
Draw Packages: A Survey and
Proposed Multitasking Implementation

by
Stephen Alan Williams

An essaypresented the the University of Waterloo in partial fulfillment of the requirements for the degree of Master of Mathematics inComputer Science

Waterloo, Ontario, 1987.

« >

ABSTRACT

A draw package is a computer program that allows a user to create accurate
drawings in a structured format. This essay defines what a draw package is and
how draw packages differ from programs such as paint systems and computer
aided design systems. The differences between two dimensional and three
dimensional draw packages are explained.

This survey outlines a representative collection of draw packages. A number
of selected packages are introduced which, through various techniques, have
increased the ability of a user to construct constrained drawings. Current trends in
improved draw systems are listed.

A proposed and partially completed multitasking implementation of an
interactive two dimensional draw package is described. The design is capable of
producing high quality images in a format suitable for display on many output
devices. The implementation is part of the Adagio workstation.

Acknowledgements

First of all, I would like to thank my supervisor, Kelly Booth, for his
suggestions and for his patient reading of the many versions of this essay.
Without his persistent prodding, I may never have completed.

Peter Tanner deserves a lot of credit for his patience and assistance,
especially during the earlier stages of this essay. He acted as my unofficial
supervisor prior to the writing stage.

I would like to thank Dave Fracchia, who acted as my student reader.
All the members of the Computer Graphics Laboratory at the University of

Waterloo have given me some help during my stay here. Thanks also to all the
friends I’ve made while at Waterloo who prevented me from doing my work and
re-enforcing my opinion that there is life during and after graduate school.

Finally, I would like to thank my parents for all their encouragement and support (emotional and financial).

1
1
3
6
7
7
7

10
13
13
13
13
14
15
17
17
17
19
20
21
23
26
28
30

y

Table of Contents
Introduction ...

1.1. What is a Draw Package ?
1.1.1. 2-D Draw Packages
1.1.2. 3-D Draw Packages

1.2. Draw versus CAD
1.2.1. In Two Dimensions
1.2.2. In Three Dimensions

1.3. Draw versus Paint
Survey of Draw Programs

2.1. Introduction
2.2. Sketchpad - the first Draw Package

2.2.1. Description
2.2.2. Interaction
2.2.3. Constraint Satisfaction
2.2.4. Conclusions

2.3. Later Draw Packages
2.3.1. Draw
2.3.2. Star Graphics
2.3.3. MacDraw
2.3.4. Drawing Beautifier
2.3.5. Juno
2.3.6. ThingLab
2.3.7. Gargoyle
2.3.8. Other Interactive Packages

T

2.3.9. Non-interactive Packages .. 32
2.4. Trends in Draw Packages 34

Proposed Implementation of a 2D Draw Package 36
3.1. Introduction ... 35

3.2. Environment ... 36
3.2.1. Hardware ... 35
3.2.2. Software .. 37
3.2.3. User .. 39

3.3. Display List .. 41

3.4. Application Data Structures .. 42
3.5. Task Structure ... 45

3.5.1. Devices ... 45
3.5.2. Tracker Server .. 47
3.5.3. Switchboard .. 4g
3.5.4. ARIA Server .. 49
3.5.5. Graphics Server ... 50
3.5.6. Data Structure Server ... 50
3.5.7. Windows and Menus .. 51
3.5.8. VAX Server ... 52
3.5.9. EHVT Server ... 53

3.6. Improvements and State of Development ... 53

References 58

Introduction
1.1. What is a Draw Package ?

A draw package is a computer program that allows a user to create accurate
drawings in a structured format. These drawings may then be included in
documents, used to create slides, or displayed on a video monitor.

The advantages of a computerized drawing system over hand drawing are
many. The greatest of these is the ability to erase any part of a drawing at any
time and as often as desired. There are physical limitations to erasing on a
medium such as paper, but not on a computer screen. Another advantage arises
when repetitive operations need to be performed. Computerized drawing
packages frequently have built in shortcuts that make these operations easier and
less error prone. Finally, the facility to interactively move picture parts around
the screen improves the looks of the overall drawing.

Draw programs may either be interactive or language driven. Interactive
packages usually consist of an image on a monitor that is modified in response to
a user’s manipulation of input devices. The draw program maintains a data
structure representing the image at all times. A change in this structure results in
an immediate change in the displayed image, and vice versa. By contrast, the
image generated by a language driven package is controlled by a text file of
drawing commands. A static visual image is created using this file as input to a
program, which produces the image. Thus, any change to the definition of the
image (i.e., a change to the text file) is not immediately seen. This essay is
concerned with interactive drawing systems, and in particular with the
multitasking implementation of a two dimensional package using multiple input
devices in parallel. We will thus not delve deeply into language driven packages.

Draw packages are one example of illustration systems. An interactive
illustration system can be placed into one of two categories: one which maintains
a high-level description of a picture in terms of objects, and one which operates on
raw frame buffer images. The first category includes draw packages, Computer
Aided Design (CAD) systems, and videotex page creation systems, while the
second category comprises what we will refer to generically as paint systems.

It would be hard to classify every interactive illustration package that
maintains high-level descriptions of images as either a draw package or a CAD
package since there is no concise definition of either. Instead, there is really a
continuum between the two types of systems. CAD systems are generally more
powerful and more application specific, while draw systems are less powerful but
also more adaptable to different applications. Perhaps a more precise
differentiation is that CAD packages are used for creating technical illustrations

1

- 2 -

for use in engineering design and manufacturing, while draw packages are used to
create illustrations to be included in documents. A further distinction is that
CAD systems usually store semantic information in addition to that stored in
draw packages. Examples are ancillary information such as the construction
methods used to create an object and physical properties such as the electrical
characteristics of objects.

Three construction techniques are currently used in computer illustration
packages. Grid-based systems are easy to learn and to implement and have
recently become popular. Constraint-based systems are also currently very
popular due to their power, although often at the expense of useability. Recently,
ruler and compass style construction systems have been introduced. They offer
the advantages of both grid and constraint based systems.

Grid systems provide a constant reminder of the constraints imposed on a
system, since they are often accompanied by a visible grid overlaying the drawing.
However, no straightforward way is provided to express simple relationships such
as specific angles or distances. When one wants to construct a line at forty-five
degrees, he must count over and up an equal number of grid positions.
Constructing a line at thirty degrees may be impossible on some systems. Grids
are easy to use, but control is provided at too low a level.

Grids are in fact a very special case of a more general approach: constraint-
based systems. Grids represent the constraint that all coordinates must lie on the
grid. Other constraints, such as the angle of orientation or length of a line are also possible.

Essentially, there are three levels at which constraints can be applied to a
drawing. The first and simplest form of constraint is forgotten as soon as it is
used. For example, a user may specify that two lines be parallel. Here, one of
the lines would be moved so as to be parallel with the second. However, these
lines can subsequently be individually manipulated without affecting the other.

The second form of constraint is treated as an attribute of the individual
drawing elements. Before each element is drawn, any constraints that apply to it
are consulted. Thus, constraints are treated on an individual basis. Some
drawing elements may not be able to be drawn to satisfy their constraints. This
would occur if the constraints conflict with each other or with the constraints in
other parts of the drawing.

The third, and most elaborate form of constraint, uses a system of constraints
and a constraint solver. The system of constraints collectively describes all
constraints on the drawing. The constraint solver is used in an attempt to
simultaneously solve all the constraints within this system. It often does this by
creating an algebraic equation for every constraint and attempts to solve the
equations numerically. Sometimes the system is unable to be solved. Such
systems will either have conflicting constraints, or have redundant constraints that

T

- 3 -

the solver cannot manage.
Constraint-based systems are the most powerful of the three types of systems.

However, this power is often difficult to harness. The user interface needed to
present and control the constraints is nearly always complicated. Applying the
proper constraints can be more like debugging code in a hit and miss fashion than
graphical editing. After applying a number of constraints on a drawing, the user
is still not sure if the proper drawing will be produced until he sees the final
image. This may be caused by applying insufficient or redundant constraints. A
user may have to experiment with various combinations of constraints before a
final drawing is produced. An interactive constraint solver may produce
unpredictable results and may drastically change the displayed image.

The ruler and compass approach has much of the power of constraint
systems, but the user interface is simpler and the drawings are more predictable.
Constraints are visible, as in grid systems, but in the form of visible construction
lines and circles, much like the techniques used in high school geometry. The
designers of these systems try to present operations in the same form that a
draftsman would use. The drawbacks of this approach are that it may take
considerable time to construct the constraints and that it is computationally expensive.

This chapter describes what a draw package is and the differences between
two dimensional and three dimensional draw packages. The differences between
a draw package and programs such as paint systems and CAD systems are also explained.
1.1.1. 2-D Draw Packages

The normal setup of an interactive draw package consists of the following: a
video monitor on which an image is displayed; one or more input devices such as
a keyboard, a mouse, buttons, switches, etc.; application software that controls the
update of the image on the display, obtains data from the input devices and
maintains information about what appears on the monitor; and of course a user,
who manipulates the image with the input device(s). Many packages rely on only
one or two input devices; either a tablet or mouse and a keyboard. The
application software keeps some form of data structure to record what is on the
screen and to enable it to make the necessary changes to the image in response to user input.

The type of image that can be created by a draw program varies considerably
between packages. Drawings are constructed by invoking multiple operations
consisting of parameterized primitives. For example, a line primitive can be
parameterized by two end points, a point plus an angle with the horizontal, or a
point plus the condition that the line must be tangent to a circle. Two
dimensional packages have a subset of the following primitives available: points,

T

— 4 —

lines, polygons, circles, arcs, and splines. In addition, some packages allow
primitives to have modifiable attributes. Examples of allowable attributes include:
colour, line type (e.g., solid, dashed, dotted), line thickness, degree of
antialiasing, and the line end type (e.g., round, butted, square). Text of various sizes and fonts is also usually available.

Virtually all draw packages in existence have some form of menu-based
control. The menus can be displayed on the screen along with the drawing, or
defined implicitly as a collection of switches, buttons or other input devices.

The two styles of on-screen menus are fixed menus and arbitrarily displayed
‘pop-up’ menus. The fixed, or static menus are always present on the screen, and
in some systems are able to be manipulated (i.e., translated, scaled). Pop-up
menus, in contrast, are dynamic in nature. They only appear whenever a user
requests that they appear. Often they are displayed at a location specified by the
user (e.g., the tracker position), but they are not required to be. Once the
selection(s) within a pop-up menu are picked, the menu is erased from the screen.

The screen is divided into areas for menus and an area to display the image.
The options in these menus control scene composition such as additions and
deletions of primitives, object selection and modification, transformations, and
other picture building operations. Some systems allow for more than one window
displaying the image to be shown at the same time. In two dimensions, the only
uses for multiple windows are: to view the image with different attributes; to
zoom, pan or scroll the image; and to operate on an individual object instead of on the entire image.

The image on the display is updated whenever a user action would cause it to
change. Some systems will simply redraw the affected parts of the image without
regard for the other parts of the drawing, while others will redraw the entire
image for each modification. Some systems use two processors: one to modify the
data structure and obtain user input, and another to periodically redraw the image
using the data structure. These are usually referred to as the host processor and
display processor, respectively. In the two processor situation, two copies of the
data structure are usually kept: one that the application software uses on the host,
and a ‘display list’ which contains purely geometrical information that is used by
the display processor. A display list is arranged so as to minimise the time taken
by the display processor to draw the image. While the display processor is
traversing the display list, the host processor is free to modify the application data
structure or perform other operations. In a few systems, the two processors share
a single data structure. Here, no modifications to the data structure may be
performed when the image is being drawn. The result is that the image cannot be
updated as fast in this configuration.

- 5 -

A central component of the application is the model used for storing the
data. This alone determines the structure and efficiency of the design procedures
that must use it. For draw packages, this model usually contains some
hierarchical description of the objects in the image. Some systems allow
primitives to be clustered together and subsequently to be referred to as a single
object. This hierarchy may be applied at higher levels by grouping together
clusters. The model usually contains geometrical, topological, presentational and
structural information. This is broken down as: geometric, the values of the
coordinates of points; topological, which edges depend on which vertices;
presentation, the locations of windows and menus plus any attributes of objects
and display parameters; and structural, the definitions of objects and subobjects.
In some systems more high level information such as relationships or constraints
between objects is also kept. An example of this is the condition that line X be tangent to circle Y.

In addition to the operations of primitive addition and deletion, many more
are potentially available. A user should be able to select any subset of the current
drawing as the object for any command. This selection can then be copied to
another location, transformed or deleted. Facilities should also exist to change
the drawing attributes of a selection to other legal values.

Other common operations are:
• the ability to save the structure of an image onto some other medium, and

later to recall it: Most often this involves saving a file of virtual coordinates
in some standard format. The file can then be added to the existing
application data structure at any time and can be converted into different
formats. This makes the data compatible between different systems.

• the ability to change viewing parameters to affect operations such as
zooming, panning and scrolling of the image: In order to manipulate sections
of the image, they may have to be positioned at different locations on the
screen or at different viewpoints.

• the ability to impose constraints on various picture elements. For example, a
user may require that lines be parallel, perpendicular or equal in length.

• the ability to apply metrics to objects: A user would define a scale for the
drawing, usually as a real world value (e.g., in centimetres). Lines could
then be drawn to an exact length. Another metric that can be applied is the
size of angles. Often, when metrics are allowed, provisions are made to
allow the measurement of these quantities directly from a drawing.

• the ability to restructure the layout of the menus and windows on the screen:
A user should be able to move the menus around the screen to his liking.
These changes should then be saved so that each user could define his own
environment.

- 6 -

• the ability to allow a limited amount of animation of objects: This would
involve creating multiple images of the structure at different positions, andcycling through them.

1.1.2. 3-D Draw Packages
The features listed for two dimensional draw packages can be extended to

three dimensions with some additions. The most noticeable difference is the need
to use multiple views of an object for construction in three dimensions, so one is
more likely to see multiple windows on the screen. Defining a point in three
space with two dimensional input from devices using only one view is difficult and
can be ambiguous. Therefore a user usually simultaneously interacts with the image from different views.

