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Abstract

Adding multiple displays to a personal computer is a popular way to manage the ever-increasing

amount of information users are faced with, and to share information with others. However, the

con!guration and use of multiple displays has long been bound by technical limitations which

only enable a subset of imagined possibilities.%is thesis attempts to address three of the primary

limitations: secondary displays may only be added as an extension of the desktop or as a duplicate

of an existing display, they must be directly attached to a computer, and they can only be used by

a single user at any one time. A binary patch was developed to augment the display con!guration

capabilities ofMacosx.%is allows a secondary display to be placed anywhere in the logical screen

space—partially overlapped, completely disjoint, or inset—rather than just abutting (extended

desktop) or duplicating (mirror/clonemode) an existingdisplay.A suite of applications anddrivers

was then developed to allow a co-located networked computer to transparently act as a secondary

display for other computers, as though it were directly connected via a standard dvi or vga cable.

It was found that by exploiting some of the properties of a modern window server, this network-

attached display could act as a communal interactive surface. Such a con!guration immediately

allows users to gain parallel-task groupware bene!ts from existing single-user applications without

having to write specialized programs that rely on a groupware toolkit. %is thesis provides the

technical framework on which further multi-display research may be built.
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Glossary

accelerated graphics port An internal bus format for attaching graphics cards
to a pc.

application In the context of computer so6ware, a program run-
ning in user space, or outside the system kernel.
Most so6ware that users interact with falls into this
category.

application programming interface An interface speci!cation that a so6ware library pro-
vides to allow programs to utilize the services the li-
brary o7ers.

cathode ray tube %e original analogue technology for dynamic elec-
tronic image display. Slowly being replaced by newer
digital technologies such as lcd, dlp, and plasma
displays.

central processing unit %e primary general-purpose data processing com-
ponent in a pc. Contrast this with a gpu which is
largely dedicated to operating on graphics data.

client In the context of an sde, a client provides graphics
data to a display device.

clone mode Seemirror mode.

co-located See co-present.

co-present Or co-located. Located in the same environment.
For example, two users are co-present if they are
working in the same room.
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co-present groupware Groupware intended to support co-present users.

desktop A region describing the logical area a screen (or
screens) occupies in global screen space.

digital light processing dlp is the marketing term for what is generically
known as a digital micromirror device. %ese chips
utilize an array of microscopic electromechanically
actuated mirrors to form an image with re1ected
light.

digital visual interface Ananalogue anddigital video interface standard. See
also vga.

display A hardware output device that provides a dynamic
two-dimensional image with which to communicate
with a user. Examples include crt, lcd, or plasma
direct view monitors and lcd or dlp front projec-
tion displays.

extended desktop Amulti-display con!guration in which two or more
physical displays are represented as logically ad-
joined butmutually exclusive in global screen space,
providing the user with a larger desktop than can be
accomplished with a single display. See also mirror
mode.

extended display identi&cation data Data sent from a display (sink) to a pc (source)
identifying the operating characteristics of the dis-
play, such as a string representing the display name,
and a set of display timings.
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framebu>er A region in memory representing the current image
being shown on a given display.

framework On Mac os x, a container that encapsulates shared
resources such as dynamically-linked shared libraries,
header !les, and documentation.

global screen space A two dimensional conceptual display plane in
which desktops are de!ned. Traditionally, global
screen space may contain multiple desktops, some
overlapping (mirror mode) and some abutted
(extended desktop).

graphical user interface A user interface that uses images in addition to text
to convey information to a user.

graphics processing unit A dedicated pc component that performs graphics
operations and frees the cpu from this task.

groupware Computer based system that supports groups of peo-
ple engaged in a common task (or goal) and that pro-
vides an interface to a shared environment.

intelligent satellite A computer terminal with more graphics processing
capabilities than traditionally available.%is allowed
graphics processing operations to be oAoaded from
the centralmainframe, allowingmorecpu time to be
spent on other computations.
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kernel %e central component of an operating system. A
kernel manages system resources and the communi-
cation between hardware and so6ware. In addition, a
kernel provides an abstraction of the hardware (api)
to application so6ware.%e kernel used byMac os x
is a monolithic kernel, running in its own protected
address space. Hardware drivers may also run in this
space as kernel extensions.

kernel extension So6ware that runs in the same address space as the
kernel. Typically used for drivers that need low-level
access to hardware. Because they run alongside the
kernel, instability in a kernel extensionmay a7ect the
kernel as well.

keyboard/video/mouse switch Ahardware device that switches a single set of inputs
(typically keyboard, mouse) and output (video) be-
tween multiple pcs.

liquid crystal display A 1at panel display technology. For computer use,
!rst made popular on laptops and now used formost
pc displays, replacing crts.

local area network An ip-based network that provides interconnectiv-
ity between local computers.

local display A display that is directly connected to a user’s pc via
a point-to-point interface, such as advi or a vga ca-
ble.

mirror mode Or clone mode. A display mode in which two dis-
plays share the same framebu>er, in e7ect displaying
the same desktop. See also extended desktop.
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monitor A display based on a direct-view technology such as
crt, lcd, or plasma.

multi-display A con!guration in which multiple displays are con-
nected to a single pc.

multi-display environment A con!guration in which more than one display is
visible at a time and there is some computational co-
ordination between them. For the purposes of this
research, this may be as simple as a single pc with
two displays, such as a laptop connected to an exter-
nal display.

multi-display groupware Groupware intended to support co-present users via
two or more displays.

network For the purposes of this research, an ip based
data transport layer. Examples include Ethernet and
802.11x wireless.

operating system %e underlying so6ware that manages the hardware
and so6ware resources of a computer.

peripheral component interconnect An internal bus format for attaching peripherals to a
pc.
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personal computer A small, lightweight computer intended to support
the needs of a single user. For the purposes of this re-
search, the termpcwill be used to describe amachine
running either Mac os x or Microso6 Windows. If
necessary, the operating systemwill be speci!ed, such
as ‘aWindows pc.’

product For the purposes of this research, a product is so6-
ware either freely or commercially available. Con-
trast this to a so6ware project, which is typically in-
accessible.

project For the purposes of this research, a project is so6ware
developed in a research context.%is so6ware is typ-
ically not available for use outside of the lab in which
it was developed. Contrast this to a so6ware prod-
uct, which is either freely or commercially available.

quality of service %eguarantee of an upper bound on the time it takes
a packet to traverse a network. qos streams are typ-
ically used for real-time applications such as voice
calls, where packet loss or lag is detrimental. %is is
in contrast to other data that may be on a network,
such as that used by a bulk !le transfer.

remote desktop A con!guration in which a local pc acts as both dis-
play and input surface for a distant pc connected via
a network. Input is forwarded to the distant pc, and
graphics information is received back. Typically used
for telecommuting and remote administration.

remote display For the purposes of this research, a display that is
connected to a pc via an interface that supports ad-
dressability and routing, such as a network.

xxiii



satellite display For the purposes of this research, a display withmore
processing capabilities than traditionally available.
%is allows graphics operations to be oAoaded from
a pc to the display, allowing for more 1exible con-
nectivity and compositing e7ects. See also intelli-
gent satellite.

satellite display emulator A prototype so6ware implementation used to illus-
trate the features and behaviours of a satellite dis-
play.

screen %e logical, or internal-to-a-computer, representa-
tion of a display. %is is the high-level equivalent to
framebu>er.

server In the context of an sde, a server receives graphics
data from a client pc, and displays it.

single-display groupware Groupware intended to support co-present users via
a single display.

sink A device that consumes information being transmit-
ted from a source. In the context of an sde, a sink is
also known as a server.

source A device that generates information to be transmit-
ted to a sink. In the context of a sde, a source is also
known as a client.

television An integrated signal receiver (tuner) and display de-
vice. %is is becoming a colloquialism for a large
shared display in the home.

xxiv



user space A program space external to the kernel. Applica-
tions running in this space may only interact with
so6ware in the kernel via a rigidly de!ned set of apis.
Each application runs in its own address space, insu-
lated from other applications. In this way, instability
or crashing of one application does not a7ect other
applications or the kernel.

video ram A region of memory that supports a framebu>er.
Historically, vram was dual-ported dynamic ram
that could be read by the graphics hardware at the
same time as it was being written to. As dynamic
ram speeds have increased and the needs of graphics
ram has expanded beyond that of simply supporting
a framebu7er, vram is becoming a colloquialism to
describe any dynamic ram used by the graphics sys-
tem.

video graphics array Typically (and incorrectly) used to refer to the popu-
lar 15 pin D-sub analogue pc display connector and
associated cabling.More properly,vgadesignates an
analogue pc display standard with a resolution of
640 × 480 pixels. See also dvi.

virtual network computing A client-server suite of so6ware that allows a remote
pc to be used as though it were locally available, by
forwarding input and output data over a network.

warp For the purposes of this research, a cursor may be
warped, or instantaneously moved, between two
points separated by an arbitrary distance.

xxv



wheel of reincarnation A phenomenon in which functionality is added to
a graphics system until it is no longer cost e7ective,
at which point the system is split into multiple low-
cost components. As these components are then im-
proved, this process is potentially repeated ad in!ni-
tum. De!ned byMyer and Sutherland in 1968.

window server A system process that is responsible for managing
gui windows, their layout and their composition in
the framebu7er. Also handles display con!guration
and input event routing.
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Chapter 1

Introduction

%is thesis focuses on the 1exibility and ease of use of currentMulti-Display Environments (mde),

and presents two projects to address each of these issues. %e !rst project extends the number of

ways in which a user may con!gure an mde beyond the familiar extended desktop and mirror

modes. %e second project allows displays to be indirectly attached to a pc, and simultaneously

shared between multiple pcs.

%ere is no denying the popularity that multi-display systems are currently enjoying, as both

business andhomeusers take advantage of inexpensive dual-head graphics cards to add a secondary

display to their pcs [29]. %ere are two immediate di7erences between single and multi-display

systems: multiple displays provide a larger overall workspace as well as the ability to visually par-

tition tasks into logical groupings. %e !rst property helps users manage the glut of information

they are now presented with from sources such as the Internet and large digital media collections.

Visual partitioningmakes it easier tomultitask and to deal withmany such streams simultaneously

[28].

While many users prefer multi-display setups for those reasons, the interaction with this setup

is di7erent from single display con!gurations. For example, global gui objects such as the Win-

dows task bar or the Mac os x menu bar only exist on the primary display, making interaction

with them di2cult if the cursor is on a secondary display. %ere is much to study regarding the

e7ectiveness of gui artifacts developed for a single display in a multi-display world, for example,

task or menu bar placement and windowmanagement operations [37, 69].%is thesis focusses on

the low-level issues of con!guring and connecting multiple displays.

1.1 Motivation

Users have had access to multi-display personal computers for the past 20 years. In that time, the

technology has become substantially cheaper, but its use has not changed signi!cantly: graphics

hardware is added to a computer to allow the user to connect a secondary display, which is then

1
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logically added to extend or duplicate the existing desktop area. In the past, expensive and imma-

ture supporting technology imposed a set of constraints that have since become entrenched in the

current usability of multi-display systems. %is thesis considers three such limitations, outlined

in Sections 1.1.1–1.1.3, and proposes solutions for each. First, current pc operating systems sup-

port the con!guration of multiple displays in only two ways: by mirroring an existing display, or

by extending the desktop. %ese choices are a small subset of the total number of con!guration

possibilities, but it is not possible to evaluate the utility of the remainder without additional tools.

Second, the requirement for point-to-point connectivity of graphics interfaces such as Digital Vi-

sual Interface (dvi) and vgamakes it di2cult to dynamically recon!gure the display topology in

amulti-display environment. Addingmultiple displays to a device with constrained graphics hard-

ware, such as a laptop, is also problematic. Finally, when attached to a computer running a single-

user operating system, displays may only be used by a single user at a time. As displays become

larger andmore ubiquitous, it may be bene!cial to share them for both personal and collaborative

work.

1.1.1 Multi-display con&guration limitations

In the past, designers and artists using expensive graphics workstations wanted to dedicate the

entire surface of a high-performance display to the artwork being created, so it made more sense

to place tool palettes, menus, and other gui widgets on a cheaper, smaller secondary display that

could be easily accessed.%e obvious solution was to span the desktop space across both displays,

and allow the cursor to be intuitively dragged across the boundary to facilitate interaction on both

displays. Similarly, business users needed away to give presentations atmeetings via a video projec-

tor while still being able to see the presentation content themselves, similar to the way a traditional

overhead projector works. To support this, early laptops o7ered a video output which simply du-

plicated the contents of the onboard display.

