Community Models — k-core and k-truss
Basic requirements

• key requirements of a community:
 • be dense or cohesive;
 • in case edges are weighted, representing some cost, want least cost communities.
 • connected, of course!
 • possibly additional constraints which we will motivate and discuss later.
 • remarks hold for community detection as well as search. Think detection for now.
What kind of density are we after?

• high min. degree of a node in a community? what does that mean when you want to find all communities in a graph?

• high average degree?

• high edge density (#edges/#possible edges)?

• None of them allows us to see a graph as a hierarchy of communities.

• ==> k-core and k-truss, for various k.

• leveraged by the “cocktail” paper [Sozio and Gionis KDD 2010] and by [Huang et al. SIGMOD 2014].
k-core — some definitions

- Def. graph $G = (V,E)$. $\text{deg}(v) := \text{degree of node } v \text{ in } G$.

 $H = (V',E')$, $V' \subseteq V$ — an induced subgraph of G.

 $\text{deg}_H(v) := |\{u \in V' \mid (u,v) \in E'\}| = \text{degree of } v \text{ in } H$.

 H is a k-core iff $\forall v \in H : \text{deg}_H(v) \geq k$. and H is maximal w.r.t. this property.

Example:

Recall, a k-core is required to be maximal.

core number of $v = \max\{k \mid v \text{ is in some } k\text{-core}\}$.

What are the various cores in this graph?
k-core — some definitions

- Def. graph $G = (V, E)$. $\text{deg}(v) := \text{degree of node } v \text{ in } G$.
- $H = (V', E')$, $V' \subseteq V$ — an induced subgraph of G.
- $\text{deg}_H(v) := |\{u \in V' \mid (u, v) \in E'\}| = \text{degree of } v \text{ in } H$.
- H is a k-core iff $\forall v \in H : \text{deg}_H(v) \geq k$.

Example:

What are the various cores in this graph?

Each $(k+1)$-core is contained in some k-core.
k-core — some definitions

- Def. graph $G = (V, E)$. $\text{deg}(v) :=$ degree of node v in G.
- $H = (V', E')$, $V' \subseteq V$ — an induced subgraph of G.
- $\text{deg}_H(v) := |\{u \in V' \mid (u, v) \in E'\}| = \text{degree of } v \text{ in } H$.
- H is a k-core iff $\forall v \in H : \text{deg}_H(v) \geq k$.

Example:

What are the various cores in this graph?

- $k=1$.
- $k=2$.
- $k=3$.

Each $(k+1)$-core is contained in some k-core.

A k-core need not be connected. E.g., add another l-core to this graph, disconnected from it.
Some properties of k-cores

- every vertex in a k-core has degree at least k.

- hierarchical structure facilitates viewing a complex graph at flexible level of detail: zoom in (increase k) or zoom out (decrease k).

- can control density/cohesiveness interactively.

- any two connected k-cores are disjoint from each other.

- connected components partition k-cores.

- core can be based on in-degree, out-degree, or both (in case of directed graph). we will mainly consider (undirected) graphs below.

- some dense subgraphs are NP-hard to find (e.g., maximum cliques), while core decomposition can be found efficiently.
Finding core decomposition efficiently

A naive algorithm.
Input: graph G.
Output: core decomposition of G.
G is a 0-core.
$k=1$;
repeat {
 • (recursively) remove all vertices of degree $< k$;
 • report resulting subgraph as a k-core;
 • $k++$
}
until G is empty
Remarks on the naive algorithm

• Multiple passes over vertices.

• Considerable redundant work.

• Can be implemented efficiently to take $O(m+n)$ time where $n =$ #vertices and $m =$ #edges.

• Key ideas:
 • Compute vertex degrees in $O(m)$ time.
 • Sort vertices by degree using bucket sort — $O(n)$ time.
 • Vertex degrees in $[0,n-1]$ — allocate bucket per degree.
Efficient implementation of core decomposition using bucket sort

Example:

Core numbers

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>3</th>
<th>4</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
</tr>
</tbody>
</table>

Buckets

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

- 1: a
- 2: b, f, g
- 3: d, i, j
- 4: c, e, h
Efficient implementation of core decomposition using bucket sort

Example:

\begin{table}
\begin{tabular}{cccccccc}
 1 & 1 & 3 & 3 & 4 & 2 & 2 & 4 & 3 & 3 \\
 a & b & c & d & e & f & g & h & i & j \\
\end{tabular}
\end{table}

\begin{enumerate}
 \item 0 \rightarrow \{a, b\}
 \item 1 \rightarrow \{f, g\}
 \item 2 \rightarrow \{d, i, j, c\}
 \item 3 \rightarrow \{e, h\}
\end{enumerate}
Efficient implementation of core decomposition using bucket sort

Example:

all vertices in remaining subgraph have degree = 3.
stop!

