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Hash-Based Indexes 

Chapter 11 Ramakrishnan & Gehrke  

(Sections 11.1-11.4)  
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What you will learn from this 
set of lectures  

 Review of static hashing  

 How to adjust hash structure dynamically 
against inserts and deletes?  
– Extendible hashing  

– Linear hashing.  

– Relative strengths of B+trees and Hashing: 
when to use what.  
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Introduction 

 Hash-based indexes are best for equality 
selections 
– no traversal; direct computation of where k* should 

be 

– cannot support range searches. 

 Static and dynamic hashing techniques exist; 
trade-offs similar to ISAM vs. B+ trees, on a 
certain level.  
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Static Hashing 
 # primary pages fixed, allocated sequentially, never 

de-allocated; overflow pages if needed. 

 h(k) mod M = bucket to which data entry with key k  
(i.e., k*) belongs. (M = # of buckets) 

h(key) mod M 

h 
key 

Primary bucket pages Overflow pages 

1 

0 

M-1 
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Static Hashing (Contd.) 

 Buckets contain data entries. 

 Bucket size could be more than 1 block.  

 Hash fn works on search key field of record r.  Must 
distribute values over range 0 ... M-1. 

– h(key) =  (key  mod M) usually works well for prime M. 

– lots known about how to tune h. 

 Long overflow chains can develop and degrade 
performance (when there are updates).  

– Extendible and Linear Hashing: two major dynamic techniques 
to fix this problem. 
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Extendible Hashing 

 Situation: Bucket (primary page) becomes full. 
Why not re-organize file by doubling # of 
buckets? 
– Reading and writing all pages is expensive!  

 and is needlessly prodigal on resource use.  

– Idea:  Use directory of pointers to buckets, double 
# of buckets by doubling the directory †, splitting 
just the bucket that overflowed! 

– Directory much smaller than file, so doubling it is 
much cheaper.  Only one page of data entries is split.  
No overflow page! 

– Trick lies in how hash function is adjusted! 
†Not always necessary!  
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Example 

 Directory is array of size 4. 
 To find bucket for r, take last 

`global depth’ # bits of h(r) 
– e.g., h(r) = 5 = binary 101,  it 

is in bucket pointed to by 01. 

 hash fn used: h(k) = k (for 
illustration only).  

 Insert:  If bucket is full, split it (allocate new page, re-distribute  
 data entries). E.g., consider insert 20*.  

 If necessary, double the directory.  (As we will see, splitting a 
    bucket does not always require doubling; we can tell by  
    comparing global depth with local depth for the split bucket.) 

13* 00 

01 

10 

11 

2 

2 

2 

2 

2 

LOCAL DEPTH 

GLOBAL DEPTH 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

DATA PAGES 

10* 

1* 21* 

4* 12* 32* 16* 

15* 7* 19* 

5* 



CPSC 404, Laks V.S. Lakshmanan 8 

Example – Remarks.  

 Depth – deals with how many bits from the 
hash address suffix we examine at a given 
time.  

 Global depth = what’s the  #bits needed to 
correctly find the home bucket for an 
arbitrary data entry, in general?  

 Local depth of bkt B = how many bits did I 
really need to look at to get to bucket B?  

 Global depth >= local depth.  
 Check this on examples.  
 Is this possible: GD > all LDs?  
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Insert h(r)=20  - Part 1 

20* 

00 

01 

10 

11 

2 2 

2 

2 

LOCAL DEPTH 2 

2 

DIRECTORY 

GLOBAL DEPTH 
Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 
(`split image' 
of Bucket A) 

1* 5* 21* 13* 

32* 16* 

10* 

15* 7* 19* 

4* 12* 

•Suppose h(k) = k for this  

  example.   