%ese initial two uses for secondary displays led to the adoption of the twomulti-display con-

!guration choices available today: an extended desktop con!guration and mirror/clone mode.

However, these choices are not representative of the total available options. Figure 1.1 illustrates

some of the many other possible relationships between two screens that exist in two dimensions.

Scenario 1 illustrates why the two con!guration modes currently provided may not be su2-

cient for all users.
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(a) (b)

(c)

(d) (e)

Figure 1.1: Possible relationships between two screens in two dimensions. %e familiar mirrored
mode is shown in (a), while the arrangement in (b) indicates extended desktop mode. %ere is a
logical gap between screens in (c), and the screens in (d) and (e) have varying degrees of overlap.

Scenario 1

Alice uses a laptop as her primary computer, although it is most o6en used on a desk

both at work and at home. In these locations, it is augmented by peripheral devices

such as a keyboard, mouse, and external display. Because it is larger, Alice uses the

external display as the primary screen in these situations and uses the built-in lcd

panel as a secondary workspace to display noti!cations such as new email alerts. Al-

ice !nds the extended desktop con!guration troublesome, as she o6en overshoots

scrollbars or other gui widgets with her cursor on the primary external display, los-

ing the cursor onto the laptop’s built-in lcd. She wishes there was a way to display

di7erent information on both screens, as the extended desktop con!guration allows,

while employing a di7erent mechanism to transfer the cursor between screens. %is

would allow her to retain the familiar hard-edged behaviour of a single screen, thus

preventing her from losing the cursor as easily.
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While the diagrams in Figure 1.1 focus on the visual relationship between two screens, this

relationship also in1uences the user interface. We discovered that because the cursor cannot exist

outside of a screen, itmaynot be able to jumpa gapbetween two screens.%iswould allowdi7erent

information tobepresentedon eachdisplay similar to the extendeddesktopmode, but eachdisplay

would retain the familiar hard-edged behaviour of a single screen.

As graphics hardware has become much more capable, the limitations imposed by the two

standard con!guration modes are no longer necessary. Removing these constraints may better

support variations on the old modes of usage, and provide the fundamentals for new ones.

1.1.2 Physical connectivity limitations

%e bandwidth required to transmit video data from a computer to a display is higher than that

needed by any other component of a typical computer system. As such, the buses responsible for

moving this data have been implemented as point-to-point channels using, for example, the famil-

iar dvi or vga formats. %is one-to-one mapping dictates that displays must be directly plugged

into the computers they are intended to be used with, which results in a number of usability con-

ventions that have remained unchallenged until now.%ese are illustrated in the following scenar-

ios.

One result of the one-to-one mapping between displays and pcs is that the inputs to a set of

displaysmay not be shared, even if the output is. A single userwith two displaysmay consider them

as a single workspace or desktop, regardless of the arrangement of di7erent sources driving them.

Scenario 2

Bob sits at his desk, which houses one each of a Mac os x and Windows pc, each

with its own display. As a web developer, Bob authors content on the Mac and uses

browsers on both the Mac andWindows pcs to check cross-platform compatibility.

In addition, he runs an email client on the pc and an instant messaging application

on theMac. Because the content authoring application uses a large part of the screen,

he would like to move the Mac web browser and instant messaging client to unused

space on the pc display, while still being able to see the pc browser and email client.

Another consequence of the one-to-one mapping between displays and pcs is that laptops typ-

ically support only a single external display, regardless of the power of the graphics processor they



5

contain.

Scenario 3

It’s been a good year for the company Alice works at, and there is a surplus in the

equipment budget. Corporate it has determined that using multiple displays o7ers

a productivity boost and decided that everyone working in Alice’s o2ce should have

two displays. Alice wants to continue using her laptop as it contains all her !les and

applications, but it can only drive a single external display in addition to the onboard

lcd. She would prefer to use both external displays and ignore the built-in lcd, but

then she would have to migrate to a regular computer that had a dual-head graphics

card.

An equally constraining result is thatmost displays allowonly a single computer to be connected

at any one time.

Scenario 4

A university has installed a rear-projected high resolution tiled display for scienti!c

visualization research. %e dedicated computer cluster driving the display handles

the tiling and scaling as well as natively running high performance parallel rendering

visualization so6ware.%e lab technicians would like to quickly and easily be able to

connect di7erent pc systems to the display without having to invest in further video

processing or switching hardware.

Addressing the problems raised in these scenarios requires changes to the conventions dictated

by these one-to-one mappings.

Graphics buses provide a trade-o7 between 1exibility and performance: they move an incred-

ible amount of data between two devices, but o7er very little in terms of routing or addressability.

Hardware switching systems such as kvms have been developed, but these are little more thanme-

chanical solutions that simulate a cable being physically moved from one connector to another.

Being able to dynamically route video between all display surfaces in a given environment

would give users the 1exibility to choose the best display for their content, rather than being lim-

ited to whichever display happens to be directly connected to the device they are interacting with
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at the time. High-speed networking and aggressive data compression techniques make this a pos-

sibility, by routing graphics data over a multi-point network rather than a point-to-point graphics

link.

1.1.3 Single user limitations

When running a single-user operating system on a pc that is directly connected to a display, it is

clear that the displaymay only be driven by a single user at a time. But in an environmentwithmany

display surfaces and many users, some displays may be shared. %is may occur either by design or

in the context of an ad hoc activity. However, these displays are o6en only shared in the physical

domain: many users may view them simultaneously, but access to their inputs are serially shared.

Scenario 5

Five co-workers share an open plan o2ce with an adjoining meeting area and a large

shared projection screen for giving presentations. %ree of them are working on the

latest product design and would like to quickly share with one another snapshots

of what they have accomplished. %ey would each like to use the projector as an ex-

tended desktop display for their workstations, and they think it would be even better

if they could simultaneously display more than one employee’s work on it.

%e single-user, single-display model of pc usage is being outgrown by the pc’s pervasive inte-

gration into the lives of its users—lives that interact with other people. Sharing some aspects of

a computer, such as input devices, is inherently physically limited. As a broadcast media, displays

are easy to share as long as there is enough total real-estate for everyone who wishes to participate.

%is should be the only limitation, and the underlying technology should not be a concern.

Scenario 6

Carol and Dave are in their living room, watching tv on a 1at panel display and

planning a vacation on their laptops. As they !nd 1ight or lodging information on

the Internet, they wish to compare prices and schedules. %ey would like to use the

tv as a large shared display for information they !nd to facilitate this.



7

One solution for both Scenarios 5 and 6 is to replace the traditional point-to-point graphics

connection with amulti-point network or bus. Features supported by such a topology can be used

to o7er new routing options for graphics data, such as broadcasting or funnelling several streams

to one device.

1.2 Problem Statement and Research Objective

Current multi-display systems are overly restricted in today’s display-rich, collaborative environ-

ments. Even in a single-user setting, multi-display systems do not allow for the con!gurations de-

manded by some situations.%ese usability problems are caused by an initial technological limita-

tion; however, even a6er the technology issues have been solved, outmoded usage continues. %e

goal of this research is to investigate and extend the capabilities of currentmulti-display computing

environments.

1.3 ?e Research Objectives

Initial research has revealed the popularity of multi-display systems, regardless of current techno-

logical constraints [29]. To better support the use of multi-display systems, I considered the con-

!guration and connectivity limitations discussed in Sections 1.1.1–1.1.3, and proposed solutions

for each, which form the objectives for the research.

Improve multi-display con&guration: Re%ect, a tool designed to blur the distinction between

the extended desktop and mirrored multi-display modes on Mac os x, is used to overcome the

previously limited con!gurability of multi-display pcs. I developed two so6ware components to

accomplish this: a patch to the kernel to enable the necessary functionality in the os and a tool to

augment the system-provided multi-display con!guration utility. I also developed an additional

tool calledMouseWarpwhich allows the user to warp the cursor betwen two displays that may be

inaccessible by the traditional method of dragging.

Remove physical connectivity limitations: To address the one-to-one physical connectivity re-

quirement imposed by graphics interfaces such as dvi and vga, I designed a new display device

architecture. %is architecture replaces the traditional point-to-point connection with a multi-

point network or bus, logically freeing display devices from being directly connected to a speci!c
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pc. To demonstrate this concept, I developed a new display device, a satellite display, and created

a prototype implementation for Mac os x.

Allowmulti-user connectivity: In addition to simply emulating a point-to-point link between

a display and a computer, the addressability and routing abilities of a multi-point network were

also used to add multi-user capabilities to the satellite display project, while allowing it to retain

the simplicity of the existing extended desktop mental model.

1.4 Overview of the?esis

Chapter 2 reviews related literature, including a technical discussion of multi-display systems, re-

mote desktop solutions, and co-located groupware projects. Chapter 3 illustrates the development

of the Re1ect display con!guration utility.%e satellite display is presented in two parts. Chapter

4 describes an ideal satellite display design, given unlimited engineering resources. %is design is

scaled back in Chapter 5, and used as the basis for a prototype implementation of suitable scope

for a master’s thesis. Lastly, insights gained while designing and implementing both the Re1ect

and satellite display projects are given in Chapter 6, including an assessment of the progress made

on each of the three objectives stated above. Recommendations are made for future areas of study

and future system designs, and conclusions are drawn from this work.



Chapter 2

RelatedWork

A wide variety of projects, products, and concepts in1uenced this research. %ese range from

the now-standard multi-display single-user con!gurations to remote desktop utilities and Multi-

Display Groupware (mdg) collaboration tools. %e overarching theme tying this work together

is the notion of the mde. %is encompasses any con!guration in which more than one display is

visible at a time, and there is some computational coordination between them.%is environment

may be used by one or more users.

%e taxonomy of co-located display environments is typically arranged along two axes: the

number of users, and the number of displays (Figure 2.1). While the research described in this

thesis focuses on environments with multiple physical displays and any number of users, single-

display concepts such as virtual multiple displays and Single-Display Groupware (sdg) are still

applicable so features of these will be discussed as they relate to the larger mde context.

Traditional 
PC

Number of Users

Number of Displays

Multiple 
Monitor 

PCs

Multi-
Display 

Groupware

Single 
Display 

Groupware

Multi-Display 
Environments

Figure 2.1: Dimensions in Display Environments
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2.1 Single User, Multiple Displays

%emost common multi-display scenario consists of a single user interacting with a single multi-

headed computer, although a single user interacting with multiple computers is also possible.

2.1.1 Usage modes

%ere are two current implementations for multi-display use on a single pc: mirrored mode and

extended desktop.

2.1.1.1 Mirror / clone mode

Replicating the same information across twoormoredisplays is knownasmirror (MacOS)or clone

(Windows pc) mode. %is replication is primarily used in situations where two display devices

di7er physically, such as when a projector is plugged into a laptop, as illustrated in Figure 2.2.

In this case, the physically smaller built-in laptop display may be used by the presenter to interact

with the laptop, while the audience sees the screen contentsmirrored on themuch larger projected

display that is o6en out of the presenter’s !eld of view.

Figure 2.2: Laptopwith external display operating inMirror /CloneMode. In thismode the image
being externally displayed is an exact replica of what is seen on the built-in 1at-panel display.
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Mirror mode can also be achieved with a hardware video splitter, and indeed many modern

projectors now include a built-in video splitter to allow desktop pcs without dual-head capability

to be used in this manner.

2.1.1.2 Extended desktop mode

In the extended desktop multi-display con!guration, each of the displays attached to a pc is rep-

resented by its own non-overlapping region in global screen space. Figure 2.3 shows two displays

con!gured in extended desktopmode, with a guiwindow spanning them. Both theMacosx and

Windows operating systems restrict the position of each screen within global screen space so that

the screens must touch along at least one edge; this allows the mouse cursor to travel seamlessly

between regions of the extended desktop. In a con!guration with three or more displays, some

screens might touch more than one other screen, and this could occur along more than one edge.

Figure 2.3: A dual-head extended desktop. Both displays act as a view or window onto a larger
virtual screen space; gui objects can be freely moved within this larger virtual screen and auto-
matically move between displays depending on which area of the virtual screen they are in. In this
example, one gui window straddles the two displays, with di7erent portions shown on each.