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

a b c d e f g h i j

0
1 a,b
2 f,g
3 d,e,i,j,c,h
4
5
6
7
8
9

a b c d e f g h i j

all vertices in remaining subgraph have degree = 3.
stop!
Key steps of Algorithm

• compute vertex degrees and assign them to buckets; set $core[v] = deg[v]$; — one pass $O(m)$ time.

• maintain $core[v] = \text{current degree of } v$.

• process vertices in degree order: for current vertex v, if $(u,v) \in E \& core(u) > core(v)$, then decrement $core(u)$ and move u up by a bin.
k-core and core decomposition summary

• k-core is a maximal subgraph where all nodes have degree $\geq k$ in the subgraph.

• hierarchical structure: k-core is contained in (k-1)-core.

• naive core decomposition is inefficient.

• using appropriate data structures and bucket sort, can obtain core decomposition in $O(m+n)$ time and space.

• (k-)cores can be a basis for community definition.
k-truss — some definitions

- if neighbors u and v have a common neighbor w, we can think of w “endorsing” friendship of u and v. \rightarrow triangle \{u,v,w\}.

- more common neighbors, more triangles, more endorsement.

- (triangle) support of edge $e = (u,v)$, $sup(e) = \#$triangles that e participates in; $sup_H(e)$ = support in subgraph H.

- a subgraph $H = (V',E')$ is a k-truss if $\forall e \in E' : sup_H(e) \geq k - 2$. and H is maximal w.r.t. this property.

- A k-truss is $(k-1)$-connected.
k-truss — some definitions

- *truss number of* $v = \max \{k \mid v \text{ is in some } k\text{-truss}\}$.

- truss number of $e=(x,y)$ is $\max \{k \mid e \text{ is in some } k\text{-truss}\}$.

- core number sometimes called coreness and truss number trussness.
Trusses illustrated

• Example 1:

\[q \]
\[s_1 \]
\[s_2 \]
\[s_3 \]
\[s_4 \]
\[x_1 \]
\[x_2 \]
\[r_1 \]
\[r_2 \]
\[r_3 \]

\[p_1 \]
\[p_2 \]
\[p_3 \]
\[p_4 \]

2-truss
3-truss
4-truss

\[k_{\text{max}} = 4 \]
Trusses illustrated

Def. For an edge e, $\tau(e) = \max\{k | e \text{ is in } k\text{-truss}\}$.

$\Phi_k(e) = \{e | \tau(e) = k\}$. ← k-class.

Example 2: k-class is just a technical notion. a k-class need not be dense.

\[
\begin{align*}
\tau &= 2. \\
\tau &= 3. \\
\tau &= 4.
\end{align*}
\]
Finding truss decomposition efficiently

A naive algorithm.
Input: graph G.
Output: truss decomposition of G.
G is a 2-truss.
k=3;
repeat {
 • (recursively) remove all edges with support $< k-2$;
 • report resulting subgraph as a k-truss;
 • $k++$
}
until G is empty
Limitations of the naive algorithm

• shares many of the limitations of the naive algorithm for core decomposition.

• solution efficiency can be improved by similar ideas.

• Here is a sketch of an efficient implementation.

• note that a truss decomposition can be represented using k-classes, $2 \leq k \leq k_{max}$.
Efficient algorithm for truss decomposition

\[k \leftarrow 2; \Phi_k \leftarrow \{\}; \]
compute support of edges and sort using bucket sort;

(*) \textbf{while} there is an edge with support \(\leq k-2 \)
let \(e=(u,v) \) have least support and let
\(\text{deg}(u) \leq \text{deg}(v) \) w.l.o.g.
\textbf{for each} \(w \) in \(N(u) \)
\textbf{if} \((v,w) \) is in \(E_G \)
\hspace{1cm} \text{Use hashing}
\hspace{1cm} \text{sup}(u,w)--; \text{sup}(v,w)--;
\hspace{1cm} \text{reorder} \ (u,w) \text{ and} \ (v,w) \text{ based on support}; \hspace{1cm} \text{//use bucket sort;}
\hspace{1cm} \text{add} \ e \text{ to} \ \Phi_k; \text{ remove} \ e \text{ from} \ G; \hspace{1cm} \text{Done} \ O(m) \text{ times.}

\textbf{if} \ G \text{ is non-empty}
\hspace{1cm} k++; \text{ go to} \ (*)
\textbf{return} \ \Phi_k, 2 \leq k \leq k_{\max}.
Complexity

$O(m + n)$ space, by similar argument to that for core decomposition — easy to see.