The same type of hierarchical data model that is used in two dimensions is
also used here, except that a third coordinate value is stored for each point. T his
model is commonly referred to as the line model of three dimensional geometric
modelling, in contrast to the models used in 3D CAD systems, which will be
described in a later section. Again, only the coordinates of points and the lines
which connect them are stored, along with some structural information. This can
lead to ambiguity when one tries to define the surfaces of objects or tries to draw
the objects using hidden surface removal instead of wire-framed. Because the line
model cannot always define an interior and exterior volume for a given object, it
is sometimes referred to as a ‘two and a half dimensional model’ as opposed to three dimensional.

All the primitive objects that were available in two dimensions are also
available here. A three dimensional object is created by first drawing a two
dimensional contour and then providing some depth or rotational cues. In this
way the contour is swept over a volume, which then defines a solid object. A
depth cue translates the contour in a given direction for a given distance. A
rotational cue rotates the contour about an arbitrary axis (usually one of the
primary axes). Another construction method is simply to connect lines between
two planes in space. Some complicated geometric operations that are available in
CAD require a great deal of calculation and are usually not included in three
dimensional draw packages. For instance, the calculations involved in order to
make two objects coplanar can get very involved and time consuming.

- 7 -

1.2. Draw versus CAD
A CAD system provides a number of tools intended to facilitate the work of

a designer when creating, modifying or testing a product. The final design can
then be used to control the operation of a number of m achines in the production
of a physical object. This final stage is referred to as Computer Aided Manufacturing (CAM).
1.2.1. In Two Dimensions

A CAD package that only works in two dimensions is used essentially for
creating electrical circuits and technical drawings, logic simulation and cartography.

As an example of a 2D CAD package, an interactive editor of printed circuit
boards will be described. A user may first define the size of the board to be used.
Next, he may include components from a library, which can then be placed on
the board. An important distinction should be made between draw and CAD
packages. Both systems may allow the user to call up predefined objects, but
CAD systems can be programmed to recognise many important and specific
design rules and physical characteristics. For example, in this case the system
would draw a chip at the proper scale on the board with the proper number of
pins when it is referenced. After all components have been included on the board
and the user has interactively joined them together, a few intelligent operations
may then be available to him, depending on the system. First of all, there may
exist a facility to optimise the current layout. The system would follow an
algorithm to minimise a variable of the circuit (possibly the total length of
connections between parts), while maintaining any physical constraints. The
optimized solution is then displayed in place of the original solution. Another
facility which would involve a lot of calculation, especially for large circuits, is a
logic simulator. Given the physical characteristics of each component, the logic
of the board could be compared to the desired logic to save time in building
prototypes. Other possible operations that might be available in addition to those
provided by draw packages include a bill of materials generation and area calculations.
1.2.2. In Three Dimensions

A number of the technical drawing software features can be useful for three
dimensional modelling; in particular, interactivity, applicability and independence
of hardware and dialogue methods. The types of primitives for three dimensional
modelling include the standard two dimensional primitives, plus objects such as
surfaces and solids [Gardan84]. Three dimensional CAD systems provide
geometric modelling of objects in full 3D, in contrast to 3D draw systems. The
models used in CAD allow for the definition of solids and an unambiguous

- 8 -

description of what is interior or exterior to an object. In other words, the objects
are represented from the point of view of their geometric properties. This permits
a designer to perform operations such as structural analysis much more efficiently.

High quality geometric modelling must possess the following properties:
1) Any model that can be formed in the internal data structure must correspond to a real object.
2) A model of any real world object should be constructible.
3) Complicated geometric quantities such as volume may be calculated.

Sometimes it may not be possible to fulfill these properties using a line model
representation. This may be due to a lack of information in the model or the fact
that slow and complicated algorithms are required. For example, to calculate the
volume of an object, its surfaces must first be known. With a line model it may
be impossible or at least very difficult due to ambiguity to determine the set of surfaces comprising an object.

The above properties imply that some mathematical properties such as
homogeneity, finiteness of dimensions, and rigidity should apply to the individual
objects. These will ensure that any object created follows real world physical
constraints. Homogeneity is the property that any solid object possesses internal
solidity rather than empty space. Finiteness of dimensions simply means that all
quantities that define an object must be finite and hence the volume occupied by
the object is finite. Finally, rigidity constrains an object to have an unvarying
form, no matter what position or orientation it assumes.

The processes that manipulate and alter the data model also require some
guidelines. In particular, the following conditions must be met:
1) coherence of operators — that is, whenever an operation is applied to a solid

object, it must produce another solid object.
2) description — any solid must be able to be represented.
3) coherence of information — a given point in space can only be contained

within one solid object.
Three types of three dimensional models can be distinguished [Requicha80].

The first, the line model, which manages visual display-type elements, has already
been described in a previous section.

The second model is referred to as the surface model or the Boundary
representation (B-rep). Here, definitions of surfaces are allowed which together
may define a solid object. However, this form of model still may be insufficient
to present an object unambiguously, since one still has to determine which of an
object’s surfaces define its volume. Surfaces may be defined as planes, rotated
surfaces, lined surfaces, and mathematical models for surface approximations.
There are limitations to this model in that there is no guarantee that any object

- 9 -

can be produced and measurement of quantities such as volume can be difficult if not impossible to calculate.
The third and most complete model is the solid model or Constructive Solid

Geometry (CSG) [Laidlaw86]. It can be used to represent complex objects and
provide coherent information, particularly for object recognition. An object’s
volume can be enclosed by complex surfaces. There are two main methods used
in solid modelling. The first recognizes an object by its silhouette. Topological
and geometric information is stored as in the line model, but surfaces are known
and oriented so as to define an interior and exterior. The second method
recognizes an object in terms of the construction methods used to define it.
Information is stored in the form of a construction tree in which non-term inal
nodes represent operators, leaves represent basic objects, and the root is the
generated object. An object is built by climbing the tree from the leaves to the
root, defining subobjects along the way. A subobject is created at every level of
the tree whenever an operator node is encountered. An example of a simple
construction tree is depicted in Figure 1.1.

root

Figure 1.1 — A simple construction tree
Basic objects can consist of boxes, cones, spheres, cylinders, etc. The CAD

software is able to combine these objects using Boolean operators such as
difference and union. The solid model can meet the requirements of a high

- 10 -

quality model in that any object can theoretically be represented, a data structure
will correspond to a real object, and quantities such as volumes may easily be
measured. A difficulty with this approach is that it is sometimes hard to
transform the geometric model to a lower level graphical model suitable for use by a display processor.

Many of the methods used to construct objects on a 3D CAD system have
been mentioned previously. To recap, these methods are: two dimensional
drawing with multiple views, extrusion, and Boolean operations on basic objects.
Extrusion involves using depth, rotation, contour joining and pierced depth along a path.

Generally, models are defined in such a way that the most frequent
operations can be carried out easily. These operations can be very costly. For
example, to generate an image with hidden surfaces removed requires a
complicated algorithm, as does creating a cross sectional view. Another
expensive operation is that of generating full-colour shaded images with hidden surface removal.
1.3. Draw versus Paint

For comparison purposes, this section will define a draw program to be any
interactive illustration system that maintains a description of the displayed image
at a level higher than at a per pixel basis. In contrast to draw programs, a paint
system would not maintain a data structure of all the drawing primitives in an
image for picture definition and manipulation. One may think of paint programs
as simulating painting and draw programs as simulating drafting.

While the user interface issues of these two types of packages are very
similar, there are noticeable differences. First of all, a ‘select’ operation in a paint
program is able to specify a rectangular area of pixels which a user can
manipulate (e.g., translate, copy, scale, etc.). In contrast, a select or ‘pick’
operation in a draw program would select one or more drawing primitives if they
happen to be within some predefined pick window.

Secondly, a ‘fill’ operation in a paint program will start at a seed point of a
given colour and will colour an area outwards in all directions until a pixel is
encountered whose colour differs significantly from the seed point. A draw
program will first determine if the seed point for the pick is bounded by a
geometric object. If it is, the interior of this object is scan converted.

Lastly, a ‘zoom’ operation is normally handled differently between paint and
draw programs. A paint program relies on either a hardware zoom facility in
which each pixel is replicated according to the zoom factor, or a low-level
software routine to magnify an area of pixels. This allows easy modification of
individual pixels at larger zoom factors. In this scheme, a line of width two pixels
when zoomed by a factor of two will appear four pixels wide. A draw program

- 1 1 -

would normally rely on some form of software zoom to achieve magnification.
This could be done by changing viewing parameters (such as the distance from
the eye to the viewing surface) or resizing windows. Under this scheme, a line of
width two pixels will always be drawn at the same width unless line widths are scaled in proportion to the zoom factor.

In general, there are a number of differences in the functionality of the two
types of systems. The most apparent difference is that transformations may be
applied to a group of objects in draw systems, whereas these operations are not
easily defined in paint systems (other than translate and possibly scale). For
instance, an arbitrary rotation of a grid of pixels onto another grid is difficult.

A second major difference is the ability to draw free form lines or curves.
Whereas this is an essential feature of a paint program, it is rarely included in a
draw package. A paint program can handle this operation by simply writing into
each pixel that the screen tracker crosses. However, a draw program would have
to represent the path as a collection of points, which is not easily manipulated or effectively stored.

A third difference may be the variety of brush styles available. Draw
programs often have lines of varying thicknesses and on/off patterns (e.g., dashed,
dotted, etc.), but all with a rectangular profile. Paint programs may or may not
have these line types, but they often have arbitrary two dimensional figures for
their profile and may allow for techniques such as air brushing [Smith78].

There are also differences which may appear transparent to a user. First of
all, the image displayed in a paint system is generated by sending the contents of
the frame buffer memory to the video controller. A draw system usually
incorporates a display list as an extra step in this process. Every time the display
list is updated, it is traversed to generate an image in frame buffer memory.
When the current image is saved in a paint system, the entire frame buffer must
be saved. Draw systems only have to save a form of data structure which
represents the image. Therefore, the output from a draw program will be more
portable across different systems than output from paint programs, since draw
output is normally in virtual coordinates while paint output depends on the resolution of the viewing device.

Another difference is in the manner that undo operations are handled. For a
paint system to allow an undo operation, a copy of the image before the last
operation must be saved. This requires a lot of memory, so in most cases only
one level of undo is provided or none at all. Draw systems can keep track of any
number of previous operations made on the data structure. Since all the
operations available are well defined, the inverse of each operation may be
generated. As examples, the inverse of drawing a line is deleting that line and
the inverse of a scale by two is a scale by one half. Each time an undo operation
is invoked, the inverse of the previous operation is performed on the data

- 1 2 -

structure. Thus, any level of undo is theoretically possible.
The availability of various colours and of constraints varies widely among

draw and paint programs. However, in general, a paint program should not need
elaborate constrained drawing as a draw program would, because of the types of
images each system is designed to produce. In addition, while paint programs
often provide colours from the entire spectrum, draw programs normally need not
offer as broad a range of colours.

- 13 -

Survey of Draw Programs
2.1. Introduction

In this chapter, a number of selected packages are introduced which, through
various techniques, have increased the ability of a user to construct constrained
drawings. The first section describes the Sketchpad system [Sutherland63].
Sketchpad is described in great detail because it was the first draw package
introduced and incorporated many of the tools desirable in a draw package. This
enables subsequent packages to be described by the ways in which they differ
from Sketchpad. The next section outlines a representative collection of draw
packages. Finally, current trends in improving drawing systems are listed.
2.2. Sketchpad - the first Draw Package
2.2.1. Description

The first draw package introduced in the literature was Ivan Sutherland’s
Sketchpad at MIT’s Lincoln Laboratory [Sutherland63][Sutherland84]. This
system is still a major source of reference for designers of new systems and is a
landmark in interactive graphics. Many of Sketchpad’s ideas have been
incorporated into current systems. The three facilities of Sketchpad which
describe its functionality are: a hierarchical subpicture capability, a constraint
capability and a definition copying capability. The ability to store and recall
images from backup storage is also important.

A Sketchpad user interacted with the image on a monitor by manipulating
input devices such as a light pen, push buttons, switches, and knobs. He issued
specific commands with a set of push buttons; generated position information and
picked existing drawing parts on the screen with the light pen; turned functions on
and off with an array of switches; and rotated and magnified parts of the image
by turning knobs.

At the time Sketchpad was produced, the only primitive drawing operations
available were straight line segments and circular arcs. However, a user could
define arbitrary symbols from any collection of drawing primitives including
previously defined symbols. Once a symbol was defined, subsequent changes to
its definition were seen at once wherever that symbol appeared. Any number of
these subpictures could be used in a drawing.

Atomic constraints were included in Sketchpad to make lines horizontal,
vertical, parallel or perpendicular; to make points lie on lines or circles; to make
symbols (numbers or text) appear upright, vertically above one another, or of
equal size; and to relate symbols to drawing parts such as lines or points. Any

- 14 -

combination of these basic relationships could be composed and defined as a
single condition to be placed on an object (or objects). For example, a number
representing the length of a line could be constrained to that line and displayed
along with it. Then, if the length of the line was changed, the constrained
number would change accordingly. A graphical depiction of the conditions could
be displayed along with the drawing to enable erasure or modification of these
conditions with the light pen. When constraints were applied, Sketchpad would
move parts of the drawing around in an attempt to satisfy these conditions as
completely as possible. By using the definition copying facility, any condition
applied to an object could be copied and applied to another object. This made the constraint capability easy to use.
2.2.2. Interaction

This section describes many of the ways in which one could interact with the
image on a monitor using Sketchpad. These functions were performed mostly
with the light pen, although some were controlled by knobs.

In the normal drawing mode, feedback was provided by a process called
rubberbanding. After having selected a starting position for a line or arc, an echo
of a line (or curve) from the starting position to the current tracking position was
drawn on the screen. When a closed polygon was drawn, this method was used to
construct the edges, while a button was used to select where the vertices were
placed. To close the polygon, the light pen was brought near the first vertex,
where it would lock on to the end. To terminate the drawing, a sudden flick of
the pen was used. This would cause the computer to lose its tracking of the light pens’ motion.

The ability to lock on to existing points in an image was a result of the
system storing explicit information about the topology of the drawing and using
this information to construct gravity fields around visible objects on the screen.
When the tracker came near a gravity field, it was drawn into it and ended up
pointing at a control point or exactly on a curve.