While the extended desktopmodel is easy to understand and implement, it can be challenging

to use. For example, current pc operating systems assume that all displays attached to a computer
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have an equal pixel size, but this is rarely the case.%is can cause problems when usingmultiple de-

vices of di7erent pixel sizes but roughly equivalent display resolutions, such as a computer display

and a large screen 1at panel. In both cases, the display resolution is similar, but the total physical

size of the display is vastly di7erent. %is is illustrated in Figure 2.4. When moving the cursor be-

tween displays with di7ering pixel and physical sizes, the cursor trajectory may not be continuous

in real-world space, although it is contiguous in the global screen space of the computer.

Mouse Ether is a research project that addresses this problem by considering the cursor po-

sition in a device-independent co-ordinate system, and providing a scaling factor between this

system and each display [11]. Mac os 10.5 will introduce resolution independence capabilities,

scaling not only the cursor position to a device-independent co-ordinate system, but the size of

gui elements as well [4].

Figure 2.4: Pixel size di7erences in display devices. Both devices have an equivalent display reso-
lution of 8 × 8 pixels. %e computer display on the le6 has a real-world size of 1″ per side, while
the large screen display on the right is 1.5″ per side. A dark horizontal line drawn by the computer
has a vertical discrepancy where it crosses displays: in logical space, the output on the large screen
display should be scaled down, so that in physical space the line would continue where the light
pixels are shaded in.

Additionally, Mouse Ether allows the cursor to exist in the interstitial space between displays

that have been arranged diagonally, which eases transitions by enlarging the portion of a screen

edge that may be used to convey the cursor. Figure 2.5 illustrates this concept. Perspective Cur-

sor is another research project which uses a 3d model of the planar displays in the environment

coupled with a head tracker to dynamically compute the appropriate relationship between mouse

and cursor movement across all displays [54]. %is system accounts for display angle perspective

distortion relative to the user’s viewpoint in addition to size di7erences.

A further di2culty with the extended desktop model arises when many displays are used at
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(a) (b)

Figure 2.5:Mouse Ether.%e traditional means ofmoving the cursor between two screens (a).%e
dotted line indicates the shortest path between two points, while the solid line indicates an actual
path required to navigate the small portal joining the two screens. In this case, the cursormay only
exist within the region de!ned by the screens. With Mouse Ether, the cursor may travel through
interstitial space, indicated by the convex hull de!ned by the outline of the screens and the dotted
lines (b). In this case, the user may directly follow the shortest path with the cursor, as indicated
by the solid line.

once. As the size of the desktop grows, so does the distance between the gui objects a user may

want to interact with, which in turn increases their acquisition time [45]. By providing a warp-

ing function that jumps the cursor between displays, Multi-Monitor Mouse simulates having one

cursor per display while retaining a single physical pointing device [12]. %e warping function is

invoked by pressing key or mouse-button combinations, by the location of the user’s head, or by

the location of the physical mouse in relation to the surface it is being used on. For an example of

the latter mode, a system with three displays would have three mouse pads, one corresponding to

each display. As the user moved the mouse between pads, the cursor would switch displays.

None of the research projects surveyed in this section have been released as products. As such,

it is di2cult to determine the overall impact these concepts may have on real-world multi-display

usage. Because the satellite display developed in Chapters 4 and 5 builds orthogonally to these

projects, it could bene!t equally from them.

2.1.2 Multiple display hardware

%e earliest IBM pc multi-display setups with di7erent information on each display debuted in

the early 1980s.%is predates the introduction of Microso6Windows by several years.%ese pcs

o6en contained one each of a colour and monochrome graphics card.%is dual card arrangement

exploited the fact that each type of card mapped its framebu7er to a di7erent region in memory,

allowing simultaneous use of both types of graphics. While not technically a seamless extended
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desktop—users couldn’t drag a window from the colour display to the monochrome display—it

did allow for related information to be displayed. Common con!gurations showed spreadsheets

on the monochrome display with graphs and charts on the colour display, or debugging informa-

tion on the monochrome display for the application being run on the colour display [26].

%e !rst personal computer to support multiple displays in the now familiar extended desk-

top format was the Macintosh ii, introduced in 1987 [81]. %is was made possible by the NuBus

expansion bus, which allowed multiple graphics cards to be installed in a single system.

Prior to Windows 98, using multiple displays with a Windows pc required specialty multi-

headed graphics cards and drivers. %eir high cost limited their use to a small market of business

users such as engineering and !nancial institutions. With the introduction of Windows 98 and

the pci expansion bus, it was possible to install multiple graphics cards and Windows natively

supported them. %e extended desktop con!guration was provided by Windows for additional

pci graphics cards, while clonemode and other settings were the responsibility of the card vendor,

requiring separate utilities and drivers [67].

Due to performance restrictions of pci, the pc graphics architecture switched to a dedicated

graphics bus, the Accelerated Graphics Port (agp), during the era of Windows 2000 and xp. To

gain the necessary performance, early agp speci!cations only supported a single port, or card, per

system.%is introduced an asymmetry between the primary graphics card and any secondary cards

running in a slower pci slot, which once again echoed the pre-Windows 98 systems in terms of

multi-head capability. To compensate for this, graphics card manufacturers began producing agp

cards with two to four outputs to drive multiple displays [46]. As of 2006, an updated pci bus

(pcie) has eclipsed agp performance, and it is once again possible to run two or more graphics

cards at the same speed. Current trends indicate that cards with multiple outputs will continue to

be produced, thusmaking it easier than ever to runmore than two displays from a single computer.

Although the new pcie bus allows a larger number of displays to be connected to a desktop pc,

it does little for laptops.%emulti-display expansion of these small pcs continue to be constrained

by other hardware factors, regardless of the bus technology used.

2.1.2.1 Current developments

In recent years, the popularity of extended desktop setups has created a market for devices and

so6ware that o7er similar functionality to multiple graphics cards or multi-headed cards, while

making use of existing surplus or under-utilized hardware.
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In 2005,Matrox introduced a series ofGraphics eXpansionModules, devices that allow any com-

puter with a single vga output to drive two or three displays [47]. By electrically simulating a dis-

play with a resolution two or three times as wide as normal, the device appears as a single display

to the computer. %e expansion module subsequently splits the wide image across the multiple

attached displays, as shown in Figure 2.6.

Figure 2.6: Matrox DualHead2Go. %is device accepts a video signal at display resolutions twice
as wide as a normal display, and logically splits the image for output to two display devices, each
having normal width.

%e Matrox gxm o7ers several advantages beyond simply allowing computers with a limited

number of video outputs to support additional displays. Because the device interfaces at such a low

level, none of the so6ware running on the computer needs to know about the multi-display na-

ture of the !nal output. Task- and menu-bars, traditionally restricted to a single screen of a multi-

screen desktop, now span all displays. Windows applications that require full-screen hardware-

accelerated graphics contexts such as 3d renderers, or media players with hardware video decom-

pressors, can now extend content across multiple displays, instead of being limited to only one of

the attached displays. %e gxm is not without drawbacks, however. %e device continues to uti-

lize the analogue vga graphics protocol at a time when the majority of display devices are now

digital 1at panels. In addition, the gxm can only split an extra wide screen horizontally, resulting
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in side-by-side displays. While this is !ne for many tasks such as graphics editing, being able to

split a tall screen into two vertically stacked displays would be useful for text-centric tasks such as

programming.

Just as dual-head graphics cards make e7ective use of old or otherwise surplus displays [29],

commercial so6wareproducts have recently started to appear that allow theuse of a surplusnetwork-

attached computer—notably laptopswith !xed displays that can’t be plugged into a normal graph-

ics card—in a similar manner [10, 87, 91]. One such product, MaxiVista, is shown in Figure 2.7.

%ese products provide a virtual display on a user’s computer, and a network display server on a

display computer. When the so6ware is running, the server takes over the full screen of a display

computer, and shows the gui objects that are moved to the virtual display by a client computer.

(a) (b)

Figure 2.7: Maxivista. %e user’s computer (a) has a secondary display attached through the use of
a special graphics card driver; anything that is rendered to the proxy secondary display is captured,
sent over a network, and displayed on a di7erent computer (b).

%e commercial exploration of the virtual hardware on a so" displaymarket has primarily been

fueled by resource preservation: reusing existing hardware. While this is a laudable goal, little has

been done to use the donor machines as anything more than display devices, which overlooks a

substantial amount of computing power driving the displays.

Utilizing eitherwired orwireless networking as a transmissionmedia provides additional 1exi-

bility over the traditional point-to-point connectivity of graphics devices provided by the dvi and

vga protocols. For example, multiple pcs could connect simultaneously to a so6 display, which

would then tile or composite the incoming graphics as appropriate.
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It has been recently reported that Samsung will soon start o7ering a display that uses usb to

receive graphics data from a computer, rather than a dvi or vga connection [64].%e marketing

information claims support for up to !ve displays per computer, depending on the application.

2.1.3 Multiple computers

Single users o6en control multiple computers: a web designer may use two di7erent platforms to

test the browser compliance of a project, or a so6ware developer may build on one machine while

debugging on another.%is o6en leads to multiple sets of keyboards andmice cluttering a desk. A

solution to this problem is input redirection, a mechanism to switch a single input source among

the various computers.

By using only the keyboard and mouse switching facilities of a kvm and leaving displays con-

nected directly to each computer, an extended desktop con!guration may be simulated in hard-

ware. %is approach requires the use of a key combination or external button to transfer control

between machines, but has the advantage that it requires no so6ware to be installed on the ma-

chines, or any networking infrastructure. In the former case, the kvm sni7s key events sent by

the keyboard and !lters out appropriate hot-key commands before they are sent to the computer.

%ese commands are then used to activate the kvm switching mechanism.

So6ware products such as x2x [17], x2vnc [35], Multiplicity [86], Teleport [76], Desktop

Rover [58], and the cross platform synergy [84] allow a user to move a single cursor and input

focus between computers by simply dragging the cursor as though all of the displays belonged

to a single multi-headed machine. One machine is designated as a master, and has a mouse and

keyboard plugged in to it. %e rest of the computers are slaves, and don’t require input devices

to be directly connected. %e so6ware then captures input events on the master computer, and

forwards them as appropriate to the slave computers over a network. %e resulting simulation of

an extended desktop isn’t perfect; for example, only control is transferred between machines and

moving gui objects such as !le icons or windows between displays is o6en not supported. Of the

tools listed above, only Teleport allows the user to drag a !le icon to initiate transferring the !le to

the remote machine.

Note that the hardware and so6ware techniques are not mutually exclusive: combining both

into a single system allows the ease of use of an extended desktop style interaction, while allowing a

fallback tohardwarekvmoperation should the user need to interactwith a secondary systemwhile

so6ware or network resources are unavailable.%is is illustrated in Figure 2.8, where synergy is
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used once the systems have booted to the gui , and a kvm is used to access boot-time options on

both machines.

Figure 2.8: Multiple computers sharing one keyboard and mouse. In this !gure, both hardware
(a kvm) and so6ware (the synergy input redirection tool) are used to transfer input events
between computers, depending on the task.

2.2 Single User, Single Display

While the focus of this thesis is onmdes, there are a number of relevant single display projects that

aim to emulatemultiple displays. Entries in this section consist primarily of virtualmultiple display

solutions, spanning both hardware and so6ware. Falling into two broad categories, the !rst type

switch or virtualize displays, providing serial access to multiple devices. Products in the second

category are designed to access remote computers over a network.

2.2.1 Technical background

Figure 2.9 is a sequence diagramof the events that cause an image to be shownon a display.%is di-

agram represents a simpli!ed version of a compositing window server; a traditional window server

operates in a similar manner, but has more synchronization between the di7erent steps.

As an application runs, events may trigger changes in its visual state. %ese include external

events such as the receipt of network data, or gui-based changes such as scrollingwithin awindow.

Any event which may change the visual state of the application noti!es the window server that a
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Application Window Server Video Card Display

Event
Invalidate Region

Refresh

Composite

Flush Image Data

Step 1.

Step 3.

Image Data
Image

Step 2.
Draw Region

Asynchronous Message

Return Value
Synchronous Method

Figure 2.9: Sequence of events causing an image to be drawn to a display device.

region has become dirty or invalidated, and needs to be redrawn to the display (Figure 2.9, Step

1).%ewindow server then asks the application to draw the changed image in a region ofmemory,

in the case of a compositing window server this memory is an o7-screen portion of Video ram

(vram)(Figure 2.9, Step 2). Finally, the graphics card contains a clock which is synchronized to

the display hardware. During a blanking phase, when the display hardware is not drawing, the

graphics card noti!es the window server.%e window server then composites the visible windows

into the primary framebu7er, which the graphics card translates into an electrical signal to be sent

to the display device. Step 3 in Figure 2.9 illustrates this procedure. If the application’s visual state

has not changed between successive refreshes of the display device, Steps 1 and 2 are skipped, and

the window server uses the previously bu7ered image during the compositing phase.