Proof of $O(m^{1.5})$ time:
support computation — $O(m^{1.5})$ time (see below for how).
sorting edges on support — $O(m)$ time using bucket sort.
red rectangle executed $(\deg(u) \cdot \#_{\geq}(u))$ times, where

$\#_{\geq}(u) = \#\text{neighbors } v \text{ of } u \text{ with } \deg(v) \geq \deg(u).

Claim: For any node u, $\#_{\geq}(u) \leq \sqrt{2m}$. (tighter than in paper.)

Time complexity of algorithm follows from this:

$$\sum_{u \in V_G} \deg(u) \cdot \#_{\geq}(u) \leq \sqrt{2} \cdot \sum_{u \in V_G} \deg(u) \cdot \sqrt{m} \in O(m^{1.5}).$$
Complexity

Proof of Claim: $\#_{\geq}(u) \leq \deg(u)$.

$\#_{\geq}(u) \leq 2m/\deg(u)$.

From these, we have $\#_{\geq}(u) \leq \min\{\deg(u), 2m/\deg(u)\}$.

The RHS is maximized when $\deg^2(u) = 2m$.

$\implies \deg(u) = \sqrt{2m}$.

☐
Computing edge support in $O(m^{1.5})$ time

Algorithm FastSupport;
1. Arrange the nodes of G in non-increasing degree order: $\text{deg}(u) > \text{deg}(v) \implies \text{visit}(u) < \text{visit}(v)$.
2. Initialize an empty array A of n adjacency arrays;
3. For each node v in increasing order of visit:
 3.1. For each u in $\mathcal{N}(v)$ with visit(u) > visit(v):
 3.1.1. For each w in $\text{A}[u] \cap \text{A}[v]$:
 sup(v,u)++; sup(u,w)++; sup(v,w)++;
 3.1.2. Add v to A[u];

Illustrative example

Visit ordered adjacency array

- b 1:
- a 2:
- e 3:
- c 4:
- d 5:

edge support tally
Illustrative example

Visit ordered adjacency array

\[
\begin{align*}
\text{b} & \quad 1: \\
\text{a} & \quad 2: \text{b} \\
\text{e} & \quad 3: \text{b} \\
\text{c} & \quad 4: \text{b} \\
\text{d} & \quad 5: \text{b}
\end{align*}
\]

edge support tally
Illustrative example

Visit ordered adjacency array

b 1:
a 2: b
e 3: b
c 4: b
d 5: b

edge support tally
(a,b): 1+1
(b,e): 1
(a,e): 1
(a,d): 1
(b,d): 1
Illustrative example

Visit ordered adjacency array

- **b**: 1:
 - 1: b
- **a**: 2: b
- **e**: 3: b
- **c**: 4: b,e
- **d**: 5: b

Edge support tally

- **(a,b)**: 1+1
- **(b,c)**: 1
- **(b,e)**: 1+1
- **(c,e)**: 1
- **(a,e)**: 1
- **(a,d)**: 1
- **(b,d)**: 1
Illustrative example

Visit ordered adjacency array

<table>
<thead>
<tr>
<th>Node</th>
<th>1:</th>
<th>2:</th>
<th>3:</th>
<th>4:</th>
<th>5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td></td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td>b, e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>5</td>
<td></td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

edge support tally

(a,b): 1+1 (b,c): 1
(b,e): 1+1 (c,e): 1
(a,e): 1
(a,d): 1
(b,d): 1
Illustrative example

Visit ordered adjacency array

- **b** 1:
 - 2: b
- **a** 2: b
- **e** 3: b
- **c** 4: b,e
- **d** 5: b

Check: all edge supports correctly calculated.

edge support tally
- (a,b): 1+1
- (b,c): 1
- (b,e): 1+1
- (c,e): 1
- (a,e): 1
- (a,d): 1
- (b,d): 1
Complexity

line 1: $O(n \log n)$ time.
line 2: trivial.
line 3: make a pass over all edges — $O(m)$.
Using adjacency adjacency lists (which are sorted in visit order, by construction), can do this in time proportional to the size of the lists.

Claim: $|A[u]|$ is $O(\sqrt{m})$.

Intuition: Let $A(u) := \{v \in N(u) \mid \deg(v) \geq \deg(u)\}$. Notice $A[u]$ is a subset of $A(u)$. So, suffices to show $|A(u)|$ is $O(\sqrt{m})$. If $|A(u)|$ was bigger, then these would account for $\omega(m)$ edges, which is impossible.

Overall complexity of $O(m^{1.5})$ follows from this. □