Idea: Use a family of hash functions h0, h1, h2, ...
– N = initial # buckets = 2d0

– h is some hash function (range is not 0 to N-1)

– hi consists of applying h and looking at the last di bits,
where di = d0 + i.

– hi+1 doubles the range of hi (similar to directory doubling)

– e.g., h = binary representation, d0 = 2, d1 = 3, d2 = 4, ...

CPSC 404, Laks V.S. Lakshmanan 14

Overview of LH File

 Note: bucket split need not be bucket where
insertion and/or overflow occurred.

 Directory avoided in LH by using overflow pages, and
choosing bucket to split round-robin.

– Next – pointer to current bucket, i.e., next bucket
likely to be split.

– Splitting proceeds in `rounds’. Round ends when all
NR initial (for round R) buckets are split. Buckets 0
to Next-1 have been split; Next to NR-1 yet to be
split.

– Current round number is Level.

– Level and R used interchangeably.

CPSC 404, Laks V.S. Lakshmanan 15

Overview of LH File (Contd.)

 In the middle of a round.

Level h

Buckets that existed at the

beginning of this round:

this is the range of

Next Buckets to be split

of other buckets) in this round

Level h search key value) (

search key value) (

Buckets split in this round:

If

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in

created (through splitting

`split image' buckets:

Level = R.

CPSC 404, Laks V.S. Lakshmanan 16

Example of Linear Hashing

• starts with 4 buckets
• all buckets to be split in a

round-robin fashion,
starting from the first
one

0
h h

1

(This info

is for illustration

only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=

0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary

bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

CPSC 404, Laks V.S. Lakshmanan 17

Example – Inserting 43*

• h0 (43) = 11 => overflow

• overflow page exists!

• splitting occurs but to
the Next bucket

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=

1

PRIMARY

PAGES

44* 36*

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW

PAGES

43*

00 100

CPSC 404, Laks V.S. Lakshmanan 18

Linear Hashing - insertions
 Insert: Find bucket by applying hLevel / hLevel+1:

– If bucket to insert into is full:

Add overflow page and insert data entry.

(Maybe) Split Next bucket and increment Next.

 Can choose any criterion to `trigger’ split.
 Since buckets are split round-robin, long

overflow chains don’t develop!

CPSC 404, Laks V.S. Lakshmanan 19

Example: End of a Round (Inserting
37*,29*, 22*,66*,34*,50*)

0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW

PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

Level=1

111

11

PRIMARY

PAGES
OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

back to deletion

CPSC 404, Laks V.S. Lakshmanan 20

Linear Hashing - Searching

 Search: To find bucket for data entry r, find
hLevel(r):

If hLevel(r) in range `Next to NR-1’ , r belongs
here.

Else, r could belong to bucket hLevel(r) or bucket
hLevel(r) + NR ; must apply hLevel+1(r) to find out.

CPSC 404, Laks V.S. Lakshmanan 21

LH – Deletion

 Inverse of insertion.

 If last bkt is empty, remove it and
decrement Next.

 More generally, can combine last bkt with
its split image even if non-empty. Criterion
may be based on bkt occupancy level.

CPSC 404, Laks V.S. Lakshmanan 22

LH – Deletion (example)

0 h h 1

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW

PAGES

32*

9*

5*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

After deleting 14*, 22*

Delete 30*

0 h h 1

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0

32*

9*

5*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

Next=2

CPSC 404, Laks V.S. Lakshmanan 23

Summary

 Hash-based indexes: best for equality searches.

 Static Hashing can lead to long overflow chains.

 EH avoids overflow pages by splitting a full bucket when a
new data entry is to be added to it.

– Directory to keep track of buckets, doubles periodically.

– Can get large with skewed data; additional I/O if this does not fit
in main memory.

 LH avoids directory by splitting buckets round-robin, and
using overflow pages.

– Overflow pages not likely to be long.