•Bucket A split into 2 using 

   an extra bit, i.e., 3 bits 

• A divisible by 8, i.e., 1000 

• A2 divisible by 4, i.e., 100 

• note that only one bucket 

   needs to be re-distributed, 

   i.e., re-hashed 

• B, C, D remain unchanged 

• Where to link A2? 
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Insert h(r)=20 – Part 2 

19* 

2 

2 

2 

000 

001 

010 

011 

100 

101 

110 

111 

3 

3 

3 

DIRECTORY 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

Bucket A2 

(`split image' 
of Bucket A) 

32* 

1* 5* 21* 13* 

16* 

10* 

15* 7* 

4* 20* 12* 

LOCAL DEPTH 

GLOBAL DEPTH 
• double the directory 
• add 1 to global depth & to  
  local depth of A/A2.  
• now can distinguish 
   between A and A2 
• notice the difference 
   in local depth between  
   buckets 
• multiple pointers to the 
  same bucket 
• Review properties of LD  
  & GD.  
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Points to Note 
 20 = binary 10100.  Last 2 bits (00) tell us r belongs in A 

or A2.  Last 3 bits needed to tell which. 
– Global depth of directory:  min # of  bits needed to tell which 

bucket an entry belongs to = max{local depths}.  

– Local depth of a bucket: # of bits used to determine if an entry 
belongs to this bucket. 

 When does bucket split cause directory doubling? 
– Before insert, local depth of bucket = global depth.  Insert causes 

local depth to become > global depth; directory is doubled by 
copying it over and `fixing’ pointer to split image page.  (Use of 
least significant bits enables efficient doubling via copying of 
directory!) 

 What happens when 9* is inserted?  
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Comments on Extendible 
Hashing 

 If directory fits in memory, equality search answered 
with one disk access; else two. 

– 100MB file, 100 bytes/rec, 4K page; contains 1,000,000 records 
(as data entries); 40 records/page  106/40 = 25,000 pages of 
data entries; as many directory elements; can handle using 15bit 
addresses; chances are high that directory will fit in memory. 

– Directory grows in spurts, and, if the distribution of hash values 
is skewed, directory can grow large. 

 Delete:  If removal of data entry makes bucket empty,  
– check to see whether  all `split images’ can be merged 

–  if each directory element points to the same bucket as its split 
image, can halve directory 

– rarely done in practice (e.g., leave room for future insertions).  
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Linear Hashing 

 An extension to Extendible Hashing, in spirit.  

 LH tries to avoid the creation/maintenance of a 
directory.   

 Idea:  Use a family of hash functions h0, h1, h2, ... 
– N = initial # buckets = 2d0  

– h is some hash function (range is not 0 to N-1) 

– hi consists of applying h and looking at the last di bits, 
where di = d0 + i. 

– hi+1 doubles the range of hi (similar to directory doubling) 

– e.g.,  h = binary representation, d0 = 2, d1 = 3, d2 = 4, ... 
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Overview of LH File 

 Note: bucket split need not be bucket where 
insertion and/or overflow occurred.  

 Directory avoided in LH by using overflow pages, and 
choosing bucket to split round-robin. 

– Next – pointer to current bucket, i.e., next bucket 
likely to be split.  

– Splitting proceeds in `rounds’.  Round ends when all 
NR initial (for round R) buckets are split.  Buckets 0 
to Next-1 have been split;  Next to NR-1 yet to be 
split. 

– Current round number is Level. 

– Level and R used interchangeably.  
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Overview of LH File (Contd.) 

 In the middle of a round. 

Level h  

Buckets that existed at the 

beginning of this round:  

this is the range of 

Next Buckets to be split  

of other buckets) in this round 

Level h  search key value  ) ( 

search key value  ) ( 

Buckets split in this round: 

If  

is in this range, must use 

h  Level+1 

`split image' bucket. 

to decide if entry is in  

created (through splitting 

`split image' buckets: 

Level = R. 
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Example of Linear Hashing 

• starts with 4 buckets 
• all buckets to be split in a 

round-robin fashion, 
starting from the first 
one 

0 
h h 

1 

(This info 

is for illustration 

only!) 