At any time during the construction of a drawing, instances could be created
or defined. An instance could be created out of any combination of lines, curves
or other instances either on the screen or accessible from tape. Once this was
done, the instance could be copied to other locations on the screen without
duplicating the memory of the original instance. Subsequent modifications to the
definition resulted in immediate changes to all instances in the drawing.
Sketchpad also provided an operation to simply copy any group of objects. In this
function, the memory of the source objects was physically duplicated so that any
operations could be performed on it at will without changing the original objects.

- 15 -

Other techniques that were used when interacting with Sketchpad included:
• if a vertex of a polygon was moved, all connecting lines would follow the

movement in a rubberband fashion
• if a new point was to be generated at the pen location, but the pen already

pointed to an existing point, no new point was generated, but the existing point was used again
• if a point was being moved and a termination signal was given while aiming

at another point, these two points were merged
• if two lines were made collinear, the resulting line would only refer to its two endpoints
• if a point was created on or moved onto a line or circle, constraints were

automatically set up to indicate this condition
• if an object upon which other objects depended was deleted, the dependent

objects were also deleted (e.g., if a point was deleted, all lines which
terminate at that point were deleted)

• if two independent objects of the same type were merged, a single object of
that type would result (e.g., if two points were merged, all lines which
terminated at either point would now terminate at the resulting point)
One final tool that was of great use was the ability to m agnify any portion of

the screen. The user was able to specify a scale factor for the display to enlarge
specific parts of the drawing. This made it possible to draw the fine details within the drawing.
2.2.3. Constraint Satisfaction

Once constraints were applied, Sketchpad had to try to satisfy them
simultaneously, although sometimes this was not possible. Constraint satisfaction
was first attempted with a one-pass method, which gave rapid results but often did
not work for other than simple cases. A solution was most often obtained by
using the slow but reliable relaxation method.

To implement the relaxation method, each of the constraints in the system
needed to be defined numerically. Sketchpad achieved this by expressing each
constraint as an equation in terms of error introduced into the system. For
example, constraining two points to have the same .«-coordinate would result in an
equation involving the difference between the .«-coordinates which expresses the
error term. Equal weights were given to each constraint equation. The
relaxation method would then try to minimize each error term by manipulating
the variables in each equation. It did so as follows :

- 16 -

1. A variable was chosen
2. It was re-evaluated to reduce the total error introduced by all constraints in the system
3. Another variable was chosen and the process repeated.
Since each step made some net reduction in error, the error decreased
monotonically and thus stability was assured.

The one-pass method worked as follows: suppose that one of the variables in
the system of equations could be re-evaluated to satisfy all the constraints that
apply to it, due to the fact that it had so few constraints. This variable was then
considered free’. Now, all constraints which were applied to it were removed
from consideration. If a single constraint constrained two variables, these
variables were considered adjacent. The removal of the constraints applying to
the free variable resulted in a number of adjacent variables becoming free. This
removed further constraints from consideration> resulting in more free variables,
and so on. Sketchpad would then re-evaluate all the free variables in reverse
order, saving the first found free variable until last.

As an example of the one-pass method, five variables with a total of four
constraints are depicted in Figure 2.1.

Figure 2.1 - A sample constraint diagram
In this diagram, variables are boxes labelled with numbers and constraints are
circles labelled with letters. The variables affected by a constraint are those boxes
that are connected by lines to the circle representing the constraint. To start off,
variables 4 and 5 are likely candidates for free variables. Suppose 5 is picked as a
free variable. Now constraint A is dropped from the list of constraints. No
additional candidates for free variables are generated. Next 4 is picked as a free
variable. This removes constraint D from the list and also makes variables 2 and
3 candidates for free variables. Variable 2 is picked which removes constraint B.
Now, both 1 and 3 are candidates for free variables, and 3 is chosen. When
constraint C is removed, no more constraints remain. The list of free variables is

- 17 -

then re-evaluated in reverse order, that is, 3 first, then 2, 4 and 5. In
re-evaluating a free variable, only those constraints which were present when the
variable was found to be free are used.
2.2.4. Conclusions

Sketchpad was used in a number of applications including the definition of
mechanical linkages, analyzing the force distribution in members of a bridge
truss, and as an input to a circuit simulation package.

A shortcoming of Sketchpad, as described in Sutherland’s thesis, was a lack
of drawing primitives of different types. A spline drawing facility would have
been useful instead of defining curves as combinations of circular arcs. However,
Sketchpad was designed so that the addition of new drawing abilities would be
straightforward.

Another shortcoming had to do with the graphical representation of
constraints. A drawing containing many constraints tended to be confusing when
they were displayed graphically, often overlapping one another. As well, each
constraint type was represented by a single character inside a circle, called a tag.
This tag may not have been sufficient to represent all of the different types of
labels one would have liked to identify a constraint. However, considering the
equipment that Sketchpad used, the functionality provided is still comparable to
some systems in use today.
2.3. Later Draw Packages
2.3.1. Draw

Around 1975, Patrick Baudelaire at Xerox PARC introduced a system which
he simply entitled ‘Draw’ [Baudelaire75][Baudelaire79]. His package was one of
the first to introduce facilities such as multiple brush types and splines. It was also
the first to introduce the concept of grid constraints. In addition, new concepts in
user interfaces were introduced.

One major advantage Draw had over previous systems such as Sketchpad was
the ability to draw with more than one style and size of brush. Draw provides
four distinct types of brushes including dashed lines, dotted lines, dot-dashed lines
and the default solid line. Each style could in turn be combined with four
discrete line thicknesses for a combination of sixteen brush styles.

Draw also introduced splines curves to draw programs. The user first places
each of the control points for the spline on the drawing surface. After this is
done, Draw fits a spline through the control points. Any type of brush can be
used for splines as well as lines.

- 18 -

Probably the most important development introduced by Draw is the ability
to specify grid constraints. When invoked, an array of points at regular intervals
both horizontally and vertically appears over the drawing surface. This array may
then be scaled and/or translated to any desired position. The grid is used to
constrain control points of drawing primitives to lie only on grid points. This
enables the user to easily construct right angles, equal distance lines, and regular
curves whose control points lie on the grid. Drawing rubberbanded lines in grid
mode results in lines only being drawn when the screen tracker passes a grid
point. If the tracker is positioned mid-way between two grid points, no line will
be rubberbanded to the tracker; only lines at discrete multiples of grid points are
ever drawn. A constraint may also be applied to restrict all lines to be either vertical or horizontal.

Draw improved the ability of the user to interact with the image on the
screen. The two most noticeable improvements are the replacement of a light pen
with a tablet or mouse and the display of fixed menus on the screen alongside the
drawing surface. A light pen interferes with the user’s view of the drawing
surface and has a limited amount of coordinate resolution. Tablets and mice are
able to provide much higher resolution and may also allow ‘softswitches’ if the
device has multiple buttons. These switches could invoke default operations
instead of having to explicitly make a selection from a menu.

Draw changes the screen tracking icon whenever a new operation is selected,
providing feedback as to the semantics of the operation. Text is manipulated by
selecting a string and moving it around with the tracker as one would any other object.

Draw has a novel approach to defining various transformations on an object.
The normal transformations such as scaling, rotation and translation can be
combined in the following way:
a) Select the object.
b) Define two reference points on this object by making selections when the

tracker is above each point. These points will be marked with asterisks.
c) Select another two reference points anywhere on the screen. The selected

object will be transformed so the original two reference points will be mapped
to the second pair of reference points. The topology of the original drawing is preserved.
Non-traditional transformations such as stretching, slanting, and symmetry

can be accomplished by an affine transformation that maps three source reference
points to three target reference points. These transformations may be
accomplished in fewer steps. For example, a scale may be described by anchoring
a point, selecting another point, then dragging the second point to the desired
location. Notice that the position of a fourth point is unnecessary. The choice

- 19 -

between these two techniques for specifying a scale is a user interface consideration.
Draw is best known for its introduction of grid constraints. Although many

of the newer systems use other constraint methods, they greatly resemble Draw in
terms of user interface and functionality.
2.3.2. Star Graphics

At the Xerox Palo Alto Research Center (Xerox PARC), a great deal of
research has been put into integrated document composition systems.
Developments include Baudelaire’s Draw, the Bravo editor [Lampson79], and the
Tioga editing system which is part of the Cedar programming environment
[Teitelman84]. Other systems include Newman’s Markup and Stone’s Griffin,
which will be discussed in a later section. These systems were primarily research
projects used internally at Xerox.

In the late seventies, Xerox developed the Star professional workstation
[Lipkie82]. It was the first commercial system of this type developed at Xerox.
The unique aspect of Star is the user interface of its integrated text and graphics
editor. This section describes some aspects of that user interface.

The central concepts of the Star interface are ‘What You See Is What You
Get’ (WYSIWYG) [Englebart68] and visibility. The visibility concept assures
that the system does not hide things under “code plus key” combinations or force
the user to remember many conventions. All actions should be immediately
obvious to a user. Interaction is performed with a mouse and a keyboard. The
keyboard is divided into two sections: the standard ‘QWERTY’ section, and a
group of function keys which perform operations such as MOVE, COPY,
DELETE, SHOW PROPERTIES and AGAIN. Their meaning is only defined
once an object is selected. Grid constraints with redefinable grids are also
provided along with their associated control.

An important part of an effective user interface is feedback. The Star editor
provides this in a number of ways for object selection. Icons show that they have
been selected by reverse video or highlighting. A selection of text is noted by
highlighting a rectangular region around the characters. When a graphic element
such as a line, point, or polygon is selected, each of its control points is
highlighted by inverting a small square region around them. For text, multiple
clicks of the mouse button have different meanings. The first click will select a
character, the second a word, the third a sentence, and the fourth a paragraph.
Clicking the other mouse button can then expand or shrink the selection at the
current level.

In all of the above examples, a selection requires depressing and releasing the
mouse button. This is an important distinction to make because a user may
depress the button while pointing to one object and then move the tracker around.

- 2 0 -

An object is then selected if the button is released above it. Throughout this
process, the editor will highlight which object is currently under the tracker, and
hence the object that would be selected if the mouse button were to be released.

A very useful tool that was rare among draw packages around the time Star
was introduced allows copying and changing properties of objects. This ability is
much more common today. If an object is selected, the SHOW PROPERTIES
function will open up a small window in which a property sheet, displaying the
properties of the selected object, is placed. For instance, some properties shown
for a line would be: line thickness, line style (e.g., solid, dashed, etc.), and any
constraints applied to it. For each property, either an enumeration of all possible
values or a box into which a value is to be typed is displayed. The current value
applied for each property is highlighted and may be changed simply by selecting
another value for that property. Another way to change the properties of a
selected element is by the use of the COPY PROPERTIES function. To use this
function, it is invoked and then the object from which properties are to be copied
is picked. The properties of this picked object are then copied to the currently selected object.

Packages that have a ‘copy properties’ function usually only allow one
property to be copied at a time. Usually the user has to determine the value of
the property from the source object and manually change the target object’s
property to this value. This can be time consuming if this needs to be done for
many objects or many properties.

A pair of operations that are related to Sketchpad’s concept of instancing are
JOIN and SPLIT. By default, when a selection is made, only primitive objects
such as lines and points are selectable. To change this, the JOIN function will
combine an extended selection of elements into a cluster element. The cluster
element will then behave as a primitive element for purposes of editing and
selecting. The SPLIT function acts upon a cluster element and reverses the effect
of the JOIN function.

Star’s integrated text and graphics editor demonstrates an effective and well
conceived approach to user interface design. However, the overall usefulness of
the editor is reduced by not providing for such things as a curve primitive.
2.3.3. MacDraw

MacDraw is a package produced by Apple Corporation to be used on its line
of personal computers [MacDraw84]. Very little new functionality is introduced
by this package; however, it does combine a lot of the ideas introduced
previously.

MacDraw expands on the ideas espoused by Draw. It too is a grid based
system with redefinable grids. It supports multiple brushes and also draws splines.
Some ideas from Sketchpad are used as well. These include dynamically changing

- 2 1 -

numbers which represent line length when a line is rubberbanded. Permanent
menus reside on the screen, but pop-up menus, which have been used in previous
packages such as Star Graphics, are used extensively here. Pop-up or pull-down
menus are used effectively to allow the user to select a large number of predefined
text fonts, line styles, line thicknesses, in addition to other choices. The user is
able to draw freehand sketches but no geometric information is stored. This mode
has the disadvantage that each point on the curve must be stored separately,
resulting in very inefficient use of memory.

Two selection mechanisms are provided by MacDraw. The first mechanism
allows the user to specify individual objects by simply selecting when the tracker is
within the extent, or bounding box, of an object. The extent of a line, for
instance, is roughly the smallest rectangle, oriented with the coordinate axes, that
will fully surround the line. This mechanism can be thought of as a form of
‘rectangular gravity’. The second mechanism allows a user to select multiple
objects within a rectangular region. Objects are only selected if their extent is
fully contained within the selection rectangle. To invoke this mechanism, the user
first selects a corner of the rectangle and keeps the selection key depressed.
Then, by moving the tracker, a dynamically changing rectangle is displayed. By
releasing the selection key, everything within the current rectangle is selected.
All system interaction other than text operations, which require a keyboard, is
performed with a mouse.

Draw packages previous to MacDraw were mostly research-oriented in that
relatively few people other than the designers used them. MacDraw was the first
package to gain widespread use among the general public, due to the affordability
of the personal computer on which it is used. A very easy to learn and consistent
user interface permits novice users to be productive in a short period of time.
Basic operations are implemented effectively and are easy to use, but more
complicated operations are difficult if not impossible to perform.
2.3.4. Drawing Beautifier

Although the system described in this section only loosely fits into the
definition of a draw package, it is nevertheless included because of the way in
which it handles constraints. The beautifier is implemented as part of the PED
graphics editor [Pavlidis85]. The system works as follows: given a rough drawing
as input, desirable constraints are inferred and the drawing is then modified to
satisfy these constraints where possible. Constraints or relations dealt with are:
approximate equality of the slope or length of sides, collinearity, and vertical and
horizontal alignment. A restriction is applied to limit drawings to ones that can
be defined in terms of points. This covers most line drawings.

