
CPSC 404, Laks V.S. Lakshmanan 1

Hash-Based Indexes

Chapter 11 Ramakrishnan & Gehrke

(Sections 11.1-11.4)

CPSC 404, Laks V.S. Lakshmanan 2

What you will learn from this
set of lectures

 Review of static hashing

 How to adjust hash structure dynamically
against inserts and deletes?
– Extendible hashing

– Linear hashing.

– Relative strengths of B+trees and Hashing:
when to use what.

CPSC 404, Laks V.S. Lakshmanan 3

Introduction

 Hash-based indexes are best for equality
selections
– no traversal; direct computation of where k* should

be

– cannot support range searches.

 Static and dynamic hashing techniques exist;
trade-offs similar to ISAM vs. B+ trees, on a
certain level.

CPSC 404, Laks V.S. Lakshmanan 4

Static Hashing
 # primary pages fixed, allocated sequentially, never

de-allocated; overflow pages if needed.

 h(k) mod M = bucket to which data entry with key k
(i.e., k*) belongs. (M = # of buckets)

h(key) mod M

h
key

Primary bucket pages Overflow pages

1

0

M-1

CPSC 404, Laks V.S. Lakshmanan 5

Static Hashing (Contd.)

 Buckets contain data entries.

 Bucket size could be more than 1 block.

 Hash fn works on search key field of record r. Must
distribute values over range 0 ... M-1.

– h(key) = (key mod M) usually works well for prime M.

– lots known about how to tune h.

 Long overflow chains can develop and degrade
performance (when there are updates).

– Extendible and Linear Hashing: two major dynamic techniques
to fix this problem.

CPSC 404, Laks V.S. Lakshmanan 6

Extendible Hashing

 Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of
buckets?
– Reading and writing all pages is expensive!

 and is needlessly prodigal on resource use.

– Idea: Use directory of pointers to buckets, double
of buckets by doubling the directory †, splitting
just the bucket that overflowed!

– Directory much smaller than file, so doubling it is
much cheaper. Only one page of data entries is split.
No overflow page!

– Trick lies in how hash function is adjusted!
†Not always necessary!

CPSC 404, Laks V.S. Lakshmanan 7

Example

 Directory is array of size 4.
 To find bucket for r, take last

`global depth’ # bits of h(r)
– e.g., h(r) = 5 = binary 101, it

is in bucket pointed to by 01.

 hash fn used: h(k) = k (for
illustration only).

 Insert: If bucket is full, split it (allocate new page, re-distribute
 data entries). E.g., consider insert 20*.

 If necessary, double the directory. (As we will see, splitting a
 bucket does not always require doubling; we can tell by
 comparing global depth with local depth for the split bucket.)

13* 00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

CPSC 404, Laks V.S. Lakshmanan 8

Example – Remarks.

 Depth – deals with how many bits from the
hash address suffix we examine at a given
time.

 Global depth = what’s the #bits needed to
correctly find the home bucket for an
arbitrary data entry, in general?

 Local depth of bkt B = how many bits did I
really need to look at to get to bucket B?

 Global depth >= local depth.
 Check this on examples.
 Is this possible: GD > all LDs?

CPSC 404, Laks V.S. Lakshmanan 9

Insert h(r)=20 - Part 1

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12*

•Suppose h(k) = k for this

 example.

•Bucket A split into 2 using

 an extra bit, i.e., 3 bits

• A divisible by 8, i.e., 1000

• A2 divisible by 4, i.e., 100

• note that only one bucket

 needs to be re-distributed,

 i.e., re-hashed

• B, C, D remain unchanged

• Where to link A2?

CPSC 404, Laks V.S. Lakshmanan 10

Insert h(r)=20 – Part 2

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20* 12*

LOCAL DEPTH

GLOBAL DEPTH
• double the directory
• add 1 to global depth & to
 local depth of A/A2.
• now can distinguish
 between A and A2
• notice the difference
 in local depth between
 buckets
• multiple pointers to the
 same bucket
• Review properties of LD
 & GD.

CPSC 404, Laks V.S. Lakshmanan 11

Points to Note
 20 = binary 10100. Last 2 bits (00) tell us r belongs in A

or A2. Last 3 bits needed to tell which.
– Global depth of directory: min # of bits needed to tell which

bucket an entry belongs to = max{local depths}.

– Local depth of a bucket: # of bits used to determine if an entry
belongs to this bucket.

 When does bucket split cause directory doubling?
– Before insert, local depth of bucket = global depth. Insert causes

local depth to become > global depth; directory is doubled by
copying it over and `fixing’ pointer to split image page. (Use of
least significant bits enables efficient doubling via copying of
directory!)

 What happens when 9* is inserted?

CPSC 404, Laks V.S. Lakshmanan 12

Comments on Extendible
Hashing

 If directory fits in memory, equality search answered
with one disk access; else two.