Level=0, N=4 

00 

01 

10 

11 

000 

001 

010 

011 

(The actual contents 

of the linear hashed 

file) 

Next=

0 

PRIMARY 

PAGES 

Data entry r 
with h(r)=5 

Primary  

bucket page 

44* 36* 32* 

25* 9* 5* 

14* 18* 10* 30* 

31* 35* 11* 7* 
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Example – Inserting 43* 

• h0 (43) = 11  =>  overflow 

• overflow page exists! 

• splitting occurs but to 
the Next bucket 

0 
h h 

1 

Level=0 

00 

01 

10 

11 

000 

001 

010 

011 

Next=

1 

PRIMARY 

PAGES 

44* 36* 

32* 

25* 9* 5* 

14* 18* 10* 30* 

31* 35* 11* 7* 

OVERFLOW 

PAGES 

43* 

00 100 
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Linear Hashing - insertions 
 Insert:  Find bucket by applying hLevel / hLevel+1:  

– If bucket to insert into is full: 

Add overflow page and insert data entry. 

(Maybe) Split Next bucket and increment Next. 

 Can choose any criterion to `trigger’ split.  
 Since buckets are split round-robin, long 

overflow chains don’t develop! 
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Example:  End of a Round (Inserting  
37*,29*, 22*,66*,34*,50*) 

0 h h 1 

22* 

00 

01 

10 

11 

000 

001 

010 

011 

00 100 

Next=3 

01 

10 

101 

110 

Level=0 

PRIMARY 
PAGES 

OVERFLOW 

PAGES 

32* 

9* 

5* 

14* 

25* 

66* 10* 18* 34* 

35* 31* 7* 11* 43* 

44* 36* 

37* 29* 

30* 

0 h h 1 

37* 

00 

01 

10 

11 

000 

001 

010 

011 

00 100 

10 

101 

110 

Next=0 

Level=1 

111 

11 

PRIMARY 

PAGES 
OVERFLOW 

PAGES 

11 

32* 

9* 25* 

66* 18* 10* 34* 

35* 11* 

44* 36* 

5* 29* 

43* 

14* 30* 22* 

31* 7* 

50* 

back to deletion 
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Linear Hashing - Searching 

 Search: To find bucket for data entry r, find 
hLevel(r): 

If hLevel(r) in range `Next to NR-1’ , r belongs 
here. 

Else, r could belong to bucket hLevel(r) or bucket 
hLevel(r) + NR  ;  must apply hLevel+1(r) to find out. 
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LH – Deletion  

 Inverse of insertion.  

 If last bkt is empty, remove it and 
decrement Next.  

 More generally, can combine last bkt with 
its split image even if non-empty. Criterion 
may be based on bkt occupancy level.  
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LH – Deletion (example) 

0 h h 1 

00 

01 

10 

11 

000 

001 

010 

011 

00 100 

Next=3 

01 

10 

101 

110 

Level=0 

PRIMARY 
PAGES 

OVERFLOW 

PAGES 

32* 

9* 

5* 

25* 

66* 10* 18* 34* 

35* 31* 7* 11* 43* 

44* 36* 

37* 29* 

30* 

After deleting 14*, 22* 

Delete 30* 

0 h h 1 

00 

01 

10 

11 

000 

001 

010 

011 

00 100 

Next=3 

01 

10 

101 

110 

Level=0 

32* 

9* 

5* 

25* 

66* 10* 18* 34* 

35* 31* 7* 11* 43* 

44* 36* 

37* 29* 

30* 

Next=2 
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Summary 

 Hash-based indexes: best for equality searches. 

 Static Hashing can lead to long overflow chains. 

 EH avoids overflow pages by splitting a full bucket when a 
new data entry is to be added to it.   

– Directory to keep track of buckets, doubles periodically. 

– Can get large with skewed data; additional I/O if this does not fit 
in main memory. 

 LH avoids directory by splitting buckets round-robin, and 
using overflow pages.  

– Overflow pages not likely to be long. 

 