- 2 2 -

For each type of relation, objects are sorted according to the value of then-
scalars (i.e., coordinates and line lengths). These lists are searched to find objects
that are approximately related. For example, two x-coordinates that differ by less
than some pre-determined value are flagged. This approach ensures that the
search for relations among N objects in the drawing can be performed in 0(N log
N) time, since the sorting process requires this amount of time. The relations
flagged are then expressed as a series of equalities. A problem with this approach
is that a series of parallel lines close together could be mapped onto one line. To
alleviate this problem, negative constraints are imposed on the system of
equations derived above. Negative constraints indicate that entities should not
satisfy a condition. For example, points that are close in both x and y coordinates
should not be constrained to be equal.

The following constraint relations can be imposed on the primitives of a drawing:
1. Line segments at angles near a preferred value (a multiple of 45 degrees, for

instance) are adjusted to the exact value.
2. A set of neighbouring line segments with similar slopes are made collinear.
3. Line segments should have the same lengths.
4. Points are horizontally [vertically] aligned unless they are also vertically [horizontally] aligned.

It is not likely that all the constraint equations can be satisfied
simultaneously. To ease this problem, a penalty is assigned to each constraint
equal to the maximum change in one of its variables, assuming the other variables
remain constant at their original values. This represents a preference to those
equations which only require a small change to be satisfied. If a solution to a
large subsystem of equations does exist, the solver quickly rinds it. However,
there is still no guarantee a solution exists.

This system can be thought of as another constraint based draw package in
the Sketchpad family. Curves cannot be beautified in the same way as lines, but
they can be expressed as spline approximations. The method described in this
section was originally designed for use as a filter for edge extraction algorithms on
digitized images, since those algorithms produce rough line drawings due to noise
in the image. These rough drawings are similar to rough ‘sketches’ of drawings in an interactive mode.

- 2 3 -

2.3.5. Juno
A new approach to implementing geometric constraints is presented in the

Juno system [Nelson85a][Nelson85b]. Two techniques contribute to the success of
Juno: geometric specification and implicit editing. Geometric specification is the
use of geometric constraints to specify locations, such as specifying that points a, b
and c be collinear and that b be exactly mid-way between a and c. The interpreter
translates the geometric constraints into a set of numerical constraints on object
coordinates. The list of constraints is then solved by iterative methods.

Juno integrates a WYSIWYG image editor with a language like Knuth’s
METAFONT [Knuth79J. METAFONT was originally a font design tool capable
of producing many mathematical symbols and alphabets. However, it is used in
other areas of programming with no graphical requirements. Languages of this
style seem well suited for producing constrained images with a hierarchical
structure. The features which make it suited for these applications are that the
positions of points are given with declarative constraints, drawings are produced
by drawing commands parameterized by these points, and procedures may be defined.

Implicit editing refers to the automatic modification of the text of a Juno
program after the displayed image has been edited interactively by the user. If an
object is edited, the program text that draws this object is changed and that
section of code is re-executed, updating the screen at the same time. The types of
interactive commands that may be performed on an image consist of moving
points, adding or deleting points, specifying constraints, and painting commands.

Previous constraint-based systems dealt with linear constraints, such as
horizontal alignment. Linear constraints are those in which the algebraic
relationships among the constrained components can be expressed as a system of
linear equations. This excludes quadratic constraints such as those found in a
parallelism test. Juno will handle both linear and nonlinear constraints.

Two dangers arise from allowing this improvement: the constraint solver may
become too slow or its solutions might become unpredictable. Concerning the first
danger, Juno uses Newton-Raphson iteration [Burden81] in its constraint solver.
This derivative-based method is reputed to be faster than the relaxation methods used in Sketchpad.

Experience with this method in Juno has shown that its performance is
predictable and reasonably fast. The second danger is of no concern if the
solution is not too far from the initial configuration, as nonlinear solvers behave
predictably for these cases. So, when using the editor, the user must lay out the
points in roughly the correct positions, and the constraint solver will align them
accurately. Similarly, a Juno program must provide hints for unknown points
when the constraint solver is invoked.

- 2 4 -

The commands available in Juno can be thought of as operations to change
the state of an abstract Juno machine” . The state of the machine is determined by:
• a collection of point registers, each containing a value of a point in the Cartesian plane.
• a single image, physically represented as a grid of pixels.
• three mode registers: colour, which controls the drawing colour; width, which

controls the line width; and endsType, which controls the drawing of ends of lines.
The colour register has a limited number of values that it can be set to. It
contains the current drawing colour. The width register is set to a decimal value
that indicates the current line thickness, while the endsType register can be set to
three different values: BUTT, SQUARE or ROUND, depending on the desired
type of end wanted on the current line. The commands to set these registers are as follows:
•c PAINT A : set the colour register to c, execute the command A, then

restore the contents of the colour register.
•e ENDS A : set the endsType register to e, execute A, then restore the

endsType register.
• r WIDTH A : set the width register to r millimetres, execute A, then

restore the width register.
• p , q WIDTH A : set the width register to the distance between points p and q,

execute A, then restore the width register.
The list of painting commands, or commands which actually create images, is as follows:

•FILL p :

•STROKE p :
•DRAW p :

change the colour of every point enclosed by path p to the
current value of the colour register.
draw a stroke along path p of the current colour, width, and
endsType.
draw a stroke along path p that is black, has round ends, and
has width 1.

In the above commands, a path is a connected sequence of edges and arcs,
formed by either endpoints of lines or control points for Bezier splines

Only four constraint types are allowed in Juno, these being:
• (x ,y) CONG (u ,v) : the distance from x to y equals the distance from u tov.

- 2 5 -

• (x , y) PARA (u .v) : the direction from x to y is parallel to the direction from u to v.
• HOR (u , v) : the direction from u to v is horizontal
• VER (u , v) : the direction from u to v is vertical
This small group was chosen because any constraint can be expressed in terms of
CONG and PARA. HOR and VER are included to orient images on output devices.

For some people, the meanings of the HOR and VER constraint types may be
non-intuitive. The meaning of VER (u , v) should be taken as ‘the point u is at
the same height above the x-axis as point v \ This is the standard used in many
typesetting systems. It should not be confused with the notion of u being
vertically above v, which is expressed by HOR(u.v). A user must therefore be
careful when defining operations using these constraint types.

Juno’s constraint command takes the form:
LET Variables | Constraints IN Command END,

where Variables is a list of variables to be used locally within a procedure,
Constraints is a conjunction of the constraint types applied to the variables, and
Command is a list of painting operations. The Variables list may contain hints in
the form of condition(s) for specific variables within the list.

Following is an example of how these constraints and commands can be
combined to produce a constrained drawing. The problem is to construct an
equilateral triangle on the line segment ab. The program would look as follows:

LET e == (1 ,1) REL (a ,b) |
(a ,e) CONG (a .b) AND (b .e) CONG (a .b)

IN DRAW (a .b) , (b .e) , (e .a)
END

Here, e is introduced as a local variable and represents the third vertex of
the triangle. The first line of the program is giving the constraint solver a hint for
the value of e. Assuming a is the origin of the coordinate system and b is at
the point (1 . 0) , the initial value for e is at (1 , 1). This prevents the
construction of an unpredictable triangle, or an equilateral triangle with the third
vertex below the segment ab. The second line applies the constraint that the two
lines to be constructed should be the same length as ab. Finally, the third line
contains the graphic commands which construct an image from the solution of the
constraint solver.

- 2 6 -

The user views two windows on the display screen; one displays the unparsed
text for all the currently available procedures, and the other displays the image
produced by the current command. The text window is essentially a WYSIWYG
text editor. After editing the program text, the user enters the ‘Reparse’
command, which will regenerate die list of procedures used, and then regenerate
the image. The image window can be edited graphically, as in other draw
packages. The difference with Juno is that this editing will result in modifications to the text of the current command.

Juno has an iconic menu from which to invoke operations. The operations
available consist of: drawing straight lines and arcs; entering text; moving,
copying, and erasing; freezing points; imposing parallel, equidistant, horizontal
and vertical constraints; and creating and calling procedures. Freezing a point
causes its location on the screen to remain constant during all operations until it is
unfrozen. To invoke an operation, the user picks the appropriate icon, specifies
the argument list for the command and then hits the escape key on the keyboard.
The argument list is a number of points which are selected by pointing and
clicking a mouse button. Another way to select a group of points is to draw a
free-hand circle around them. It is then possible to perform a transformation on
the group as a unit.

Juno’s approach to a constraint-based system is considerably different from
other implementations. The procedural abstraction is useful, but using a
programming language style automatically restricts the number of people who use
this system. While allowing commands to become parameterized procedures,
Juno does not allow a group of constraints to become a parameterized predicate.
For example, it would be useful to be able to express a right angle formed by a,
b and c by R ig h t.(a ,b , c) , instead of including a list of primitive constraints every time.

Two pitfalls in expressing constraints are to be avoided when using Juno.
First, the constraint (a ,b) PARA (a ,c) is more stable than (a ,b) PARA
(b , c) if b and c are near one another, and a is far away; the solver will tend
to collapse a short line segment to a point if it is parallel to a long segment.
Secondly, redundant constraints will sometimes prevent the solver from
converging to a solution.
2.3.6. ThingLab

Yet another approach to defining constraints is taken in ThingLab
[Boming86], ThingLab is a constraint-oriented simulation laboratory which can
be used for constructing dynamic models of simulation experiments such as those
mentioned in Sketchpad. The unique aspect of this system is that the user defines
constraints graphically. The reasoning behind this approach is that less
experienced users will find it easier to add new constraints than they would using

- 2 7 -

systems such as Juno, where constraints are specified in an underlying language
outside the graphical domain. Two sorts of users use ThingLab; one constructs a
set of building blocks and one uses the building blocks to perform particular simulations.

The original version of ThingLab required that constraints be defined by
writing pieces of Smalltalk code. The user had to define a predicate for the
constraint, as well as one or more methods to be used to alter parts of the object
to make the constraint hold. For example, in order for a point to be constrained
to lie exactly at the midpoint of a line, the predicate would be the equation:

midpoint = 1 + Point 2

and a method used to satisfy this constraint would be to simply calculate the right
hand side of the equation and assign the result to the midpoint. In the current
version of ThingLab, only the constraint’s predicate need be given; the system will derive the methods to be used.

To create the building blocks, ThingLab contains an object definer window.
Besides a few menus of commands, this window has two panes: a definition pane
and an instance pane. The definition pane is where constrained objects are
defined. This window contains the graphical definition of the constraint along
with a list of the object’s parts and inserters. Inserters are parts of an object that
are to be positioned when a copy of it is inserted into a construction (e.g.,
endpoints are the inserters for lines). The instance pane simply contains a
depiction of what will be added to a construction if this object is instanced. When
the user adds an object to some other object, the instance pane is copied; the
definition pane is not copied, but the instance will behave in accordance to the
constraints in its definition.

The graphical definition of a constraint is in the form of a network. The
network shown in Figure 2.2 is used to specify the constraint that a point M
should lie mid-way between points PI and P2:

- 2 8 -

Figure 2.2 — A constraint network
The symbol under the box containing ‘2’ indicates that this element should be
kept constant. The other boxed variables (P1,P2,M) are free to change. Other
possibilities for constraints include vertical lines and forcing digits of text to
correspond with the size of an object.

For simple constraint types, the networks are reasonably easy to understand
and construct. However, complex constraint networks can take up considerable
space and can be difficult to understand. Although ThingLab introduces an
interesting method for specifying constraints, it is debatable whether it is more
efficiently done graphically or textually, as is done in Juno.
2.3.7. Gargoyle

Gargoyle [Bier86] uses an interaction technique called snap-dragging in a
two-dimensional illustrator. The idea behind this technique is that a set of
gravity-active alignment objects are automatically constructed during the editing
process to aid in construction. Heuristics about typical editing behaviour plus
hints from the user determine when and where these objects are created. Snap­
dragging may be thought of as a simple constraint solver or as an extension of the
gravity-active grid concept. Points can be placed to satisfy constraints such as
angle and distance, but constraints are forgotten as soon as they are used.

To position objects with precision, a special gravity-active point called the
caret is used. The caret moves with the cursor, but can stray away if attracted by
a gravity-active object. The cursor is not attracted by gravity. Control points are
always added to a scene at the position of the caret.

The user selects what type of alignment objects are to be active, and in which
region they are to have an effect. These objects may be points, lines or circles,
and are coloured grey to distinguish them from the rest of die scene. Whenever a
point or an object is moved within the region, the alignment objects become
visible and attract the caret, aiding positioning. There are several ways provided

- 2 9 -

to disable the alignment objects when the user so desires.
The usual types of transformations such as scaling, translation and rotation

may be applied to objects. To do so, one first selects an object, then places the
caret at an initial point in the scene. The caret is then moved while the objects
are transformed based on the displacement between the initial caret position and
the current one. To help in rotation and scaling, an anchor is placed on a point
to prevent that point from moving during the transformation. As an example, in
a scaling operation, the scale factor is the ratio of the magnitudes of the current
caret displacement (caret — anchor) to the initial caret displacement.

Snap-dragging only provides commands that take one or two arguments. The
decision not to allow more arguments is based on ease of use of the system.
Although more arguments would increase the power of Gargoyle, it would also
result in a less friendly user interface. The two-argument limit was thought to be
an appropriate balance between these conflicting goals. Another aspect of the
user interface is an undo operation, which is provided in Gargoyle as well as
incremental checkpoints of die system state to prevent catastrophic failures that
would result in the loss of complete or partial drawings.

To enable the construction and placement of alignment objects, two steps are
taken. First, the user must specify the set of points and segments at which the
objects are to be constructed. These points and segments are then deemed to be
hot. The second step is to specify the types of alignment objects wanted. The
types of objects available are lines of various slopes, circles of various radii, and
points of various displacements. The values for these varying scalar quantities are
selected from menus. The menu for the slope of a line may contain values that
are multiples of thirty degrees. The user may add or delete menu items when he
wishes. An extremely useful facility is the ability to measure quantities from
objects on the screen. The quantities that can be measured are: the distance
between a pair of points, the slope between a pair of points, the angle between
three points, and the distance from a point to a line. The measurement is
accomplished by placing the caret successively on the points of interest and
invoking the ‘measure’ command. The result of the measurement can then by
placed in an appropriate menu.