– 100MB file, 100 bytes/rec, 4K page; contains 1,000,000 records
(as data entries); 40 records/page  106/40 = 25,000 pages of
data entries; as many directory elements; can handle using 15bit
addresses; chances are high that directory will fit in memory.

– Directory grows in spurts, and, if the distribution of hash values
is skewed, directory can grow large.

 Delete: If removal of data entry makes bucket empty,
– check to see whether all `split images’ can be merged

– if each directory element points to the same bucket as its split
image, can halve directory

– rarely done in practice (e.g., leave room for future insertions).

CPSC 404, Laks V.S. Lakshmanan 13

Linear Hashing

 An extension to Extendible Hashing, in spirit.

 LH tries to avoid the creation/maintenance of a
directory.

 Idea: Use a family of hash functions h0, h1, h2, ...
– N = initial # buckets = 2d0

– h is some hash function (range is not 0 to N-1)

– hi consists of applying h and looking at the last di bits,
where di = d0 + i.

– hi+1 doubles the range of hi (similar to directory doubling)

– e.g., h = binary representation, d0 = 2, d1 = 3, d2 = 4, ...

CPSC 404, Laks V.S. Lakshmanan 14

Overview of LH File

 Note: bucket split need not be bucket where
insertion and/or overflow occurred.

 Directory avoided in LH by using overflow pages, and
choosing bucket to split round-robin.

– Next – pointer to current bucket, i.e., next bucket
likely to be split.

– Splitting proceeds in `rounds’. Round ends when all
NR initial (for round R) buckets are split. Buckets 0
to Next-1 have been split; Next to NR-1 yet to be
split.

– Current round number is Level.

– Level and R used interchangeably.

CPSC 404, Laks V.S. Lakshmanan 15

Overview of LH File (Contd.)

 In the middle of a round.

Level h

Buckets that existed at the

beginning of this round:

this is the range of

Next Buckets to be split

of other buckets) in this round

Level h search key value) (

search key value) (

Buckets split in this round:

If

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in

created (through splitting

`split image' buckets:

Level = R.

CPSC 404, Laks V.S. Lakshmanan 16

Example of Linear Hashing

• starts with 4 buckets
• all buckets to be split in a

round-robin fashion,
starting from the first
one

0
h h

1

(This info

is for illustration

only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=

0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary

bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

CPSC 404, Laks V.S. Lakshmanan 17

Example – Inserting 43*

• h0 (43) = 11 => overflow

• overflow page exists!

• splitting occurs but to
the Next bucket

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=

1

PRIMARY

PAGES

44* 36*

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW

PAGES

43*

00 100

CPSC 404, Laks V.S. Lakshmanan 18

Linear Hashing - insertions
 Insert: Find bucket by applying hLevel / hLevel+1:

– If bucket to insert into is full:

Add overflow page and insert data entry.

(Maybe) Split Next bucket and increment Next.

 Can choose any criterion to `trigger’ split.
 Since buckets are split round-robin, long

overflow chains don’t develop!

CPSC 404, Laks V.S. Lakshmanan 19

Example: End of a Round (Inserting
37*,29*, 22*,66*,34*,50*)

0 h h 1

22*

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW

PAGES

32*

9*

5*

14*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

0 h h 1

37*

00

01

10

11

000

001

010

011

00 100

10

101

110

Next=0

Level=1

111

11

PRIMARY

PAGES
OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

back to deletion

CPSC 404, Laks V.S. Lakshmanan 20

Linear Hashing - Searching

 Search: To find bucket for data entry r, find
hLevel(r):

If hLevel(r) in range `Next to NR-1’ , r belongs
here.

Else, r could belong to bucket hLevel(r) or bucket
hLevel(r) + NR ; must apply hLevel+1(r) to find out.

CPSC 404, Laks V.S. Lakshmanan 21

LH – Deletion

 Inverse of insertion.

 If last bkt is empty, remove it and
decrement Next.

 More generally, can combine last bkt with
its split image even if non-empty. Criterion
may be based on bkt occupancy level.

CPSC 404, Laks V.S. Lakshmanan 22

LH – Deletion (example)

0 h h 1

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW

PAGES

32*

9*

5*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

After deleting 14*, 22*

Delete 30*

0 h h 1

00

01

10

11

000

001

010

011

00 100

Next=3

01

10

101

110

Level=0

32*

9*

5*

25*

66* 10* 18* 34*

35* 31* 7* 11* 43*

44* 36*

37* 29*

30*

Next=2

CPSC 404, Laks V.S. Lakshmanan 23

Summary

 Hash-based indexes: best for equality searches.

 Static Hashing can lead to long overflow chains.

 EH avoids overflow pages by splitting a full bucket when a
new data entry is to be added to it.

– Directory to keep track of buckets, doubles periodically.

– Can get large with skewed data; additional I/O if this does not fit
in main memory.

 LH avoids directory by splitting buckets round-robin, and
using overflow pages.

– Overflow pages not likely to be long.