Low-level graphics interface standards such asdvi andvga also in1uence theways displays are

con!gured in an mde. Such interfaces o7er point-to-point connectivity, which has implications
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for connecting large numbers of displays to a single pc. A technical summary of current graphic

interface speci!cations is given in Appendix C.

2.2.2 Virtual displays

When used as intended, kvms switch one display device across multiple graphics outputs. In the

process, they turn a single display into a virtual set of multiple displays by removing the physical

task ofmanually reconnecting the single display as it is needed on di7erent computers. In addition

to handling graphics data, kvms also switch input devices, and some newer ones switch audio

signals and other peripherals such as usb devices.

Virtual window managers such as rooms [34], swm [43], and fvwm [55] o7er a so6ware

implementation of a simulated extended desktop. %ey can be thought of as providing a single

window or viewport onto a series of desktops, each the same size as the primary display. By using a

hotkey or mouse gesture, the current desktopmay be switched for a hidden one, yielding serial ac-

cess to the full extended desktop.%e virtual windowmanagers o7er the task partitioning bene!ts

of amulti-display system on a systemwith a single display.%is saves the expense of both acquiring

and housing additional physical hardware.%ere is typically a pager, or iconic representation of the

full extended desktop, on each desktop.%is gui widget o7ers random access to each desktop, as

well as providing a rapidmeans of moving windows and other gui artifacts between desktops. Ar-

rangingwindows by task acrossmultiple real displays allows users to partition andmore e7ectively

manage the di7erent kinds of information they use [28].

Virtual windowmanagers emulate one aspect of a computer—the ability to have a number of

displays attached. In a similar way, application so6ware is available that virtualizes or emulates not

only the display output, but an entire computer [97, 48, 21, 63]. Virtualization takes advantage of

the fact that many pcs share the same cpu family (Intel x86), so to emulate a di7erent machine,

only the I/O facilities need be emulated. %is allows the cpu in the virtualized environment to

run natively on the host cpu at full speed, without the costly overhead of !rst translating each

machine instruction. An example of this is shown in Figure 2.10, where Windows is being run

with no performance penalty within Mac os x. By dedicating a secondary display to the virtual

machine, a con!guration very similar to a two-machine setupwith input redirection so6waremay

be created, but it only requires a single pc.
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Figure 2.10: Virtualization Environments.Microso6Windows running on aMac os x computer,
within the Parallels virtualization environment.

2.2.3 Full screen sharing

Full screen sharing tools, or remote desktop clients, are designed primarily to support telecom-

muting or remote system administration. %ey allow a user to access a remote pc via a network,

and use the local pc input (keyboard, mouse) and output (display) devices as though they were

directly attached to the remote pc. As a general rule, the full remote desktop area is displayed on

the local computer, scaled or panned as necessary if it is larger than the local display. Examples of

this technology include vnc [70][75], Timbuktu [59], Microso6 Remote Desktop Connection

and rdesktop [49, 18], and Apple Remote Desktop [2].

vnc is themost popular of the remote desktop tools, largely due to its lightweight and openly

published remote framebu7er (rfb) protocol [74], which has been implemented on a large num-

ber of platforms.%is gives it substantial cross-platform capabilities, in some sense simulating the

ability to run a foreign os locally, much as virtualization so6ware does. Ultravnc [98] is a vnc

server forWindows XP notable for a single-window sharing feature: unlike other full screen shar-

ing tools, it can bound its view of the remote displaywith the dimensions of a singlewindow, track-

ing that window around the remote screen if necessary. %is single-window support may reduce

the bandwidth required by the stream, as well as use less screen real-estate on the target computer.

Single-windowmode does not accurately simulate a seamless remotewindow, however. As the

same framebu7er scrape method is used as a standard vnc server, overlapping window contents



22

may be captured as well.%is problem is illustrated in Figure 2.11. Additionally, Ultravnc is lim-

ited to sending only one single window in this mode.%is is due to the fact that the rfb protocol

is designed to send a full screen–Ultravnc is simply con!guring the underlying rfb transport to

use a small full-screen size. %e rfb protocol does not support the multiple independent video

streams necessary to transmit multiple single windows simultaneously.

Figure 2.11: Single window sharing with Ultravnc. Note that the single window includes a por-
tion of an Internet Explorer window, due to the way theWindows XP window server composites
directly to the framebu7er.

In addition to the special purpose full screen sharing tools listed above, XWindows natively

supports remote desktops andwindowsdue to the client/servermodel inherent in its display server

design [83].

2.3 Multiple Users, Multiple Displays

%ere are several co-located mdg research projects that informed the development of the multi-

user concepts reported in this thesis.

Aris is a windowmanager for a multi-display interactive space developed at the University of

Illinois by Biehl and Bailey [14]. To move windows between displays in the space, a user selects a

window and activates an attached iconic map, or world in miniature, of the space. %e user then

drags an iconic representation of the selected window within the map to an iconic representation
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of the desired destination display within the map, at which point the real window is transferred

between displays and input is redirected to the new display. %is window movement is accom-

plished by migrating the running application between the pcs attached to the displays. Because

aris runs on top of the gaia middleware framework [79], which handles the application migra-

tion, applications must be re-compiled to run in the multi-display space provided by aris.

A di7erent conceptual approach to moving objects between displays is used in iRoom, which

runs on the irosmiddleware framework developed at Stanford [66]. Rather thanmoving running

applications between systems, data and state is stored in a central DataHeap. By sending events

through an EventHeap, custom applications are started and stopped on the di7erent pcs backing

each display. For example, sending agotourlmessage to a display automatically starts the correct

browser for that display, and renders the webpage. Only objects of supported types can be moved

using this mechanism.

%e Dynamo system developed by Izadi et al. at the University of Nottingham is designed to

provide ad hoc opportunistic collaboration between a community of users [40]. It accomplishes

this by providing a large tiled display surface fromwhichusersmay ‘carve’ non-overlapping regions.

%ese regions may then be used for collaborative tasks, or they may exist beyond the active time

of the user, enabling users to leave notes or !les for other community members.

2.3.1 Multi-user input redirection

Aswith single user input redirection, there aremany tools supportingmulti-user input redirection.

%ese include:MightyMouse (later renamedRover due to possible copyright concerns) developed

byBooth et al. atubc [15]; PointRight developedby Johanson et al. at Stanford [41]; Pebbles from

Myers et al. at cmu [53]; and Sword!sh by Inkpen et al. at Dalhousie [30]. Key di7erences among

them are the methods by which relationships between participating computers are speci!ed and

the methods by which switching is accomplished.

Pointright and Sword!sh use a spatial layout and mouse traversal to move between remote

screens. Figure 2.12 illustrates the MightyMouse (Rover) toolbar, which is used to warp or jump

the cursor to a remote display. %e cursor is always warped back to the user’s local screen be-

fore moving to another remote display: this allows the user to traverse a large number of displays

quickly, without interrupting other users. %e Pebbles project di7ers from the others by allowing

the use of pdas rather than pcs to control a remote computer.
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Figure 2.12:%eMightyMouse (Rover) toolbar.%is toolbar is used to move the cursor between
pcs in the system. %e dropdown menu shows the cross-platform keyboard translation mapping
in use on the machine being controlled.

2.4 Other Technologies

%ere are other technologies that in1uenced the development of the tools reported in this thesis.

%ey will be discussed here.

2.4.1 WinCuts

Wincuts is a tool developed by Tan et al. at Microso6 Research that allows the allows a user to

select regions of a display for duplication to either the local screen or a remote machine [90]. By

cutting a region of a window and displaying it on a remote screen, a remote extended desktopmay

be roughly simulated. Remote Wincuts are explicitly managed by a Visitor tool, which does not

o7er drag and drop placement between displays. %at is, Wincuts does not emulate an extended

desktop con!guration, rather a pop-upmenuon theWincut allows it to be sent to a remote display

where it may be manipulated by the Visitor tool.

2.4.2 x11

Introduced in 1984, x11 is the primary gui windowing system for Unix based computers [83].

X11 is based on an internal client/server model, where the process that renders a gui object to a

screen (the display server) is not the same as the one that created it (the client).%is stems from a
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networked thin client architecture in which the computer on a user’s desk is simply an i/o device

for a central compute server.

Even thoughmultiple thin clientsmay have been connected to a single server, therewas noway

tomigrate the gui artifacts of a running process between display servers.%e x11model provides

multi-head displays in the form of multiple clients, but does not support extended desktop func-

tionality.%is capability is now provided by several extensions to x11. Xinerama is an extension to

x11 that allows a single display server to work withmultiple displays, providing an extended desk-

top to x11 servers that utilize multi-headed graphics cards [42]. Distributed multihead x (dmx)

is a recent extension to x11 that allows multiple computers, each running a regular x11 server, to

behave as though they are local displays for a primary pc [27]. %ese dmx displays can then be

used with Xinerama to present a single large desktop (spanning multiple computers) to the user.

One key limitation of x11 is the lack of dynamic con!gurability of the x server. To add or remove

secondary displays, the x server must be restarted—a less than ideal situation for laptop users who

frequently connect and disconnect from external displays.

2.4.3 Window servers

Windowmanagers are responsible for creating the look and feel of a desktop environment, as well

as providinggui artifacts such aswindowborders, buttons, andmenus.Window servers then han-

dle the layout and compositing of these gui objects into the framebu7er. In Microso6Windows

andMac os x, the windowmanager and window server are combined to form an integral part of

the graphics infrastructure. In contrast, the windowmanager used by x11 is provided as a separate

component thatmay be replaced with one ofmany di7erentmanagers o7ering di7erent looks and

behaviours.

In the past, memory has been an expensive computer component. %is is especially true of

vram, which is dual ported to allow the system to write to the framebu7er while the graphics

hardware simultaneously reads from it. Because of this, graphics cards speci!ed amaximum depth

and resolution they would support, and only included enough vram to hold a framebu7er of this

size. As a result, operating systems (includingMacOS 9 and earlier,Windows up to and including

xp, and most current x11 implementations) use a framebu7er window server to make the most

of a limited resource. %ese window servers ask applications to draw directly to the framebu7er

whenever window contents change, or when a portion of a window is uncovered by an overlap-

ping window. %is con!guration trades memory expense for drawing expense, requiring content
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to o6en be recomputed even if it has not changed.

With the advent of 3d acceleration onmodern graphics cards, additional vram had to be in-

cluded to store geometry and texture data. With graphics hardware now containing bu7er mem-

ories much larger than what is necessary to hold a framebu7er, a considerable amount of mem-

ory was made available when the 3d facilities were not in use. Operating system developers then

started to display windows with a two step process: !rst by rendering windows to o7screen vram,

followed by using graphics hardware to composite the o7screen windows to the framebu7er. De-

coupling the application rendering from !nal drawing has several advantages. For example, appli-

cations do not need to re-draw static content whenever their windows are invalidated (uncovered

by another window, or reshown a6er being entirely hidden). In addition, visual e7ects may be ap-

plied by the graphics hardware during the compositing step, including alpha blending andblurring.

Operating systems that support compositing window servers include Mac os x [62], Windows

Vista [82], and x11 with the Metisse, Metacity and Compiz [19, 65, 73] windowmanagers.

2.4.4 Multi-pointer x

%eMulti-pointer X (mpx) project by Hutterer and%omas at the University of South Australia

provides true multi-cursor support to both legacy (single user) and sdg applications [39]. To ac-

complish this, the x11 server wasmodi!ed to create individual core cursors for eachmouse device,

rather than multiplexing the data from multiple devices into one cursor. %e modi!ed core cur-

sors have an additional id value that indicates which device is in use, the ids can then be used to

implement access control to speci!c gui widgets in an sdg application. %e mpx project makes

no attempt to bind additional keyboards together in input channels [89], which would provide

multiple insertion points for text entry.

2.5 Summary

As explained in Section 2.1.1, there are currently two usagemodes formultiple displays connected

to a single computer: mirrored mode and extended desktop. Section 1.1.1 in Chapter 1 indicates

that there are an additional three modes available, if all possible 2d screen arrangements are con-

sidered. Chapter 3 presents a con!guration utility that enables the additional three modes on a

Mac os x pc.