The hot vertices and segments are combined with more vertices and segments
that have been chosen by heuristics. An example of a heuristic used in Gargoyle
is that when the user moves one point of a polygon, he will often want to align it
with other parts of the same polygon. In this case, the set of vertices and
segments of the polygon are added to the hot list. If any members of this new list
are being moved, they are removed from the list; all alignment objects are
stationary. Finally, the set of constructions specified is consulted, and each point
and segment in the final list is made the target of a construction. For example, if
alignment lines of thirty degrees were specified as the alignment objects, a thirty

- 3 0 -

degree line would be drawn through each vertex in the final list.
Snap-dragging uses the ruler and compass metaphor to create an environment

that is much like that in which a draftsman operates. While grids provide only a
small amount of drawing aid, and constraints provide a great deal of power but
often at the expense of understanding and manipulation, snap-dragging provides
much of the power of most constraint-based systems without the need for
additional understanding of any underlying structures. An obvious drawback is
that setting up the alignment objects may take a long time. As well, the
construction of alignment objects and calculation of many intersection points is
computationally expensive.
2.3.8. Other Interactive Packages

In this section, a number of other packages are briefly surveyed, and their
importance explained. Most of the ideas here deal with different user interface techniques.

William Newman’s ‘Markup’ [Newman75] is a tool for interactively editing
mostly textual documents. This is really more of a paint program since it provides
pixel editing, but it does provide rudimentary drawing operations in a grid-based
system. When introduced, Markup was especially noted for its ability to combine
text and graphics in a single document. The special features of Markup are the
early use of pop-up menus and the way adjoining lines are treated. If two lines
join at an acute angle, for instance, an ‘arrow’ will be formed at the intersection
instead of a messy join.

Gremlin [Opperman84] is a useful tool for creating typeset drawings in
TROFF [Ossanna79] format. Drawings are created by Gremlin’s image editor
and can be output in a virtual file format. If the outputted file was named ‘test’,
then by placing the following lines in a troff format file, the drawing will appear
in a 3x5 inch box in the text of the document, after the troff file has been run
through the Gremlin filter:

.GS
f i l e t e s t
w idth 31
h e ig h t 51

.GE

Gremlin is a relatively simple draw package with tablet or keyboard input. It
is a grid-based system that has four different font types and variable thickness
lines of any size that troff will support. Only one text font is actually drawn in
the image editor and lines of different thicknesses are drawn at the standard

- 3 1 -

thickness but in different colours. However, the size and font information is present in the virtual output files.
There are a few peculiarities unique to Gremlin. Four image buffers are

available. An entire image on the screen or any selectable subpart can be copied
to a buffer and later copied from the buffer to the image. One of the tablet
buttons is able to sequentially undo approximately ten previous steps. This seems
excessive and can lead to unpredictable results. There is no way to define an
object hierarchy; a connected series of primitive objects cannot be selected as a
unit by pointing to an individual primitive. However, the group can be selected by an area selection.

Finally, Gremlin reverses the practice of selecting an operation and then
selecting its arguments. Here, the user selects a number of arguments first, which
are labelled by a sequence of numbers. Next, the operation to be performed on
these arguments is selected and the construct is drawn. This is referred to as
postfix notation. Other packages use the prefix notation for commands in which
the command is selected first and its arguments are selected next. In such
packages it may be difficult to describe a complex selection such as ‘all objects
except the following objects’ since multiple selections need to be made and the
interpreter needs to be able to find the end of the command. In packages such as
Juno, the end of the command needs to be indicated by pressing the ‘escape’ key
on the alphanumeric keyboard.

Often a user of an interactive system has a limited number of input devices at
his disposal. In response to this, a number of conceptual models of devices have
been developed [Wein81][Evans81]. From these models, it is easy to control
operations like rotating and scaling with almost any type of tracking device. A
slider is a method of inputting a scalar value by positioning a pointer at a location
on a stationary scale [Buxton82]. A turntable [Wein81] is a model used to control
rotation about an arbitrary point. Conceptually, one can visualise this operation
by controlling a turntable placed directly underneath the rotated object. Echoes
are drawn for the centre of rotation and for the current rotation applied. The
tracker controls the movement of the turntable; the closer it is to the centre of
rotation, the greater the effect a movement will have on the rotation.

A model related to control scaling about a centre of scale is called a rack
[Wein81]. A rack is attached underneath the scaled object so that the object may
be condensed or stretched by control of the tracker. Two echoes besides the
tracking icon are seen by the user. One is stationary and indicates the centre of
scaling. The other is controlled by the tracker and indicates the amount of scale
applied. By moving the scaling echo, the object is dynamically scaled. The user
has the ability to specify if the scaling is to be done in the x-axis, the y-axis, or in
an equal amount in both axes. A stirrer [Wein81] is a model that can be used in
both scaling and rotating operations. In a rotation operation, the centre of

- 3 2 -

rotation is selected as with the turntable, and the same echoes are provided. To
affect a rotation, the user ‘stirs’ his input device. With a tablet, stirring is
accomplished by rotating the puck or stylus in a clockwise or counter-clockwise
direction. The faster one stirs, the greater the rotation applied to the object.

A number of user interface considerations were applied in the development of
both Griffin [Stone80a][Stone80b] and a prototype picture creation system
[Plebon82a]. These systems have a similar hierarchical structure in the object
database. That is, instead of allowing a drawing of a rose, for instance, to be
selectable only as an entire rose or by its individual primitives (i.e., lines, curves,
etc.), the user may create a hierarchy whereby he may select the entire rose,
individual petals or thorns, the stem, or individual primitives. This hierarchy may
be traversed; one method is to assign buttons on a puck the functions of either
moving up or moving down the hierarchy. By pressing a button, one can go from
selecting the stem to selecting the entire rose. By pressing another button, a
component line of the stem can be selected. The system changes the default
selectivity level in response to user actions. For example, if the user was just
moving a petal, subsequent selections would select objects at this level in the
hierarchy, whereas if he were to then start entering lines, individual lines or
curves of the petals would be selectable. The user may also set a default level of
selectability in the hierarchy.

Attention was also paid to the user interface presented by menus. Menus in
these systems are not required to stay at the same location on the screen. The
user may reposition them as he desires, and can save these positions for future
editing sessions. Information is kept about the traversal through the system of
submenus. Thus, if a user wants to return to a main menu, he does not have to explicitly retrace his steps.
2.3.9. Non-interactive Packages

There are many interactive packages available, but often one does not have
the necessary hardware such as a monitor or adequate input devices. For these
cases some form of textual language is used to specify the structure of a drawing.
Commands to generate the graphic primitives for the drawing are output and can
be used to create a visual image. Usually one is able to include these images
within the text of a typeset document. Two of the most popular language-driven
packages in use today will now be introduced.

PIC [Kemighan81] is a language for drawing simple figures on a typesetter.
Capabilities exist to draw primitives such as boxes, circles, ellipses, lines, arrows,
arcs, spline curves and text. Once the text file containing the PIC commands is
created it may be passed through a filter to generate a TROFF format file. In
this way it is easy to integrate text and graphics in a single document. The
language is very low-level, as no control structure or procedure mechanism is

- 3 3 -

provided. Objects rosy be placed at an absolute position or relative to the current
drawing point. Coordinates are usually in units such as inches or centimetres to
correspond with the size of the hard copy image. All graphic primitives have a
default size which can be changed temporarily or permanently. Text may be
included inside the drawing, but PIC does not keep much information about the
size of text relative to the size of objects. Other features of PIC are:
• the spacing between dots and dashes may be controlled in dotted and dashed lines
• objects may be made invisible to aid in tasks such as positioning
• the attributes of an object (i.e., size, line type, etc.) may be copied to the

subsequently drawn object
• objects may be labelled and referenced later
• most objects have labels applied to their most significant points (e.g., a

rectangle will have addressable locations at its compass points (i.e., north, south-west, etc.))
• text may be left, right or centre justified
• if a line intersects a polygon edge, it may either be clipped at the edge or drawn through
• primitive objects may be grouped together to act as one object
• the state of the system (i.e., current drawing position, direction of motion,

etc.) can be left unaltered by enclosing a group of commands within brace brackets
• macros may be defined.

PIC requires a great deal of time to lay out a drawing before any commands
are written. Furthermore, one does not know if the drawing generated is correct
until some visual representation of it is viewed. A feature that is lacking in PIC
that is available in other packages is the ability to perform transformations on
objects. To rotate a rectangle, one must apply the transformation by hand and
also convert the definition of the rectangle to four lines.

IDEAL [VanWyk82] is a high level graphics language using a procedure
mechanism to create two dimensional images that can be included in TROFF
source files. Picture elements are referred to as boxes in IDEAL. A box is
defined by declaring any algebraic relationships that should hold among points
and requesting actions that should be performed at those points. Here, the user
expresses the relationships that should hold among variables as opposed to a
sequence of assignment statements that accomplish these relationships, as is done
in packages like PIC.

- 3 4 -

Boxes act as procedures in IDEAL. Each box has a number of internal
variables which may be used as parameters to define a box. In this way, a
drawing element may be generated by specifying values for any subset of the
box’s internal variables that completely defines the object. An equation solver is
used to process the algebraic relationships and generate the absolute positions of
significant points. For example, a circle may be created by specifying its centre
and radius, three points on the circle, or even two points on the circle and one
coordinate of the centre. IDEAL draws pictures on the complex plane and hence
it supports the usual complex arithmetic operators. Scalar values are treated as a
vector with a null imaginary component.

Operations provided by IDEAL are:
• any type of figure that can be defined as a box can be used as a pattern for a

line
• regions may be filled with patterns
• any area within a boundary can be made ‘opaque’, to hide any portion of the

picture behind it
• transformations can easily be applied using complex arithmetic.

While PIC may have a greater number of graphic primitives than IDEAL, it
is less flexible and less powerful. A drawback of IDEAL is its use of complex
numbers. It is unreasonable to assume that all users know enough about complex
arithmetic to create elaborate drawings.
2.4. Trends in Draw Packages

While many advances have been made with draw systems, there are still
areas in which improvements can be made. Developments in draw programs tend
to occur infrequently and usually involve significant differences from existing
programs. The areas in which current developments are taking place are the user
interface, hardware, and management of data.

Much has been mentioned about user interface techniques in the previous
section. The majority of cases have had to do with the manipulation of objects in
a scene or ways to invoke functions. A more recent development is the use of
natural language interfaces in draw and CAD systems [Vemadat84]. In such an
interface, interaction would not be performed by a sequence of selections from an
input device, but rather with phrases from a language such as English. For
example, a user may be able to enter a command such as ‘Change All Solid Red
Lines To Dashed Blue Lines’, instead of having to select an operation and its
arguments with an input device such as a mouse.

Further improvements may be achieved by more effective input devices.
Such devices may give a more natural ‘feel’ for the manipulation of screen objects
and may improve factors such as the speed of interaction.

- 3 5 -

Finally, a great deal of research has be done in the field of User Interface
Management Systems (UIMS) [Thomas83]. A good UIMS is a programming tool
that, because it allows one to create user interfaces quickly and to modify them
several times during the design process, encourages the designer to iteratively
approach a better interface. However, any interface produced by a UIMS could
probably be improved upon by hand coding. Most UIMS’s developed to date
limit the ability of an end user to take advantage of parallel forms of input from multiple input devices.

Developments in hardware make some computationally expensive operations
possible that were previously infeasible due to feedback constraints. Such
developments include more powerful microprocessors, multiprocessor systems, and
special purpose graphics hardware. Advances in CRT technology, in particular
screen resolution, create a more natural drawing surface that makes artifacts such
as aliasing and screen flicker less noticeable.

Recently, much attention has been directed towards Data Base Management
Systems (DBMS) [Vemadat84], particularly with larger CAD systems. The
application data structure of the image could be maintained in a database.
Queries to the database are then easily constructed in the application. A DBMS
relieves much of the tedium that the application program must otherwise do to
manipulate storage and provide capabilities to add, delete and access data. Other
advantages of a DBMS include:
• complex relationships between data can be represented
• data redundancy is controlled
• data integrity and consistency is maintained
• data security and recovery are possible

In the area of data models, improvements are being made in the logical
arrangement of picture entities. The greatest developments are being made in
CAD packages and in 3D draw packages. Developments in two dimensions are
confined to representing hierarchies and creating structures in which either
common or expensive operations can be done efficiently.

- 3 6 -

Proposed Implementation of a 2D Draw Package
3.1. Introduction

This chapter describes the proposed and partially completed implementation
of an interactive two dimensional draw package capable of producing high quality
images in a format suitable for display on many output devices. Eventual output
would be in a virtual file format. Various filters could then be used to generate a
representation of different formats, including formats for typesetting. High
quality images have few observable spatial or chromatic artifacts.

This particular implementation is designed for use on the Adagio stand-alone
workstation [Tanner85], although it could easily be used in a timesharing
environment. A single user workstation is more appropriate for interactive
applications because feedback is time critical. The design of this implementation
will closely follow the ideas and drawing methods present in Gargoyle.

The original motivation behind this implementation was to create high quality
images for use as stimuli in psychology experiments being conducted at the
University of Waterloo. For these purposes, only two dimensional drawings are
necessary. The Gargoyle design was chosen as a model due to the author’s
biases. Of all the packages listed in the previous chapter, none were implemented using a multitasking approach.

The first section of this chapter describes the existing environment of the
implementation in terms of hardware and software, and a user’s view of the
environment. Next, the design of data structures such as the display list and the
application data structure are described. The task structure of the system with
emphasis on communications between tasks is described afterwards. Finally,
suggested improvements to the system are listed and the state of development of the system is described.
3.2. Environment
3.2.1. Hardware

The Adagio workstation is based on the Ikonas RDS-3000 frame buffer
system [Ikonas82]. It consists of a 1024xl024x24-bit image memory, a frame
buffer controller, a crossbar switch, colour lookup tables and D/A converters.
Attached to the Ikonas bus are a custom bitslice processor, a video input card,
scratchpad memory, a matrix multiplier, a host interface to a VAX 8600
computer, and a Multi Peripheral Controller (the MPC). The MPC is a single
board Motorolla 68000-based processor with a Peripheral Control Processor (the PCP).

- 3 7 -

The particular Ikonas used for development does not contain a character
generator even though it can be configured to handle one. Such a device would
permit the fast display of text of various sizes and fonts. Since the image needs to
be drawn quickly, this implementation does not support text within the image
being created. Any text that is needed on the screen is written pixel by pixel by
an application routine.

The bitslice, or bipolar processor (BPS), is a highly specialised processor
which writes the working image into the image memory. Whenever a new image
is to be created, the bitslice accesses the display list and draws each primitive into
memory. The matrix multiplier provides hardware assistance to the bitslice, such
as point transformations and multiplying transformation matrices.

The PCP contains parallel and serial ports plus A/D converters which can
support a number of I/O devices on the MPC. Software which resides on the
MPC controls the flow of this input data. The application software which
manipulates the data structure of the drawing also resides on the MPC. Both the
MPC and the bitslice processor are able to set the hardware video registers on the
Ikonas which permit control parameters such as window locations, window size, etc..
3.2.2. Software

Adagio uses the Harmony operating system [Gentleman85], a multitasking,
multiprocessor, message passing system, although only one processor is used in
this workstation, that being the MPC [Forsey85][Booth85]. Harmony is designed
for real-time systems that use multitasking for the simplicity of design and
multiprocessing to achieve performance. All software development is performed
on a VAX under Unix. Compiled programs are then downloaded onto the MPC and executed.

Communication and synchronization among Harmony tasks is achieved
through four message passing primitives: J3 en d (), «Receive 0 , _ReplyO,
and _Try_Receive O . A complete description of these primitives and the
rationale for choosing them is provided in [Gentleman81]. Tasks can be created
and destroyed dynamically using: .C rea te O , «Destroy O , and «Suicide O.
Communications with external devices uses _A w alt_ In terrup t O .

The ability to create and destroy tasks dynamically provides one with simple
structuring techniques. This is analogous to hiring a temporary employee to
perform a specific job and firing him immediately afterwards. The process of
designing software in this fashion is called ‘anthropomorphic programming’
[Booth82].

Central to the structuring of workstation applications is the idea of a resource
abstraction, in which one or more tasks provide a service to other tasks. Client
tasks request services from server tasks. Often a server is used to control the

- 3 8 -

mutually exclusive access to a scarce resource such as a data structure or output
device. It thus ensures that the resource is kept in a consistent state. Another
possible configuration that can be used instead of a server is an administrator with
a group of worker tasks. The administrator schedules and manages the workers
who perform the requested services. Other important task types are couriers and
notifiers. Couriers pass messages between two tasks and are usually used
whenever the sending task does not want to wait, or become blocked. The
sending task sends a message to a courier which then sends the message to the
receiving task. The courier waits for the receiving task to respond, while the
sending task is unblocked. A notifier is often used in cases where a task needs to
wait for an event but does not want to be prevented from doing other things in the
mean time. The task creates a notifier and can then continue with what it was
doing. Meanwhile, the notifier waits for the event and then informs the parent task.

Programs for the BPS are executed in microcode. Source routines are written
in Microcode C, which supports a subset of the C programming language. A
Microcode C cross compiler generates the microcode for the BPS
[Gurd83][Gurd85].

The implementation described in this chapter uses ARIA [L0086], a near-
real-time graphics package designed for the Ikonas, to draw the images. ARIA
supports the rapid updating of a display of geometric objects, including the
dynamic updating of transformations. A set of software routines is provided
which gives the user the ability to manipulate the display list. A library of these
routines can be linked together with application software to reside on the MPC.
ARIA also provides the BPS microcode which traverses the display list and writes
to the frame buffer memory.

ARIA divides the image memory into four quadrants of 512x512x24-bits.
Two quadrants are used to double buffer the image displayed. As one quadrant
is displayed, the display processor can write into the second. When the image in
the second quadrant is fully drawn, the visible portion of image memory is
changed so the second quadrant is displayed. The first quadrant can then be
redrawn. By doing this, the user does not see the flicker on the screen that would
be caused by continuously erasing and redrawing. A third quadrant is used for a
z-buffer, which is not used in this application, and the fourth quadrant is unused.

As mentioned previously, the application software which manages the data
structure of the image runs on the MPC. This data structure has to be constantly
updated in response to user input. The structure maintained contains hierarchical
picture information and will be in a format completely different than that of the
display list. The purpose of storing a separate data structure is to allow
abstractions of groups of graphic primitives. The display list is stored as a
directed acyclic graph (DAG) and only knows about primitives such as points,

- 3 9 -

lines, etc. With an application data structure, one may manipulate higher level
objects. However, the application must be able to convert the data structure into a display list quickly.

When a user modifies the image on the screen, the application changes its
data structure. It must then modify the display list to reflect these changes. The
BPS must then be informed that the image should be redrawn. All these steps are
achieved by ARIA procedure calls.

The display list is kept in a separate area of the Ikonas address space called
scratchpad memory (SPAD). Here, the MPC is able to write the display list and
the BPS is able to read it. To synchronize the MPC and BPS, a word of
scratchpad memory is used as a flag. The BPS continually reads this word until it
becomes non-zero. When it does, the value in the word is the starting address of
the display list in SPAD memory. When the BPS is finished traversing the display
list, it sets this word back to zero. Thus, whenever the MPC wants the image to
be redrawn, it simply writes the starting address of the display list into the flag word in scratchpad memory.
3.2.3. User

When a user sits down to use this system, he will see in front of him: a high-
resolution video monitor, a terminal with a QWERTY keyboard connected to a
VAX, a tablet with either a puck or stylus, and a collection of other input
devices. Images created by the user are viewed on the video monitor. The
terminal is used for system messages and for browsing through the Unix file
system to retrieve or save an image in a virtual file format. The keyboard is used
whenever an alphanumeric entity is input, such as file names, specific lengths of
lines, text to be included in the image, etc. The majority of input actions are
performed with the tablet, although other devices may be more appropriate for
some tasks, such as a knob for rotation. However, this system is designed so that
an operation can be performed with many input devices, and many input devices
may be used on different operations at the same time.

In general, operations to be performed are selected from menus. Operations
such as selecting parts of the image are ‘modeless’, in that they do not have to be
selected from a menu, and in this case, are the ‘default’ operations. Other
operations may involve manipulating figures such as sliders to change a drawing
parameter such as the thickness of lines. The video monitor screen will contain
fixed, constantly displayed menus, areas for data entry such as slider windows,
and one or more windows to display the image being drawn. Pop-up menus are
also available for some operations.

The screen space that is not used for menus and sliders is available for
windows of the image. In the two dimensional case, different windows may either
represent a detailed view of a portion of the image or a view with various

- 4 0 -

parameters changed, such as line colours, thicknesses, etc. A user may interact
with more than one window at a time.

This implementation follows the ruler and compass style of drawing
introduced by Gargoyle. Thus, creating, manipulating and erasing alignment
objects needs to be addressed. A separate section of the space reserved for menus
has to be allocated to handle the operations on these objects. Alignment objects
will appear with the image being drawn, but will always be coloured grey.

The following definitions will be needed for the remainder of this essay:
• A primitive is one of the most basic objects that can be drawn. For this

implementation, a primitive can be a point, line, polygon, circle, ellipse, or
spline. A polygon is stored and manipulated differently than a closed sequence of lines.

• An object is defined to be a collection of primitives that are stored together as one entity.
• An instance is a representation which does not replicate all the data of an

object for each image. Modifications to an instanced object will result in
changes to every instance of that object. This is contrasted with a copy,
which is a separate entity, and duplicates all the storage of the object.

• A cluster is a number of objects which have been grouped together to act as
one entity.

• An attribute is any characteristic of a primitive besides vertices or control
points. Examples are visibility, stroke width, aliasing versus anti-aliasing, colour, etc.
The operations that will be available to a user consist of the following:

1) Select a vertex, primitive, object, cluster, or area.
2) Create, delete and manipulate windows.
3) Draw a primitive.
4) Delete a selection.
5) Copy a selection to another location.
6) Make another instance of a selection.
7) Transform a selection.
8) Save an image on a Unix system, and retrieve an image from a Unix system.
9) Cluster a groups of objects and uncluster a cluster.
10) Copy properties from a primitive, object or cluster to another primitive, object

or cluster.

- 4 1 -

11) Change drawing parameters such as colour, stroke thickness, stroke type,
polygon filling or wire-framing, aliased or anti-aliased drawing, etc.

12) Control distances and angles with alignment objects.
13) Save and restore a session.

Operation 1 is a modeless operation. Creating a new window is achieved
through menu selection while all other window operations use a form of pop-up
menu. Operations 3 through 9 and 13 are selected from the fixed menus.
Operation 10 uses a combination of fixed menu items and a pop-up menu. When
drawing new primitives, the attributes are identical to the settings defined in the
current drawing mode. These attributes are either entered with sliders, or are
selected as one of two discrete values. The operations described in operation 11
are achieved through the use of the same pop-up menu used in operation 10.
Operation 12 uses its own menus and was discussed earlier. All these operations
will be described in detail in a later section.
3.3. Display List

The display list used in this implementation is that described by ARIA with a
few modifications. It is in the form of a DAG and is manipulated by software
routines on the MPC. DAGs naturally support the multiple instancing of objects
as well as multiple viewports.

A DAG consists of nodes connected by two types of edges: right edges and
down edges. If a down edge joins node x with node y, x is referred to as the
parent of y, and y as the child of x. Similarly, if a right edge joins node x to node
y, x is the left sibling of y and y is the right sibling of x. A node in a DAG may
have at most one down edge and one right edge. When the BPS traverses the
DAG, it does so in a depth first order.

There are seven types of nodes used in ARIA. These nodes are control,
instance, transformation, attribute, viewport, display, and perspective. The DAG
must be rooted with a control node. Instance nodes point to areas of memory
which contain objects, and are always leaves on the DAG. Transformation nodes
contain a 4x4 transformation matrix which is applied to every instance node
beneath it. Attribute nodes enable the user to temporarily change the value of
attributes during the traversal of the DAG. Viewport, display and perspective
nodes control the appearance of viewports on the screen, and their view of the
image. Each node is identified by a unique positive integer.

Objects consist of a list of vertices and a list of primitives. The primitives
have pointers into the vertex list. Each list is arranged so that the last entered
element is placed at the bottom of the list. This provides an undo facility when
adding primitives. Objects can only be modified if they are open, and only one
object can be opened at a time. Objects, primitives and vertices are also

- 4 2 -

identified by three different sets of unique positive integers.
Each primitive has associated with it a number of attributes. These include

colour, visibility, highlighting, anti-aliasing, stroke width and stroke style.
Routines exist that allow the settings of these values to be changed at any time.
A distinction must be made at this point between attributes and flags. Attributes
have already been defined, but flags are a new concept. The flags of a primitive
are a subset of its attributes. Flags consist of every attribute of a primitive except
colour, anti-aliasing, stroke width and stroke type. To specify values for a
primitive’s flags and colour, one must first enter the values into global tables
managed by ARIA. Two tables are currently in use; a colour table and a flags
table. Once the values have been entered into the tables, they are subsequently
referenced by their index into the table. Attributes other than colour and flag
entries are stored along with the primitive definition (i.e., without an extra level
of indirection).

The changes that are needed in ARIA for this implementation are: the ability
to draw more primitives, such as splines, circles and ellipses; the ability to draw
strokes of variable width and of different brush styles; and the ability to draw
anti-aliased strokes. Not only does this require new microcode for the BPS, but
new data structures are also needed for new primitives.
3.4. Application Data Structures

This section describes the data structures that the application uses to keep
track of the display list and the image on the screen. The data is divided into
three sections: information concerning the window layout, a structure which
describes the alignment objects, and of course a structure which describes the
constructed image. Each structure is in the form of a linked list and is
manipulated by application routines.

The window data structure is the simplest of the three. It is a doubly linked
list of nodes, where a node contains all the information concerning a window.
This information consists of a window id, all the parameters of the viewport,
perspective, display, transformation and attribute nodes, as well as their ARIA
node ids. If alignment objects are displayed in this window, a flag in the window
node is set. If the window is not currently displayed (i.e., it is not connected to
the DAG), another flag is set and stored in the node for this window. This state
is completely different from deleting a window. Upon deletion, the node in the
data structure for this window is unlinked from the list and its memory is freed.
The ARIA nodes for this window are also unlinked from the DAG and deleted.
When the flag controlling the display of a window is set, the window is
temporarily removed from the display but can easily be redisplayed.

- 4 3 -

The data structure representing the alignment objects is a little more
involved. An example of this structure is depicted in Figure 3.1. At the head of
the structure is a node which stores the parameters of the attribute node for all the
alignment objects, as well as its ARIA node id. Below this node is a doubly
linked list of cluster nodes, one cluster for each type of alignment object. The
information stored in each node consists of node ids for the attribute,
transformation and instance nodes, the object id, the cluster id, the type of
alignment objects, and the parameters of the attribute and transformation nodes.

Figure 3.1 — Data structure representing alignment objects
Linked below each cluster node are doubly linked primitive and vertex lists.

Each node in the primitive list represents one alignment object and maintains the
primitive id and pointers into the vertex list. Since the only types of alignment
objects available are points, lines and circles, all of which require at most two
vertices, only two pointers into the vertex list are needed.

- 4 4 -

All the vertices within the object are stored in the vertex list. Each node
stores coordinate information and the rank and id of the vertex. The rank field
counts how many times the vertex is referenced by the primitives. This is useful
for the cases where a vertex is referenced by more than one primitive. If one of
these primitives is deleted, the vertex should not be deleted, whereas if all the
primitives are deleted, the vertex should be deleted.

More complex still is the data structure of the image. Simple structures of
doubly linked lists are used to maintain the entries in the colour and flag tables.
Each node contains the rank of this node, its index into ARIA’s colour or flag
table, and the value(s) stored in the table.

The image is maintained as a three level data structure. The three levels are
the cluster level, the instance level, and the primitive level. The entire structure
is very much like that of the alignment object structure except for the instance
level. An example of one image cluster is shown in Figure 3.2.

Figure 3.2 — Structure of an image cluster

- 4 5 -

Each cluster node contains a cluster id, a transformation and attribute ARIA
node id, the parameters within the attribute and transformation nodes, and a
pointer to a list of instances. Clusters are joined in a doubly linked list.

The instances list corresponds directly with the list of instance nodes in the
display list. Each node in the image data structure stores the ARIA instance and
object ids as well as pointers to lists of primitives and vertices which comprise the
object. The vertex list has the same format as the list used for alignment objects.