Using multiple displays with a single pc continues to be constrained, especially from a laptop.
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%e Matrox gxm and MaxiVista products described in Section 2.1.2.1 work to remedy this, but

each of these solutions has its own limitations. As mdes become more prevalent, choosing and

using the most appropriate display for a task becomes more di2cult. mdg suites such as aris,

iRoom, and Dynamo were developed to address this, but they are heavyweight middleware op-

erating systems that don’t facilitate ad hoc usage. A key observation underlying our work is that

display devices are naturally shared and foster collaboration, due to the ease in which multiple

people can view a single device simultaneously. %is simultaneous access does not extend to the

content that may be displayed, however, because devices only accept input from a single source at

a time.%e satellite display project introduced in Chapters 4 and 5 aims to address these issues.



Chapter 3

Re%ect: An Advanced Display Con&guration Utility

As discussed in Chapters 1 and 2, the multi-display con!guration capabilities made available in

current operating systems are limited to the mirror and extended desktop modes. %is chapter

considers the technical underpinnings of a multi-headed graphics card, and argues that the avail-

ability of only two usage modes is the result of a design choice rather than a hardware limitation.

%e results of generalizing multi-display con!gurability beyond these two basic modes are pre-

sented in Section 3.3. Section 3.4 describes the implementation of a utility that allows for general-

ized multi-display con!gurability, and usage of the additional con!guration modes is considered

in Section 3.5. Finally, in light of the additional capabilities a7orded by the implementation, the

choice made by the original system designers to restrict the number of modes is reconsidered.

3.1 Background

Traditionally, multi-display con!guration capabilities on personal computers have been restricted

to extended desktop andmirrormode, or a combination of the two. Figure 3.1 shows a schematic

representation of these twomodes in screen shots of theMacosxdisplay con!guration utility.On

the le6, two screens are arranged in extended desktop mode, where they abut along a shared edge.

%e right hand arrangement indicates that the screens aremirrored, with a stacked representation.

Figure 2.3 in Chapter 2 demonstrates the extended desktop mode in use with a single computer

driving two displays, each displaying independent content.

Logically, displays are represented by axis-aligned rectangular regions called screens, on an ab-

stract two-dimensional plane referred to as screen space. Screens are ordered, with the !rst screen

having some distinction as the main screen while others have co-equal status as secondary screens.

%e main screen typically contains some global state management tools such as a menu bar and

Dock (Mac os x) or a task bar and Start menu (Microso6 Windows); the top le6 corner of this

screen de!nes the position of the origin for the coordinate system used in screen space.

28
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(a) (b)

Figure 3.1:Con!guringmultiple displays onMacosx. Iconic representations of extendeddesktop
(a) and mirror mode (b) are shown.

3.2 Hypothesis

Using a pc in extended desktop mode does not require the attached displays to be the same log-

ical size, or to be arranged in strict rows or columns within screen space. %is implies that the

graphics hardware utilizes an independent framebu7er for each screen, rather than a single large

framebu7er that encompasses all screens.Knowing this, it was hypothesized that the ability to con-

!gure displaysmore generally was being constrained by anos so6ware design choice, rather than a

limitation of the graphics hardware itself.%is project presented in this chapter was implemented

on an exploratory basis to test this hypothesis. %e results are what was directly experienced with

this implementation, generalizations to other systems will be made where possible.

3.3 Generalization of Multi-Display Con&guration

A more general con!guration capability would feature arbitrary extended desktop positioning,

including partially overlapping and non-adjacent screen placement, as illustrated in Table 3.1. Ad-

ditionally, having two fully overlapped screens of di7ering resolutions (i.e., one screen inset into

another) is a generalization of mirrored mode. All !ve of these possible screen arrangements con-

tinue to be limited by the fact that the underlying surface onwhich the screens reside is planar, and

this fact remains for the visual aspect of the arrangement.However, in themouse control space the

screen surface may be wrapped around in both the x and y directions to simulate a torus, which

increases the generality somewhat further [92].
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Table 3.1: Multi-display con!guration modes

Mode Gap Between Screens
Mirror/Clonea Negative
Extended Desktop None
Disjoint Positive
Overlap Negative
Insetb Negative

aMirror/Clone is a special case of Inset
bInset is a special case of Overlap

3.3.1 Implications for cursor movement and image display

Changing the gap between two screens has implications for both cursor movement and image

display. By creating a gap larger than a threshold distance based on mouse acceleration properties,

a screen can be made unreachable via normal mouse movement because the cursor is not allowed

to traverse the interstitial space between screens. Using an alternate method to warp the cursor

between screens, such as the Multi-Monitor Mouse [12], allows the user to bene!t from a larger

workspace without the cursor accidentally transferring between displays.

A positive gap between two screens introduces logical space that may be used to compensate

for the physical space that bezels impose between two monitors. An image spanning the gap will

have a logical strip removed corresponding to the physical space between the active display areas,

resulting in correct measurements between points on both displays, as shown in Figure 3.2. %is

result is similar to theOneSpace project by Robertson et al. [77], but operates system-wide on any

gui element, rather than simply on image data as is the case with OneSpace.

Anegative gap has no e7ect on cursormovement between screens, but allows screens to be log-

ically overlapped. Visually, elements (including the cursor) that exist in overlapping screen regions

will be shown simultaneously on each display corresponding to the overlapped screens.

3.4 Details of the Implementation

Re%ect is a utility that was developed for this thesis to explore the possibilities a7orded by in-

creased multi-display con!guration options. %is prototype so6ware was written for Mac os x

10.4 running on a PowerPC processor, and as such, much of the low-level discussion will focus on
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(a) (b)

(c) (d)

Framebu!er Display

Figure 3.2: E7ect of a positive screen gap on image display. For the upper image, a standard ex-
tended desktop is used that has two abutting screens in the framebu7er (a), and the physical di-
mensions of the image have been stretched when viewed on the two displays (b). By logically sep-
arating screens in the framebu7er (c), the bezels between displays can be compensated for, main-
taining the aspect ratio of gui objects spanning the displays (d).

this platform. Because the relevant underlying graphics hardware components are commonly used

onmultiple platforms, the extension of this project to other operating systems should be straight-

forward using similar techniques. Complete source code for the implementation developed for

this thesis is available online; further details are available in Appendix D.

3.4.1 Technical background

Display devices are represented to an operating system as a framebu7er, or a contiguous region

in vram. Multi-headed graphics cards have a single large region of vram which may be subdi-

vided to provide framebu7ers for all attached displays. In extended desktop mode, multiple non-

overlapping apertures into the vram are de!ned, one for each display. Mirroring two or more

displays is enabled by explicit con!guration of the graphics card to use one aperture as the source

for multiple display connections.

Creating arbitrarily overlapping screens is not simply a matter of overlapping the apertures,
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as apertures and framebu7ers are one-dimensional and require additional structural information

to represent two-dimensional screens. To achieve the desired two-dimensional overlap, it must be

enabled higher in the graphics pipeline, at the !nal level before the window server draws to the

framebu7er. As the window server draws the contents of each screen to its respective framebu7er,

the overlapping regions must be drawnmultiple times, once per screen. If two overlapping frame-

bu7ers exist on the same graphics card, this duplicated drawing is a less expensive operation than

onemight initially think. windows are !rst drawn by the window server into o7screen portions of

vram, the subsequent copy or compositing operation is performed entirely on the graphics card

using hardware accelerated routines. If multiple graphics cards are used to add multiple displays

to a pc, the window server may draw to each card. %is con!guration may not be accelerated as

much as if both displays were attached to the same graphics card, however.

3.4.2 Approach

Apple exposes a public Application Programming Interface (api) inMac os x, calledQuartz Dis-

play Services, to allow 3rd party developers to con!gure and control displays, including multi-

ple display layout. %is api is part of the CoreGraphics framework, which is used to manipulate

graphics on Mac os x. It was hypothesized that these calls are also used internally by the built-in

display con!guration utility. To allow arbitrary extended desktop screen placement, the follow-

ing approach was used. First, the api calls in Quartz Display Services were tested to determine if

they would allow arbitrary desktop screen placement. It was found that the api calls restrict screen

placement in multi-display mode. To work around this limitation, the api calls were patched to

allow arbitrary desktop screen placement. Once the api calls were adjusted, the built-in con!g-

uration utility was tested to determine if it would work with the patched api. It was found that

the built-in con!guration tool did use the patched api, and that it also contained its own code to

constrain screen placement. Rather than further patching the con!guration tool, a replacement

con!guration utility was written to take advantage of the unconstrained screen placement capa-

bilities of the patched Quartz Display Services. %ese steps will be described more fully in the

sections that follow.
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3.4.3 Examining the public Quartz Display Services api

As a !rst step in determining the capabilities of the Quartz Display Services, a small test harness

was written for the function CGConfigureDisplayOrigin(). %e function CGConfig-

ureDisplayOrigin() is used inMacosx tomove a screen around in screen space, given new

coordinates for the origin, or top le6 corner, of the screen.%e test application veri!ed that calling

the function CGConfigureDisplayOrigin() successfully moved the screens, but did not

allow them to be placed at arbitrary positions. Instead, the function CGConfigureDisplay-

Origin() includes a check that changes the requested origin co-ordinates to the nearest valid

position beforemoving the screen. In this case, a position is valid if there is no gap between screens.

3.4.4 Locating and patching CGConfigureDisplayOrigin()

All public api calls to manipulate displays are safety-checked internally [61]. In the case of the

function CGConfigureDisplayOrigin(), the private function CGXLFindBestPosi-

tionForDisplay() determines if the requested screen position is valid, and if not it adjusts

the requested position to the nearest valid position. To allow calls to the function CGConfig-

ureDisplayOrigin() to succeed regardless of whether the requested screen position is valid,

CGXLFindBestPositionForDisplay() needed to be patched to return success without

executing its own code to move the screen to a valid location. A tool called patchcg was devel-

oped for this purpose. SeeAppendixB for an explanationof how theprivate safety-check functions

were discovered, and how patchcg was developed.

3.4.5 ?e Re%ect con&guration utility

Once the CoreGraphics framework had been successfully patched to allow arbitrary screen place-

ment, the built-in con!guration utility, Displays.prefpane, was re-tested and found to also

constrain screen placement. In addition, without control over the z-order of the iconic screens in

Displays.prefpane, managing overlapping screens would be problematic. Instead of further

patching, a proxy con!guration utility called Re1ect was created to allow the user to manipulate

displays in a familiar manner, while a7ording them the new capabilities enabled by the CoreGr-

aphics patch. Figure 3.3 shows Re1ect in use on a three headed system, with both inset and disjoint

screens being deployed.

When a new con!guration is chosen using either Re1ect or the system con!guration utility,
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the os blanks all displays temporarily as the new layout is set. Because of this, the display con-

!guration cannot be set dynamically. For example, an external display cannot follow or remain

centred on the mouse cursor.

(a)

(b)

(c)

Figure 3.3: %e Re1ect con!guration window.%is view behaves similarly to the built-in Display
Arrangement preference panel, but allows display proxies to be dragged anywhere in screen space.
In this example, three displays have been con!gured, one properly inset (a) in themain display (b),
and one disjoint o7 to the right (c).

3.4.6 Testing

Ad hoc testing indicated that many applications worked as expected within overlapped screen re-

gions. Due to the depth at which the operating system was patched, and the way it was hypothe-

sized that overlapping regions were drawn by the operating system, end-user applications should

have no awareness that the con!guration is non-standard. A brief survey revealed that applications

such asMicroso6 Excel and Adobe Photoshop, whichmay use customwidget toolkits or drawing

routines, displayed minor rendering artifacts, perhaps as a result of trying to draw directly to the

framebu7er instead of using high-level drawing apis. Notably, multimedia applications such as 3d

games and dvd players, which use extended features of the graphics hardware, o6en worked !ne

in overlap mode.
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3.5 Usage Scenarios

%e 1exibility with which screens can now be con!gured leads to several previously unachievable

usage scenarios as outlined below.%rough these mechanisms, Re1ect provides new solutions for

Scenario 1 that was outlined in Chapter 1.

3.5.1 Inset mirroring

Macos x o7ers amirroredmode in addition to the extended desktop con!guration. In this setup,

two (or more) displays will show exactly the same image, as though a hardware video splitter had

been inserted between the computer and displays. %is mode is held over from the time before

projectors with built-in splitters were available, where it was useful to drive a data projector and a

console display with the same information.

In the default mirroring mode available on Mac os x, both displays are limited by the largest

common size shared between the two. For example, if a projector can handle a maximum resolu-

tion of 1024×768 pixels, and a built-in laptop display has 1280×854 pixels, whenmirroring these

devices, the mirrored set has a resolution of 1024 × 768 pixels and the output must be stretched

(to 1280 × 854) or inset on the built-in laptop display.