Primitive nodes for the image are arranged in a different way than primitive
nodes for alignment objects since many more primitive types are used. The
primitive type (e.g., line, spline, polygon, etc.), id, definition (i.e., pointers to
vertices), and attributes (e.g., line width, pointers into the colour and flag lists,
etc.) are stored in a node. The definition and attribute fields are variant records.
This means that in the space occupied by the definition field, for example, the
definition of any primitive may be placed, depending on the primitive type of the
node. Thus, the definition field will contain only one vertex pointer for a point
primitive, and three vertex pointers for an ellipse primitive. Spline and polygon
definitions have to be treated differently since they have a variable number of
vertex pointers. In these cases the definition field will contain a pointer to a
linked list of nodes, each of which contains a pointer to a vertex and pointer to
the next element in the list. The attribute field does not require pointers to lists of
entities since attributes for any primitive always use a constant amount of space.

To correspond with the initial configuration of the display list, the initial
configuration of the three data structures is now described.

The window list will contain one node with all the information concerning the
initial window in the display list. The flags in the node are set so that the window
is displayed and alignment objects are not to be included in the picture.

The alignment object’s structure will consist of the alignment object’s attribute
node containing the identical information as the node in the display list, and a
cluster node in which every field is filled except for the object type. The primitive
and vertex lists will be empty.

The image data structure will consist of one cluster node whose fields are
filled, and one instance node comprising the cluster’s instance list. The vertex
and primitive lists are initially empty.

A point is defined by a single vertex. A line is defined by two vertices, one
at each endpoint. A circle is also defined by two vertices, both on the circle and
at opposite ends of a diameter. An ellipse is defined by three vertices on its
curve. Two of the vertices are at opposite ends of a line drawn through the centre
of the ellipse, and the third is one endpoint of the line perpendicular to this first
line. Polygons are defined by any number of vertices greater than two, at each
intersection of its edges. Splines are defined by any number of vertices greater

- 4 6 -

than three. Each vertex represents a control point for a B-spline curve.
3.5. Task Structure

An application such as the one described in this chapter naturally lends itself
to a multitasking approach, due to the many instances of scarce resources
[Plebon82b]. The scarce resources that need to be properly managed in this
implementation are the frame buffer memory, the display list, the screen space,
the geometric data structures, the screen tracker and input devices. The first two
resources are the responsibility of the ARIA Server, while the rest are the
responsibilities of the Graphics Server, Data Structure Server, Tracker Server, and a
server for each device respectively. This program has an anthropomorphic design,
assigning independent processes to roles which might otherwise be considered in a human context.

Adagio was originally a workstation being developed to support research in
robotics [MacKay86]. It is a window-based system that provides for rich
interaction [Tanner86]. Each window in the system is simultaneously active, in
that an input-active task is associated with every window (except image windows
which are treated as a single window). The rich interaction is obtained by a kind
of parallelism rarely found in other systems.
3.5.1. Devices

Many devices can be simultaneously used in the Adagio workstation. In
most configurations a tablet would be used as the primary input device. For this
reason the multitasking implementation of the Tablet Server is described in this
section. Other devices are implemented in a very similar fashion.

The task structure for a tablet is shown in Figure 3.3. In this diagram, and
in following diagrams, tasks are represented as ellipses. If task A sends a
message to task B, an arrow is drawn in the diagram from task A to task B.

- 4 7 -

Figure 3.3 — The Tablet Server
The server provides virtual tablets to a number of client tasks where the

physical rectangular window associated with this virtual tablet is assigned by the
window manager, or Graphics Server. The virtual tablet provides values in the
range [0.. 16383] in x and y directions. If a virtual tablet corresponds to an image
window, this range of values is transformed into image space by the client task for
this window. The tablet server also provides tablet statuses (i.e., if the puck is
raised or on the tablet surface, etc.). Naturally, the server must also be aware of
the positions of the current windows on the screen.

A client task is created for every window, and requests information for that
window. It waits for information from the server. Information is sent to a client
whenever the puck position on the tablet is within the client’s virtual tablet.

The tablet interrupt handler reads hardware registers for the tablet. The
tablet notifier constantly reads the information generated by the interrupt handler
and accepts a value whenever it is valid and has changed significantly over the
previous reading. It thus acts as a filter. Valid values are then sent to the tablet
server.
3.5.2. Tracker Server

The tracker server controls the positioning and display of the screen tracker.
It provides feedback as to the current x,y position of the tracking input device(s).
A data structure containing the definitions of all icons and windows is kept by this
server. Thus, different tracking icons can be used for each window. Tasks may
also change the current icon if, for example, a different mode is entered, such as
line drawing mode.

The way this server is implemented is depicted in Figure 3.4. Other devices
may also control the tracker with a similar arrangement. The tracker server
communicates with the tablet server through a tablet courier. This task simply

- 4 8 -

forwards data to the tracker server. The information passed consists of the screen
position, the window in which the tracker currently resides, and the tablet status.

Figure 3.4 — The Tracker Server

3.5.3. Switchboard
The design of Adagio is based on the concept of a ‘switchboard’. On one

side of the switchboard are producers of input device data and on the other side
are consumers of this data. The consumers request input from the switchboard
which in turn routes to these tasks input from devices to which they are
connected. The situation is depicted in Figure 3.5. Here couriers are the
producers and clients are the consumers.

Figure 3.5 — The Switchboard
Couriers provide a link between the switchboard and the device servers. For

this application couriers are identical to the client tasks of Figure 3.3. The clients
are application tasks in that they use information from the switchboard to carry
out some assigned function. In this application the clients will be tasks responsible
for windows. The switchboard manages the connections between clients and
couriers so that when a client requests a connection to a device, the switchboard
creates the courier task and establishes the connection. It also deletes these
couriers after the client dies. In addition to these functions, the switchboard also
creates tasks for menus when items are selected from them, and initialises the
application on system startup (i.e., it creates the menu and image windows).

- 4 9 -

3.5.4. ARIA Server
The ARIA server is responsible for atomic operations on the display list

through ARIA routines and with communicating with the BPS. All requests to
write into the displayed portions of the frame buffer memory, besides text
operations, are channelled through this server. A task wishing to call an ARIA
routine sends a message to the ARIA server with all the necessary values. ARIA
is initialised soon after this server is created.

Requests to this server from application tasks are classified within two
separate categories. First, a request may or may not cause the image on the
screen to change. A request that wouldn’t change the image is creating a new
node in the display list. Since it could not have been included into the display list
without first linking it, there is no need to redraw the image. The second
category is whether the ARIA routine returns a meaningful value or not.
Information such as primitive or node id’s returned from routines should be made
known to the requesting task. The value returned can be sent to this task by
including it as part of the ‘reply’ structure. A routine which returns an
unmeaningful value does not have to have this value returned to the requesting
task. In such cases, a reply can be sent to the task even before the routine is actually called.

Whenever the image should be redrawn, the ARIA server informs the BPS.
It also replies to a notifier task that it had created earlier. The notifier delays
itself for a short period of time and then checks if the BPS is done. If not, it
repeats this process until the BPS is finished. When the image is drawn, the
notifier sends a message back to the ARIA server. The BPS can then be started
again if necessary. During the time in which the BPS is traversing the display list,
the server adds any incoming requests to a queue. Once the notifier message is
received, this list is processed and the BPS started again.

Two useful requests that the ARIA server recognises are ‘Take Control’ and
‘Relinquish Control’. If a task sends a ‘Take Control’ message to the ARIA
server, the currently queued requests are first processed and then ‘control’ over
ARIA is granted to the requesting task. During this time this task may call
ARIA routines directly since all other requests to the ARIA server are queued
and will not be processed until a ‘Relinquish Control’ message is sent from the
controlling task to the ARIA server. When control is relinquished, the queue of
requests is processed. A priority scheme among tasks requesting control can be
implemented so that higher priority tasks are granted control first even if a lower
priority task occurs earlier in the queue. Control may be desired by tasks that
wish to provide quick feedback or tasks that do extensive manipulation to the
display list and do not want the BPS to be started since it is likely to encounter
some inconsistency with the data.

- 5 0 -

3.5.5. Graphics Server
This server might more appropriately be called the screen or window server

since it is responsible for the display of windows on the screen. It receives
requests to create, delete or modify windows, and performs the necessary actions.
It has layouts for every new type of window that can be created (i.e., property
sheets, input windows, etc.). The writing of text into the frame buffer’s overlay
planes is also done by this server.

The window manipulation requests contain values in the virtual coordinate
system of the requestor. The graphics server translates these values into screen
coordinates. A data structure containing descriptions of all the windows is
maintained. Using this information, the server manages the screen space, and
temporarily erases various windows if necessary. Upon receipt of a window
request, the appropriate changes in the data structure and display list are effected
with messages to the ARIA server. The details of the operation are then passed
on to the switchboard in order to alter the couriers or to add or delete tasks
representing these windows.
3.5.6. Data Structure Server

This server is the most important task in this application. It is responsible for
manipulating and preventing die corruption of application data structures such as
the image structure, the alignment object structure, the colour table, and the flags
table. The current selection from the image windows is always maintained.
Communications with other tasks is shown in Figure 3.6.

Figure 3.6 — The Data Structure Server
Requests are sent to the data structure server from application tasks to update

a data structure or to obtain information from a data structure. If a request
requires a change to the display list, a request is forwarded to the ARIA server

- 5 1 -

by an ARIA courier. Requests that require a great deal of processing are
satisfied by worker tasks, created by the server.

Each type of request to the data structure server requires a procedure call to
be made or a worker task to be created. Short and simple requests are performed
by a procedure call within the server itself, and then the requesting task is replied
to. Longer requests are handled by creating a worker task which will perform the
necessary operations. The requesting task can be replied to while the worker task
is active, freeing the requestor for other actions. However, no other operations
besides information requests should be performed on the data structure until the
worker is complete. Requests that are received in this interval are queued and
processed when the worker task finishes.

The operations performed by this server were listed in previous sections.
Besides the various operations and queries on the data structures, this server is
responsible for the saving and retrieval of image files, and the saving and
restoration of session files.
3.5.7. Windows and Menus

As previously mentioned, a single task is responsible for each window on the
screen, other than the image windows which are controlled by a single task.
Windows other than image windows are system menus or pop-up windows. For
simplicity, they will both be referred to as ‘menus’. These tasks obtain
information from the switchboard in order to carry out some assigned function.
In Figure 3.5, they are represented as the ‘Client’ tasks. Figure 3.7 shows a
sample configuration of these tasks for this application. Other tasks such as the
Graphics Server and ARIA Server have not been included in this diagram to
avoid confusion.

- 5 2 -

Figure 3.7 — Menus and Image Windows
The menu tasks are created initially by the switchboard. Each task will then

send a ‘create window’ request to the graphics server. The graphics server will
draw the menus at the specified location, and will also inform the switchboard of
these tasks. The switchboard will then create the necessary virtual tablets for the
menus and establish the proper connections. After the graphics server draws the
menu, it returns information concerning the locations of its menu items.

The menu tasks are responsible for invoking the correct tasks or sending
information to the correct server whenever a selection is made within its window.
The image window manager controls ‘select’ operations within the image windows
and with the redefinition of these windows.
3.5.8. VAX Server

The VAX Server is in charge of which tasks can use the VAX serial port and
the quadrant of the Ikonas frame buffer that is used for communication with the
VAX. This server ensures that only one task has control over these resources at
any one time. If a task wishes to use these resources, it sends a request to the
VAX server. If no other task currently has these resources, they are granted to
the requesting task. The task has to return the resources to the VAX server when
it is finished with them by sending another message. If the resources are being
used, the requests for them are queued up and are processed in the order they
arrive.

- 5 3 -

3.5.9. EHVT Server
The Echo Handshake Virtual Terminal (EHVT) Server accepts and processes

input from the serial port of the Ikonas. Specifically, it acts as a file server on the
VAX, or a remote terminal connected to the VAX. This server is responsible for
creating new Unix files and reading from existing files, depending on the
operation desired.

When the data structure server desires to communicate with the VAX in
order to read or write a file, it first requests the VAX resources from the VAX
server. When these are obtained, it may communicate with the EHVT server.
To save an image or session, the data is first written into the frame buffer
memory. Then a write request is sent to the EHVT server, which then reads the
data from the frame buffer and writes it into a Unix file. To read the contents of
an existing Unix file, a read request is first sent to the EHVT server which then
writes the contents of the file into the frame buffer. The data is then read from
the frame buffer by the data structure server.
3.6. Improvements and State of Development

The implementation proposed in this chapter can accurately create essentially
any two-dimensional drawing. However, the operations the user would use to
construct a drawing may be improved. It is also possible that the algorithms used
be the application to perform a task may not be optimum.

This section lists some suggested improvements to the implementation
described in this chapter. These improvements can be grouped into three areas:
ARIA and Ikonas modifications, screen manipulation techniques, and changes in
style. Next, the changes necessary to extend the model to ‘two-and-a-half
dimensions are listed. Finally, the state of development of this package at the
time of writing of this essay is detailed.

Due to restrictions with ARIA and/or the Ikonas, many useful features have
either not been implemented or have been implemented in less efficient ways.
The following list mentions many changes that would be desirable for this system:
• Currently only 16K of scratchpad memory (SPAD) is available, although

additional boards can be added to increase this size to 64K. This is used for
communications between processors and for storage of the display list. With
a complicated picture and multiple windows, the available memory can easily
be used.

• The Ikonas used for this implementation does not contain a character
generator which is available on other similar systems. For this reason, ARIA
does not support text, and the application has to draw the text in the frame
buffer’s overlay planes. With a character generator, text could be added to
ARIA as a type of display primitive. Text of various fonts, sizes, colours

- 5 4 -

and directions could be easily implemented with the appropriate routines.
Fonts would be stored in SPAD.

• Two modes of display of the image memory are supported by the Ikonas.
These are LORES mode (1024xl024x24-bit) and HIRES mode
(2048x2048x8-bit). ARIA assumes LORES mode for all its operations. A
different implementation of ARIA that uses HIRES mode would be useful,
as the resolution is currently only 512x512 in each quadrant. HIRES mode
would double the screen resolution. The number of colours available to this
application is not nearly as important as in a paint system, for example.
Therefore, 8 bits/pixel, or 256 colours is not overly restrictive.

• To be able to handle the increased number of primitives and attributes, much
more BPS microcode needs to be written for ARIA. It is extremely unlikely
that all of the proposed changes can be implemented in the 64K microcode
store. However, this is all the addressable memory available in the current
Ikonas configuration.

• Additional ARIA primitives might be useful for some situations. Examples
are text, as previously mentioned, bitmaps, and different spline types.

• Each entry of ARIA’s flags table currently contains eight bits, each one
defining an attribute. Other attributes such as anti-aliasing, stroke width and
stroke type are added to the primitive description block of each primitive. It
would be useful to include these three attributes in a second flags table.
Each entry would comprise up to 16 bits of information. Instead of allowing
350 entries for the colour and flags table, fewer entries could be used and the
freed space used for the second flags table. To create two entries for the new
table, one entry needs to be deleted from both the colour and flags tables. A
suggested arrangement would have 250 entries in the colour and flags tables
and 200 entries in the new table.

• The attribute nodes should be allowed to change the stroke width, stroke
type, and aliasing in the display list or those nodes beneath it in the DAG.
Such an alteration would be made easier if the previous suggestion is
implemented.
Various techniques of screen manipulation in this implementation could be

added or improved. A list of suggested improvements follows:
• A user should be able to create a window and manipulate either a subset of

the clusters of the current image or a new cluster altogether. The user would
essentially be operating on two image structures. A cluster, or group of
clusters, created in a separate window should then be able to be merged into
another window. This abstraction could also be extended to include
alignment objects such that different sets of objects are used in different
windows. New data structures and manipulation routines for these structures,

- 5 5 -

as well as the display list are needed. More menu options would be required
to define and merge these windows.

• As a first step, the alignment objects are implemented as a grid of objects.
Subsequent versions of this implementation might allow for objects to be
created only at user-specified points, or using heuristics while drawing, or
both, as is done in Gargoyle.

• When measuring distances and angles, special icons such as a ruler and
protractor respectively could be written into the overlay planes and positioned
and manipulated within a window. They would be used in much the same
way as rulers and protractors are used in paper and pencil drawings.
Whether this is a useful option or not is questionable.
Each user of this system will likely have some screen layout that he would

like to use instead of the default system layout. To allow for this, each user may
have his own Unix text file describing this layout. A suggested method of
allowing individual user layouts is for the command which is invoked to start up
the system to first search the home directory of the user for a file called
‘.p ro f d r aw’. If this is found, its contents are used to control the setup for this
system. Otherwise, the default setup is used.

Instead of having the user enter the full Unix pathnames for every image or
session file accessed, a default directory for each should be able to be specified.
These can be specified in the command line used to invoke this system. The
default location for these directories is the current directory.

If the user would like to access images in other directories while using the
system, a possible solution would be to allow the creation of a window which runs
a Unix shell or emulator so that he can move around Unix directories and list the
contents of these directories.

Another factor which a user may want to control is the definition of various
controls on different input devices. He may want to define a button box so that
each button represents a function of the fixed or alignment menus. These menus
may then be iconified, making more room for the image. A similar approach
could be taken with pucks or mice. If, for example, a puck has four buttons, he
may define one to perform the ‘select’ function, one to perform the ‘undo’
function and one to perform the ‘delete’ function. The fourth may be defined as
an often used operation such as ‘show properties’, ‘add window’, or another option
not currently available called ‘help’. A ‘help’ selection followed by a selection of
some operation would display a window containing a description of that operation.

The changes necessary to extend this implementation to ‘two-and-a-half
dimensions are not extensive. Since ARIA is designed as a three dimensional
graphics package, no changes to it are necessary since perspective projections are
available and z-buffering is done. A polygonal object primitive type is already

- 5 6 -

implemented in ARIA. However, if spline surfaces are needed, they have to be
added.

The most difficult part of this extension is the use of input devices to control
a third degree of freedom (i.e., the z values). A few exotic devices are available
which are capable of doing this, but the same input devices as were used in the
two dimensional case are assumed to be the only ones available. A common
method of inputting three dimensional data with a device that has two degrees of
freedom is to use three windows, one of each which shows the view of the image
looking from a point on each of the positive coordinate axes towards the origin,
assuming the image is located at the origin. The user then manipulates a position
marker which is displayed in all three windows. Each window can control the
location of this marker in two dimensions. Combining the three windows gives
the user the ability to move around in three dimensions. The same manipulations
can be performed by using only two of the three windows. The third window is
included as an extra aid. Frequently, a perspective view of the image is
simultaneously shown in a fourth window.

As far as the application is concerned, every instance of a coordinate pair
must now be changed to a triplet. Additional functionality would be needed in
order for a user to control added attributes such as z-buffering, and to be able to
add the new primitive types.

The implementation that has been described in this chapter is an example of
a multitasked design of a two dimensional draw package. This design has been
partially implemented in the Computer Graphics Lab at the University of
Waterloo, although much of the application code still needs to be written.

Harmony is supported by the National Research Council (NRC) of Canada,
and contains a number of device drivers and servers. These servers perform as
specified and have been fully implemented.

Adagio was also conceived and developed at NRC but its performance has
not yet been fully tested with an application. However, no problems have yet to
be found with it. This includes the switchboard, the tablet couriers, simple menu
tasks and image windows.

ARIA is currently capable of its original drawing primitives and attributes
plus an anti-aliasing option. Lines of variable width are being tested as are spline
curves.

The ARIA server has been largely implemented. However, the interface
needed to pass a structure of information generated by three ARIA routines has
not been developed. The graphics server is able to create and destroy windows
and inform the switchboard of these operations. It maintains a window data
structure but is not able to distinguish overlapping windows. It is not able to
change the definitions of the current windows and has no knowledge of special

- 5 7 -

windows such as property sheets. The data structure server is in a low state of
development. A user is currently able to add only points, lines and polygons but
is not able to manipulate them in any way. The software described in this
paragraph has been written largely by the author. Initially, the data structure
server and the graphics server were written at the National Research Council, but
have undergone extensive modifications.

- 5 8 -

[Baudelaire75]

[Baudelaire79]

[Bier86]

[Booth82]

[Booth85]

[Boming86]

[Burden81]

[Buxton82]

[Englebart68]

[Evans81]

[Forsey85]

[Gardan84]

References
Patrick C. Baudelaire, “Draw” video tape, Xerox PARC,
September 1975.
Patrick C. Baudelaire,“Draw Manual” , Alto User’s Handbook,
Xerox Corp., 1979.
Eric A. Bier and Maureen C. Stone, “Snap-dragging” ,
Computer Graphics, 1986, pp. 233-240.
K.S. Booth, W.M. Gentleman and J. Schaeffer,
“Anthropomorphic Programming” , Technical Report CS-82-
47, Dept, of Computer Science, University of Waterloo, May
1982.
K.S. Booth, W.B. Cowan and D.R. Forsey, “Multitasking
Support in a Graphics Workstation”, Proc. 1st International
Conference and Exhibition on Computer Workstations, San Jose,
Calif., Nov. 1985, pp. 82-90.
Alan Boming, “Defining Constraints Graphically” , CHI ’86
Conference Proceedings, April 1986, pp. 137-143.
Richard L. Burden, J. Douglas Faires and Albert C. Reynolds,
“Numerical Analysis, Second Edition” , pp. 107-119, July
1981.
W. Buxton, S. Patel, W. Reeves and R. Baecker, “OBJED
and the Design of Timbral Resources” , Computer Music
Journal, 6(2), 1982, pp. 32-44.
D.C. Englebart and W.K. English, “A research center for
augmenting human intellect” , AFIPS Conference Proceedings,
Vol. 33, 1968, pp. 395-410.
K. Evans, P. Tanner and M. Wein, “Tablet-based valuators
that provide one, two, or three degrees of freedom” , Computer
Graphics, 15(3), 1981, pp. 91-97.
D.R. Forsey, “Harmony in transposition: A toccata for VAX
and Motorolla 68000” , M.Math thesis, University of Waterloo,
1985.
Yvon Gardan and Michel Lucas, “Interactive Graphics in
CAD”, 1984.

- 5 9 -

[Gentleman81]

[Gentleman85]

[Gurd83]

[Gurd85]

[Ikonas82]

[Kemighan81]

[Knuth79]

[Laidlaw86]

[Lampson79]

[Lipkie82]

[L0086]

[MacDraw84]
[MacKay86]

W.M. Gentleman, “Message passing between sequential
processes: the reply primitive and the administrator concept” ,
Software Practice and Experience, Vol. 11, pp. 436-466, 1981.
W.M. Gentleman, “Using the Harmony Operating System”,
Report of DEE, NRC of Canada NRCC-ERB-966, Ottawa,
Ontario, Dec. 1983, revised May 1985.
R.P. Gurd, “A Microcode C Compiler for the Bit-Sliced
Microprocessor” , M.Math thesis, Department of Computer
Science, University of Waterloo, 1983.
R . P. Gurd, Microcode C Language Summary Ikonas Version 4.8,
1985.
Ikonas Graphics Systems, Inc. (a subsidiary of Adage, Inc.),
RDS-3000 User’s Guide, Part No. 10-301-095-10A, Billerica,
Massachusetts, April 1982.
B.W. Kemighan, “PIC — A Language for Typesetting
Graphics” , Proceedings of the ACM SIGPLAN SIGOA
Symposium on Text Manipulation, SIGPLAN Notices, Vol. 16,
No. 6, June 1981, pp. 92-98.
D.E. Knuth, “METAFONT, a system for alphabet design”,
TEX and METAFONT: New Directions in Typesetting, American
Mathematical Society and Digital Press, 1979, Chapter 3.
D.H. Laidlaw, W.B. Trumbore and J.F. Hughes,
“Constructive Solid Geometry for Polyhedral Objects” ,
Computer Graphics, Vol. 20, No. 4, August 1986, pp. 161-170.
B.W. Lampson, “Bravo Manual” , Alto User’s Handbook,
Xerox PARC, 1979, pp. 31-62.
Daniel E. Lipkie, Steven R. Evans, John K. Newlin and
Robert L. Weissman, “Star Graphics: An Object Oriented
Implementation”, Xerox Corp., Computer Graphics, July ’82,
pp. 115-124.
Ruby Loo, “ARIA — A Near-Real-Time Graphics Package”,
M.Math thesis, University of Waterloo, 1986.
MacDraw Manual, Apple Computer, Inc., 1984.
S. A. MacKay and P.P. Tanner, “Graphics Tools in Adagio, a
Robotics Multitasking Multiprocessor Workstation” , Graphics
Interface ’86, Vancouver, May 1986, pp.98-103.

- 6 0 -

[Nelson85a]

[Nelson85b]

[Newman75]

[01sen86]

[Opperman84]

[Ossanna79]

[Pavlidis85]

[Plebon82a]

[Plebon82b]

[Requicha80]

[Smith78]

[Stone80a]

[Stone80b]
[Sutherland63]

[Sutherland84]

Greg Nelson, “Juno, a constraint-based graphics system” ,
Computer Graphics, 19(3):235-243, July 1985.
Greg Nelson, “Juno” , video tape, CHI ’85 Highlights,
included in Siggraph Video Review #19, 1985.
William Newman, “Markup” video tape, Xerox PARC, June
1975.
Dan Olsen, Jr., “Editing Templates: A User Interface
Generation Tool", Computer Graphics and Applications,
November 1986, pp. 40-45.
Mark Opperman, “A Gremlin Tutorial for the SUN
Workstation”, Internal document, EECS Department, UC
Berkeley.
J.F. Ossanna, “NROFF/TROFF User’s Manual” , UNIX
Programmer’s Manual, 2 (January 1979), Section 22.
Theo Pavlidis, Christopher J. Van Wyk, “An Automatic
Beautifier for Drawings and Illustrations”, Computer Graphics,
July ’85, pp. 225-235.
Darlene A. Plebon and Kellogg S. Booth, “Interactive Picture
Creation Systems” , University of Waterloo Technical Report
CS-82-46, December 1982.
R.J. Beach, J.C. Beatty, K.S. Booth, E.L. Fiume and D.A.
Plebon, “The message is the medium: Multiprocess structuring
of an interactive paint program” , Computer Graphics, Vol. 16,
No. 3, pp. 277-287, July 1982.
A.A.G. Requicha, “Representations of Rigid Solid Objects” ,
CREST Advanced Course, Darmstadt, September 1980, pp.
2-78.
A.R. Smith, “Paint” , Technical Memo. No. 7, Computer
Graphics Lab, NYIT, Old Westbury, NY, July 1978.
Maureen Stone, “How to use Griffin” , Internal memo, Xerox
PARC, 1980.
Maureen Stone, “Griffin” , video tape, Xerox PARC, 1980.
I.E. Sutherland, “Sketchpad: A man-machine Graphical
Communication System” , Technical Report No. 296, Lincoln
Laboratory, M.I.T., January 1963.
I.E. Sutherland, “Sketchpad” , video tape, included in Siggraph
Video Review #13, October 1984.

- 6 1 -

[Tanner85]

[Tanner86]

[Teitelman84]

[Thomas83]

[VanWyk82]

[Veraadat84]

[Wein81]

P.P. Tanner, M. Wein, W.M. Gentleman^ S.A. MacKay and
D.A. Stewart, “The User Interface of Adagio, A Robotics
Multitasking Multiprocessor Workstation” , Proc. 1st
International Conference on Computer Workstations, pp. 90-98,
San Jose, Nov. 1985.
P.P. Tanner, S.A. MacKay, D.A. Stewart and M. Wein, “A
Multitasking Switchboard Approach to User Interface
Management” , Computer Graphics, Vol. 20, No. 4, 1986, pp.
241-248.
Warren Teitelman, The Cedar Programming Environment: A
Midterm Report and Examination, Xerox PARC Technical
Report, CSL-83-11, June 1984.
James Thomas and Griffith Hamlin, “Graphical Input
Interaction Technique (GUT) Workshop Summary” , Computer
Graphics, 17(1), January 1983.
C.J. Van Wyk, “A High-Level Language for Specifying
Pictures” , Transactions on Graphics, ACM, Vol. 1, No. 2,
April 1982, pp. 163-182.
F.B. Vemadat, “A Commented and Indexed Bibliography on
Data Structuring and Data Management in CAD/CAM: 1970
to MID-1983”, National Research Council of Canada report
ERB-956, March 1984.
M. Wein, P.P. Tanner and K.B. Evans, “Graphic Interaction
at NRC”, video tape, included in Siggraph Video Review $4,
1981.