By using Re1ect to con!gure multiple displays, one display may be used tomirror just a subset

of another, rather than both displays being constrained to share a common resolution.%is feature

could be used in a lecture or meeting situation, where a portion of the main display is mirrored

to a projector for demonstration purposes, while peripheral information such as notes are not.

%is is shown in Figure 3.4. In this example, an lcd panel is being used to simulate a projected

display. A programming lesson is being developed inwindow 1a, which ismirrored on the external

‘projected’ display as window 1b. Windows 2 and 3 aren’t shown on the external display. %ey

contain a previously written working implementation of the code (window 2), as well as some

notes (window 3). By limiting the scope of the mirroring, the audience can focus on important

details, while distractions such as instantmessage or email noti!cationsmay be hidden in the extra

space around the mirrored region.%is allows the presenter to maintain some level of privacy [13,

90].

Graphic artists may use inset mirroring to provide a digital magnifying glass, in which a sec-

ondary display with a lower resolution and larger physical size can be used to inspect pixel-level

details of a subregion of the primary display. Figure 3.5 illustrates this scenario, where an external
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Figure 3.4: Inset mirroring example. %e external display (1b) only shows the top le6 corner (1a)
of the laptop’s built-in display. %is allows a portion of the screen to be mirrored, while omitting
unnecessary clutter.

display is being used to show a magni!ed version of an area on the laptop display.

3.5.2 Overlapping displays

%e overlapping capabilities of Re1ect allow for an arbitrary portion of two screens to be over-

lapped, from extended desktop through to mirrored (or inset). %is may be useful for projected

displays arranged in amatrix, where the image produced by two projectors can also be overlapped.

With additional alpha blending around each screen, two projected images may be feathered to-

gether to increase the seamlessness of the !nal image [68].

An additional use of overlapped screens may be considered in light of the lost cursor problem,

where a cursor may accidentally switch displays when the user is attempting to interact with a

gui widget near the boundary between screens. For example, in a two display con!guration there

may be a scrollbar at the right hand edge of the le6 display. %e user may overshoot the scrollbar

with the cursor when navigating to it from the le6, e7ectively losing the cursor on the right hand

display. Now the user must move the cursor back to the le6 hand display, and attempt to reacquire

the scrollbar again from the le6. By overlapping the screens a small amount, the edge of each screen
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Figure 3.5: Inset mirroring used as a magni!er.%e external display shows a zoomed in subregion
of the laptop’s built-in display.

is in e7ect shared by both displays. %is is shown in Figure 3.6. Now the scrollbar exists on both

displays, allowing it to be acquired from both the le6 on the le6 hand display, or from the right on

the right hand display.

3.5.3 Disjoint displays

Separating two screens with a positive gap has the greatest e7ect on user interaction, as this alters

the mouse cursor control space as well as the display space.

3.5.3.1 Display edge sticking

Rodgers et al. showed that introducing a slight stickiness as the cursor transitionedbetweendisplays

in an extended desktop con!guration improved user performance [78].%is behaviour is provided

in Re1ect as a side-e7ect of the augmentation to the desktopmodel. Allowing the user to position

screens such that there is a slight gap between them interacts with the algorithm used to update

the cursor position by allowing the user to position screens such that there is a slight gap between

them.
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Figure 3.6: Extended desktop with partial overlap. In this example, the scrollbar exists on both
displays, allowing the user to easily acquire it from either the le6 or the right.

%e computation currently utilized byMac os x to move the cursor, on a single display or be-

tween displays, is implemented in the function IOHIDSystem:: setCursorPosition()

in the IOHIDFamily drivers [3]. Each time the mouse is moved, this function computes the new

location of the mouse cursor within global screen space, and searches the attached screens to de-

termine if the cursor is within at least one of them. If so, the cursor is moved to the new location.

However, if the cursor has moved outside the set of all screens, its location is clipped or scissored

to the screen it originated from.

With a gap between screens, amouse delta valuemust be larger than the gap to cause the cursor

to move to the next screen. Small deltas simply pin the cursor at the previous position, simulat-

ing the behaviour of an exterior edge. It is not possible for the cursor to exist within the gap, it

must either remain on the screen it was on before a cursor moved event, or transition to a new

screen a6er the event. On current systems, displays with sizes between 1000–2000 pixels per axis

are typical. Coupled with a cursor refresh rate of 60Hz, mouse deltas on the order of 20 pixels

per axis are not uncommon during fast mouse movement to achieve a reasonable relationship be-

tween handmovement and the corresponding cursor motion.%us with a gap between screens of
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approximately 15 pixels, slow and precise mousing near the display edge does not generate deltas

large enough to span the gap and the cursor is bound to the current display, butmoving themouse

quickly from display to display easily overcomes the gap threshold and the cursor transfers from

one display to the next as expected. %e advantages of this approach are illustrated by re-visiting

Scenario 1 from Chapter 1.

Scenario 1 revisited, changes in bold

Alice uses a laptop as her primary computer, although it is most o6en used on a desk

both at work and at home. In these locations, it is augmented by peripheral devices

such as a keyboard, mouse, and external display. Because it is larger, Alice uses the

external display as the primary screen in these situations and uses the built-in lcd

panel as a secondaryworkspace to display noti!cations such as new email alerts. Alice

!nds the extended desktop con!guration troublesome, as she o6en overshoots scroll-

bars or other gui widgets with her cursor on the primary external display, losing the

cursor onto the laptop’s built-in lcd. By using the Re%ect utility, Alice solves this

problem. She now connects an external display to her laptop for use in extended

desktop mode. As usual, she wishes to have the external display to the leA of her

built-in laptop display. Rather than simply using the display con&guration utility

provided by theos to abut the two screens, she usesRe%ect to create a 15 pixel gap

between them.Nowwhen she navigates to a scrollbar at the right-hand side of the

external display, the gap between screens prevents her cursor from accidentally

moving to the laptop display.

3.5.3.2 Unreachable displays

Extending the display edge stickiness concept further, screens can be placed in screen space such

that the gap between them is greater than the largest possible mouse delta. %is e7ectively makes

each display an island that acts as though it were a single display as far as standard mouse traversal

is concerned.

%is con!guration is useful for full-screen video-only output displays; for example, preview

displays in video editing applications, or projected displays in realtime video e7ects applications.

In both of these setups, the cursor is never needed on the video display. In the former, the preview
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video display is a distractor target on which the cursor may get lost. In the latter case, moving it

there accidentally may be detrimental as it would then show on the production output.

For users who wish to have explicit control over the ability to move the cursor from display

to display, a small utility called MouseWarp was created for this thesis to augment the unreach-

able display mode. MouseWarp allows the user to warp the cursor between displays via a global

hotkey. MouseWarp listens for a pair of system-wide key combinations, respectively jumping the

cursor forward and backward between attached displays.%is makes displays that were previously

inaccessible by cursor movement reachable using the hotkey.

Windows, icons, and other gui objects that are normallymoved by dragging can still be trans-

ferred between unreachable displays with MouseWarp. %is is accomplished by starting a drag

(mouse down), invoking MouseWarp before the drag operation completes, and then completing

the drag and drop (mouse up) on the warped-to display.

3.5.3.3 Bezel compensation

A visual side-e7ect of imposing a logical gap between two screens is the creation of a physical gap

in gui objects that span the displays, as illustrated in Figure 3.2. %is may be used to account

for bezels or other physical limitations that prevent two displays from being abutted as closely

as their logical counterparts are [77]. Note that for large gaps between screens, a utility such as

MouseWarp will be required to move the cursor and other gui artifacts between displays. Adapt-

ing MouseWarp to warp based on cursor position rather than a key combination would allow

screens separated by a substantial gap for bezel compensation purposes to be traversed as though

no gap existed, if such a con!guration were to be used as a standard extended desktop.%is would

be a rather straightforward modi!cation to IOHIDSystem:: setCursorPosition() de-

scribed in Section 3.5.3.1.

3.6 Summary

Using the Re1ect multi-display con!guration utility provides additional 1exibility to augment

the standard mirror and extended desktop modes on Mac os x. %is was achieved by patching

a system !le to allow secondary screens to be placed anywhere in global screen space, rather than

being constrained to abut ormirror an existing screen.CoupledwithMouseWarp, these tools o7er

additional functionality for commonmulti-display tasks, as well as addressing the needs of several
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specialist applications.%is functionality is summarized in Table 3.2.

Table 3.2: Summary of multi-display modes, visual and control usage

Mode Visual e>ect Control e>ect
Mirror/Clonea Duplicates existing display n/a

Extended Desktop Expands desktop area Cursor travels between displays
where edges abut

Disjoint Provides bezel compensation
(Section 3.5.3.3)

Display edge sticking (Section
3.5.3.1), Unreachable displays
(Section 3.5.3.2)

Overlap Projected display feathering
(Section 3.5.2)

Cursormay exist on twodisplays
at once (Section 3.5.2)

Insetb Mirror subregions, Zoom a sub-
region, Provide privacy (Section
3.5.1)

n/a

aMirror/Clone is a special case of Inset
bInset is a special case of Overlap

%e!rst twomodes (mirror/clone and extended desktop) are standard on pcs.%eother three

are not, but are provided by Re1ect. %e most general new mode is overlap, which has inset as a

special case and that in turn has standard mirror/clone as an even more specialized case.

In addition to the usage covered in this chapter, the Re1ect multi-display con!guration utility

provides a platform through which new uses for these modes may be discovered.
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An Ideal mdeDevice Architecture

In this chapter, the requirements for an ideal mde device architecture are developed. %e chap-

ter begins with a historical perspective and a discussion of the di2culties encountered in current

mdes.%is background informs the requirements for an ideal mde device, which are presented in

two parts. For each high-level requirement a broad recommendation is made, which assumes un-

limited development resources. In addition, a low-level next action is suggested, which is a scaled

back requirement that may be the basis of a prototype implementation. In Chapter 5, this set of

low-level requirements is gathered and used to develop a prototype implementation.

4.1 Display History

In an o6-cited 1968 paper, Ivan Sutherland (widely acknowledged as the father of computer graph-

ics) and Ted Myer summarized the state of the art for high-performance computer graphics pro-

cessors [52].%ey observed a ‘wheel of reincarnation’ phenomenon that they characterized as the

tendency of engineers to add functionality to a graphics systemuntil it was no longer cost e7ective,

and to then split the system into smaller pieces with a low-cost display component attached to a

higher-cost general processor. Beginning again with the low-cost display component, this process

is potentially repeated ad in!nitum.

At the time the Myer and Sutherland article was written, computer graphics had just com-

pleted one revolution around the wheel of reincarnation. %e result was very powerful display

‘channels’ for line drawing (vector) graphics that had built-in matrix multiplication, subroutines,

and limited forms of conditional testing.%ese were used to drive crt displays, each of which was

only slightly more capable than the !rst computer graphics displays that had appeared a decade or

so earlier. %e division of labour was decided in part by the need to process large amounts of 3d

information to update a dynamic display, and the desire to oAoad interactive operations such as

hit testing and cursor management from the main computer.

Every advance in display technology seems to recapitulate the experience described by Myer

42
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and Sutherland. Not long a6er their article, bit-map (raster) graphics began to emerge as an alter-

native to vector graphics. By the early 1980s there weremany raster graphics displays available, but

only a few had the power of the older-style vector graphics display processors. %is changed dra-

matically over the next decade as vlsi allowed formuch faster and cheaper implementations of the

functionality required for full 3d graphics. Today, it is taken for granted that every personal com-

puter will have full 3d colour graphics with at least 1280 × 1024 resolution on a built-in display.

Furthermore, it will have the capability to simultaneously drive an external display at comparable

resolutions. It is worth examining the distribution of functionality within the current display sub-

system to gain some insight into where wemay next see ourselves as we continue going around the

wheel of reincarnation, and how this may play out with respect to multi-display environments.

4.2 Intelligent Satellites

In 1974, Van Dam et al. continued around the wheel of reincarnation by describing a move away

from themainframe and terminal paradigm popular at the time, towards a future where terminals

would become satellites, or general purpose computers in their own right [94]. In the context of

graphics systems, these satellites would oAoad to the terminal some of the processing minutiæ

such as clipping or event handling, lowering the load on communications channels and the main-

frames themselves, as well as provide additional functionality beyond that of a simple terminal. In

the intervening years, this vision has been realized in a manner far beyond what Van Dam et al.

anticipated, to the point where the satellites have eclipsed mainframes altogether and complete

computers are packaged in a device the size of a book.

%irty years later, the concept of satellite graphics hardware is being demonstrated again—this

time at the level of the graphics subsystemwithin a computer—as programmability is added to the

previously !xed-function pipelines of a Graphics Processing Unit (gpu). %is is shown in Figure

4.1. Initially intended to support 3d graphics processing tasks, the parallel processing capabilities

of the gpu have allowed gpus to take their place in the wheel of reincarnation: they are already

being used for non-graphics tasks such as physics computations [32] and general purpose stream

processing [44, 16].

VanDam et al. argued that while some processingmay be oAoaded from amainframe towards

a satellite computer, there would always be a need for the superior processing power of a larger

system [94]. As predicted by Moore’s Law, the chips providing the processing power have shrunk
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Figure 4.1: Graphics system block diagram.Mainframe / satellite system circa 1974 (a), gpu circa
2006 (b).

to the point where this is o6en not true for the needs of personal computer users [51]. However,

one thing that has not become any smaller—and is limited by human vision capabilities rather

than technology—is display size.%is is in fact growing.

4.3 DiBculties Encountered in Current mdes

%ere are three broad areas in which current display technologies limit the abilities of mdes.%ese

are: connectivity, ease of use, and multi-computer capabilities. %e following examples serve to

illustrate these points.

Laptops are an extreme example of the size of a computer being limited by human vision ca-

pabilities rather than technological capability; the size of the entire device is o6en determined by

the size of the display. %is size is in turn determined by the simultaneous need for a large dis-

play to match the resolution of human vision, and for a small display to allow the device to !t in

a briefcase or backpack.When used in a mobile situation where external infrastructure is missing,

this on-board display is as much as can be hoped for. However, many laptops are used in envi-

ronments such as o2ces or media rooms, which contain pre-existing external displays that may

be connected to the laptops for the duration of their use in the environment. However, due to



45

physical constraints that also limit the number of graphics output ports (i.e., a single onboard dis-

play, and at most one further external display connection), the display capabilities of a laptop are

limited. Even desktop computers are o6en bound by physical constraints on the number of dis-

play output ports they may contain, due to the !nite number of available expansion slots suitable

for graphics cards. %is limitation a7ects the scope of the mde with which a user may interact.

%e usb-based displays o7ered by Samsung are one solution to this issue, as they allow up to !ve

displays to be connected to a single pc [64].

In addition to the number of displays that may be supported by a given computer, the accessi-

bility of displays is also constricted in today’s mdes. In a static desktop con!guration, there is little

di2culty in directly connecting a display to a nearby computer. But in an environment where dis-

play surfaces are an implicit part of the landscape, distance and addressability canmake it di2cult

to correctly associate a given display with a particular pc. For example, in an environment with

two projectors and a 1at panel display permanently installed, labelled ports may be provided via

a wall jack. However, the jack may not be in a convenient location and the labels may be incor-

rect or not informative enough. A better solution would be to provide multiple jacks around the

room, with all three devices available on one connection. Display device identi!cation would oc-

cur on the computer, with text or even images describing each device.%is requires an investment

in physical infrastructure beyond what is usually available.

Multiple users are not well supported by current display technology.%is problem extends to

mdes. Individual displays cannot easily be shared. In an environment with many small displays,

this is less of an issue as each user can connect to their own display. But in an environment with a

large shared display, multiple users should be able to share the display simultaneously, rather than

consecutively. Even when the display is shared consecutively, the process is o6en slow and error

prone, as each user must physically pass around and re-connect a video cable, and subsequently

con!gure their pc for the new display.

One solution to these problems is to adopt the model suggested by Van Dam et al., and once

again push computing power further away from the cpu, towards the display device [94]. By plac-

ing general purpose computing hardware at the display, it may then be possible to place displays

on existing communication buses such as FireWire, usb, or a tcp/ip network to aid with con-

nectivity issues. In the process, updating the protocols that move data to display devices would

increase their ease of use. Increasing computing power on the display and utilizing multi-point

connectivity media may enable multi-pc and multi-user capability. %is ideal mde display device
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can be considered a satellite display, named a6er the satellites introduced by Van Dam et al.. A

brief sketch of this vision is illustrated in Figure 4.2.

???Application

Client Computer

Local
Display

Satellite
Display

Application

Application

DVI / VGA

Satellite
Display

Application
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Local
Display

Application

Application

DVI / VGA

Figure 4.2: Proposed system overview. Each client computer is connected to a local display via a
traditional dvi or vga link.%ey are also simultaneously connected to multiple satellite displays
through a mechanism that is le6 unspeci!ed in this idealized view.

%e remainder of this chapter will present nine requirements for an ideal satellite display. Each

requirement includes a high-level or broad-reaching recommendation, which is then distilled into

a low-level or technical action that can be implemented immediately as part of a prototype imple-

mentation of a satellite display. %e details of a prototype satellite display implementation based

on this ideal model will be covered in Chapter 5.

4.4 Requirements for an Ideal Satellite Display

%is section presents nine requirements for an ideal satellite display. %ese are grouped into the

following three broad areas: connectivity, ease of use, and multi-user capability.

4.4.1 Connectivity

Asdiscussed in Section 4.3, display device connectivity is an issue faced bymost currentmdeusers.

%is arises primarily because of the lack of output ports on the pc hardware itself which is due to

a lack of physical space for expansion cards and connectors. In addition, current pc hardware is
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not designed to be used with the next generation of embedded and ubiquitous display technol-

ogy.%is technology does not necessarily conform to the display size and resolution expectations

that pc hardware manufacturers consider. To address these current limitations, we consider what

happens if general purpose processing capabilities are added to the display device to allowmultiple

displays to be connected over a single bus, in addition to handling the details of low-level device

management.

4.4.1.1 Requirement 1: single graphics port

Current graphics hardware is capable of drivingmultiple display devices from a single chipset. It is

presently common for a single graphics chip to drive two devices, but this number is o6en derived

from the physical inability to !tmore than two output ports on a single expansion card rather than

technical limitations of the graphics processor itself. Specialty graphics cards frommanufacturers

such as Matrox [46] can drive three or four displays from a single chip, or multiple chips can be

utilized together on a single board. %ese solutions typically utilize a single high-density custom

connector on the graphics card, with a breakout cable that splits the signals into three or four

standard vga or dvi connectors. An additional way to employ more displays with one desktop

pc is to install multiple graphics expansion boards in one computer chassis.

While the above solutions may su2ce for desktop computers, laptops are faced with a more

signi!cant shortage of connector space and at best typically o7er one external display connector.

Further, it is not practical to put a non-standard high density graphics port on a laptop and expect

users to carry breakout cables with them in case they need to use more than one external display.

Recommendation: Redesign the graphics transport protocols to allow image data to be multi-

plexed over a single link, rather than requiring individual point-to-point streaming links between

the source (the user’s computer) and each sink (display device). Achieving this recommendation

removes the physical limitations that prevent devices such as laptops, smallmultimedia computers,

and similar devices from using multiple displays.

%ere are many network topologies that may be suitable for an alternative physical graphics

link con!guration. A distributed bus (examples of this topology include FireWire andusb)would

work well for this application as this layout provides simple physical connectivity for the end user.

Furthermore, it logically provides the same bandwidth to all devices, making it possible to guaran-

tee performance across devices. A second option may be to use a star topology similar to current
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ip-based networking con!gurations. Regardless of the topology chosen,QualityOf Service (qos)

channels should be provided for time-critical data such as cursor movement. To realize the goal of

transmitting multiple streams of image data over a single graphics link without substantially in-

creasing the link bandwidth, the datamust be compressed. Severalmethods for compressing image

data are discussed in Section 4.4.1.3.

Technical Action: Creating a single-port graphics bus would require a fundamental overhaul

of the current computer graphics architecture. %is requires signi!cant engineering and manu-

facturing e7ort from all the vendors working in this market. In the meantime, existing ip-based

networking technology provides a working single port addressable bus that may be used for pro-

totyping purposes. As contemporary ip-based networks are not capable of providing comparable

bandwidth to a single point-to-point graphics link, substantial image compressionwill be required

to achieve reasonable performance.

%e single graphics port bus proposed in this section would allow Scenario 3 from Chapter 1

to conclude di7erently:

Scenario 3 revisited, changes in bold

It’s been a good year for the company Alice works at, and there is a surplus in the

equipment budget. Corporate it has determined that using multiple displays o7ers

a productivity boost, and decided that everyone working in Alice’s o2ce should have

two displays. Alice wants to continue using her laptop as it contains all her !les and

applications, but it can only drive a single external display, in addition to the on-

board lcd.Alice connects her twonewsatellite displays to thenetwork jackonher

laptop by daisy-chaining them, enabling two external displays. If further budget

windfalls allow additional satellite displays to be purchased, Alice may continue

to plug them into a standard network switch attached to the port on her laptop.

4.4.1.2 Requirement 2: display device homogeneity

As pcs increase in computing power, users are !nding increasingly esoteric uses for devices which

were once limited to the domain of o2ce tasks. Personal computers have always been used for

gaming, but this is now a primary activity for many users. %is demand for gaming machines has
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driven recent research anddevelopment activitywith regards to thehighperformancemulti-media

uses of a computer. Subsequently, these innovations have been adopted for other purposes such as

real-time rendering of video and graphics for live display purposes in video installations, displacing

expensive and specialized video mixing hardware.

Coinciding with the improvements in graphics processing within the pc realm, static displays

used for architectural, entertainment, and signage purposes are being replaced with digital pan-

els which o7er increased 1exibility in con!guration and dynamic content presentation [80]. As

this area grows, content producers look to commodity pc hardware to drive the displays. Due to

their embedded nature, such installed displays are o6en custom sized [25] and don’t !t into the

resolution requirements o7ered by conventional pc graphics hardware. For example, an ledmar-

quee may have a resolution of 3000 × 100 pixels, far outside the aspect ratio and standard size of

a current pc display.

In addition, theuse of large, high-resolution tiled videowalls is gainingpopularity for visualiza-

tion of large data sets [36]. Driving these high-resolution displays o6en requires custom hardware

tomanage the display tiling [99], but ultimately many researchers are generating imagery using pc

computerswith commodity graphics cards [88]. It would be advantageous to support the use of pc

hardware with these display devices by allowing the !xed install hardware to handle the tiling and

simulate a single large satellite display to pc users. Alternatively, by exposing each tile as a satellite

display, the pc user could connect to and arrange the extended desktop tiling manually. %is has

the advantage of only requiring a single cable to do so, rather than one cable per tile.

By providing an open, lowest common denominator api to the low-level display subsystem,

any networked device could be attached to a pc as though it were a standard display, as long as it is

capable of interpreting a bitmap image.%ismay lower the entry cost to interface pcs with custom

display hardware such as video walls [24, 9], small noti!cation displays [50], and other low resolu-

tionmedia surfaces, as it would no longer be necessary to capture or re-digitize a conventional dvi

or vga video signal to drive the display hardware. In contrast, all current pc graphics interfaces

have a minimum supported resolution of 640 × 480 pixels, which may not be suitable for these

non pc-centric applications.

Recommendation: Provide 1exibility to allow users to interface with oddly sized displays that

are constrained by the environment, not a hardware engineer’s notion of a computer display. Not

all pcs are being used on a desk, supporting o2ce applications.
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Technical Action: Redesign the link protocols used by display devices such that they better

support non-standard devices. Utilize existing networking media to uniformly deliver graphics

data to non-standard devices, both small and large.

Developing a homogeneous display architecture as described in this section would allow Sce-

nario 4 from Chapter 1 to conclude di7erently:

Scenario 4 revisited, changes in bold

A university has installed a rear-projected high resolution tiled display for scienti!c

visualization research. %e dedicated computer cluster driving the display handles

the tiling and scaling, and natively run high performance parallel rendering visual-

ization so6ware.?e lab technicians con&gure the rendering cluster to emulate a

single satellite display which spans the entire extent of the tiled display. Visiting

researchers then attach to this satellite display, and can integrate it seamlesslywith

the extended desktop con&guration of their pcs (illustrated in Figure 4.3).

S3 S4

Satellite Server

S1 S2

Local 
Display

Client PC

S

DVI/VGA link

Logical link/device

Network link

Figure 4.3: Logical display consolidation. In this example, a graphics cluster acts as a satellite dis-
play, tiling 4 displays (S1-S4) into one device that is presented to the client pc as one large logical
display (S).

4.4.1.3 Requirement 3: On-display processing

%ebandwidth required to transport graphics data between a graphics chipset and a display device

is among the highest utilized anywhere within a personal computer, rivalling and o6en exceeding
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that of the bus between the cpu and main memory. Although high performance from a comput-

ing perspective, the graphics communications protocols and transport channels such as vga and

dvi are simplistic, and employ brute force techniques to maintain acceptable visual performance

levels.%is architecture, born out of the analogue display technologies of the past, places the low-

est demands on the display by not requiring any image storage on the display device itself. Instead,

a full display’s worth of bitmap data is sent from the computer to the display every time the display

needs to be refreshed, typically at a rate of 60 Hz or higher. %is refresh is required to retain an

image on a crt display, regardless of whether the image is static or inmotion. In the case of a static

image, the same data is sent repeatedly over the graphics link. %e refresh frame rate of a display

device should not be confused with the update frame rate of the source, which is the rate at which

displayed images may change in order to be perceived by the human visual system as representing

motion. A static image has an update frame rate of 0 Hz, while a moving image typically has an

update frame rate of 15-60Hz.

Due to the relatively recent adoption of digital display devices and the deep-rooted analogue

heritage of the graphics pipeline, there has been little incentive to optimize this approach. How-

ever, digital display devices behave di7erently than analogue displays, and these di7erencesmay be

exploited to provide greater functionality withmodest additional cost and engineering. By adding

a small amount of general purpose processing to the display, the current point-to-point connector

may be replaced with a more generic multi-point bus, allowing multiple displays to be plugged

into a single port on a computer.

Whether or not a digital display technology is capable of storing and displaying its current

image inde!nitely, this capability is easily attained by adding a framebu7er to the device. %is

allows the graphics link between the computer and display to idle when the display image is not

actively being updated.%is functionality mirrors the analogue storage tube vector displays from

the 1970s [8], once again recalling the wheel of reincarnation.

Recommendation: By lowering the bandwidth requirements of a single display, multiple dis-

plays’ worth of image data may be transmitted over a single link without substantially increas-

ing the link capacity beyond what is currently feasible. To reduce the bandwidth usage, several

compression techniques may be used; a few examples are given here. First, modern guis generally

consist of static images interrupted by short bursts of motion. For example, when using a word

processor, the user interface is static unless the insertion point is blinking or the user is actively
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typing. Even then, the frame rate of character insertion is much lower than the 60 Hz refresh rate

used by current display links. %e animated images that comprise a video stream typically have

frame rates from 15-30 Hz; which is less than half of a display refresh rate, meaning that images

must be sent at least twice per frame. Temporal compressionmay be implemented by only sending

data when the user interface is updated; repeated images need not be resent simply to support any

internal refresh mechanism the underlying display hardware may need. %is will allow multiple

displays that update at di7erent times to e2ciently share link bandwidth. Second, spatial com-

pression may be achieved by only transmitting updated sub-regions of the display image, rather

than the whole extent of the display. In addition, basic 2d graphics operations may be performed

on the display rather than on the computer.%ese operations, such as region copying, moving, and

!lling, are currently handled by the gpu rather than the cpu; spatial compression may be gained

by simplymoving these operations even further away from thecpu and closer to the display.%ird,

multi-media video sources such as dvds and movie !les are already compressed to reduce storage

and transmission requirements.%e decompression that occurs during playbackmay be moved to

the display device, minimizing the bandwidth required to transmit the media to the display.%is

approachmimics current pc hardwarewhich has alreadymoved this task from the cpu to the gpu

for more e2cient processing of mpeg2 and h.264 encoded content [60, 1]. %e next generation

copy-protection schemes such ashdcp require the display device to decrypt video content [23], so

additionally decompressing the media on the display device poses no legal hurdles to this process.

High volume image data, such as that produced by full-screen computer games, may need to

continue to be sent uncompressed over the graphics link. To accommodate these applications, a

channel withqos provisionsmay be set aside on the link to provide backwards compatible stream-

ing capabilities.%is channel would provide a !nite amount of bandwidth, perhaps the equivalent

of one single-link dvi connection. In this case, a compromise may be to allow one display to re-

ceive streamed graphics data while the remaining displays receive packetized image data updating

at a lower frequency.

To maintain the illusion of responsiveness, the graphics link will provide an additional low-

bandwidth qos stream for cursor position information.%e displays must support hardware cur-

sors and hardware accelerated 2d operations, much like current graphics cards do.%is will allow

smooth cursormovement across all displays regardless of the bandwidth being used for packetized

graphics update data.
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Technical Action: Prototype a satellite display device with the following characteristics:

• On-board framebu7er to handle refresh needs of underlying physical technology, as neces-

sary.

• O7screen vram to allow caching of image data.

• gpu that supports minimal 2d graphics operations such as compositing, region moves, re-

gion copies, and region !lls.

• Decompression engine to handle processing and display of compressed streams in popular

formats. Start with types managed by current gpus: mpeg2 and h.264.

Iteratively determine the appropriate level of on-display processingnecessary to achieve the desired

bandwidth reduction and interactive performance capabilities.

4.4.2 Usability

With the redesign of the display connectivity architecture presented in Section 4.4.1.1 and the ad-

dition of general purpose computing to the display in Section 4.4.1.3, it follows that these changes

may be used for other purposes, such as the improvement of mde usability.%is includes increas-

ing plug-n-play connectivity and making it easier to con!gure a display device at its native reso-

lution. Regardless of the changes made, legacy so6ware should continue to be supported without

requiring recompilation.

4.4.2.1 Requirement 4: ease of connectivity

As laptops continue to gain market share in both the consumer and business markets, it is increas-

ingly important to support their ease of integration with existing infrastructure. Home users want

to be able to sit in their media room and use a laptop to control equipment or to share photos and

videos on a large-screen display. Cost is a furthermotivating factor, as laptops become commodity

items and the traditional tv set gives way to more expensive home-theatre-sized display devices.

Similarly, business users are o6en called upon to set up and give presentations in unfamiliar meet-

ing rooms, where they must use a shared projector or similar device.

Currently, accomplishing this o6en consists of explicitly connecting a video cable to the lap-

top, and then interacting directly with the laptop input surfaces. Ease of use di2culties primarily
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stem frompoor technical support; it is notoriously di2cult to dynamically enable video output on

Windows pc laptops (one o6en hears someone in the audience suggest ‘try pressing function-f8

to switch display modes’ when a presenter is having troubles connecting to a projector). Once the

laptop has recognized the external device, the user still needs to adjust resolutions and con!gure

mirroring or extended desktop mode. More o6en than not presenters simply do not bother, re-

sulting in a blurry presentation in mirrored mode with the audience fully aware of the presenter’s

incoming email and instantmessage noti!cations. At least part of this situation could be improved

with inset mirroring, as described in Chapter 3, Section 3.5.1.

%e con!guration of external video devices should behave in a manner similar to that of cur-

rent wired andwireless networking: the computer dynamically and automatically detects the pres-

ence of networking resources, and protocols such asdhcp andZeroConf issue the necessary infor-

mation to successfully connect to the network and con!gure settings in an ad hocway, allowing for

immediate use. While some computers have automatic detection capabilities for display devices,

they are not widespread enough for users to be able to depend on them.%e display information

protocol used to support this automatic con!guration, edid, simply lists all supported display

resolutions (if it can: it is not yet able to correctly express common widescreen resolutions), but

only some implementations specify which one is the native resolution of the display. Further in-

formation on the capabilities and limitations of edid may be found in Section C.1 of Appendix

C.

Recommendation: Ad hoc multiple display con!guration should be as easy to accomplish as

current ad hoc network con!guration. When adding a display device to a Windows pc, there is

still a shortfall between the current plug-and-pray behaviour and the desired plug-and-play.

Technical Action: Due to the complex hardware-based technology used to implement current

graphics links (see Appendix C for details), it is di2cult to experiment in this area without having

the substantial resources of a display manufacturer. To circumvent this problem, a standard ip-

based network could be used to prototype the attachment and con!guration of display devices.

Device discovery and con!guration can then be handled using existing networking technologies

such as dhcp and ZeroConf [20].
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4.4.2.2 Requirement 5: visual &delity

In the past, pcs primarily employed crt technology for their display devices. Due to the analogue

process by which a crt forms an image, crts do not have a speci!c native resolution. Instead,

they can support a wide range of resolutions and refresh rates. Component quality and electrical

tolerances dictated an upper bound on the resolution that could be achieved while maintaining

an acceptably 1icker-free refresh rate, but in practice any lower resolution looked just as good.

In contrast, the digital 1at-panel displays used with current pc hardware have a speci!c native

resolution mandated by the physical picture elements that make up the display. Attempting to

support lower resolutions by scaling the input signal by non-integer ratios (such as scaling 800

× 600 up to 1280 × 1024) results in a blurry image. As the processing power and framebu7er

memory of pc graphics chipsets has increased to support the gaming industry, they have caught

up to and surpassed display technology at least in terms of the range of resolutions the chipsets

support.However, due to the heritage ofmodern digital 1at panels, the panels continue to support

multiple scaled, non-native resolutions in an e7ort to emulate the old crt displays of the past and

maintain somemeasure of backwards compatibility. In addition, during this transition phase from

analogue to digital display devices, some digital display panels also feature analogue (vga) inputs

for backwards compatibility.%is introduces additional degradation to the video signal, as it must

endure a conversion from digital to analogue, and then back to digital again.

Recommendation: Allowing a digital display to be driven at a non-native resolution should be a

last resort, not the default behaviour. Due to the historical architecture in use to determine display

resolutions on a pc, it is o6en not possible to determine the native resolution of a display without

consulting the display’s documentation. A technical explanation of this is provided in SectionC.1

of Appendix C. E7orts should be made by the Video Electronics Standards Association (vesa)

to remedy this, as it simply is not easy enough for end-users to optimally con!gure their digital

1at-panel displays.

If two displays are being used in mirrored mode and they do not share a native resolution,

other solutions could be considered that retain visual !delity. Insetting a smaller screen on a larger

display should be considered as a viable option, rather than always scaling it up to !t the larger

display.
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Technical Action: As part of the con!guration protocol, displays should only advertise the na-

tive resolution of the device. In addition, whatever is possible should be done to maintain the

temporal !delity of the satellite display. Both image and temporal !delity will have to bemanaged

in concert with the compression techniques discussed in Section 4.4.1.3, in order to e2ciently

utilize the capabilities of the underlying network transport layer.

4.4.2.3 Requirement 6: soAware transparency

As stated in the preceding section, which emphasizedminimal changes in usage between a real dis-

play and a satellite display, it is desirable to maintain the ability to utilize existing so6ware when-

ever possible.

Recommendation: A satellite display should interoperate with existing pc so6ware. So6ware

should not be required to be re-built with a custom toolkit or framework.

TechnicalAction: Implement the satellite display system at a level such that existing application

so6ware operates correctly, without needing to be re-built. Some changes to the operating system

may be necessary, but it is preferential to make these changes in a single place (such as a graphics

driver) rather than for every application that may be run on the system.

4.4.3 Multiple Users

%e networked display connectivity architecture presented in Section 4.4.1.1 and the addition of

general purpose computing in Section 4.4.1.3may also be used to give a satellite display support for

multiple simultaneous users.%e networked connectivity allowsmultiple devices to be connected

simultaneously, while general purpose computing enables image data from those multiple sources

to be composited on the display device in a meaningful way.%is means that multiple users, each

using one pc, may simultaneously share a single satellite display. Finally, because it is simply a dis-

play device, the data being shared on a satellite display is safe from being manipulated or digitally

copied by other users.

4.4.3.1 Requirement 7: graphics compositing

Once computing capabilities have been added to a satellite display for data decompression and

network management, this processing power may be utilized to support multiple users as well.



57

Speci!cally, this gives the display the ability to composite image data it receives, allowing the dis-

play to build up a screen image, instead of relying on a source computer to send an entire screen’s

worth of data.%is may be done in two ways, depending on the capabilities of the source pc.

First, the source pc may composite a screen image, and simply mask out the gui elements of

interest before sending them.%is is illustrated in Figure 4.4, where onlywindowobjects have been

masked and sent.Note that the relationship between thewindows is retained.%is level of support

is appropriate for operating systemswith framebu7erwindow servers, such asMicroso6Windows

XP and earlier, andMacOS 9 and earlier. Recall that a framebu7er window server draws graphics

directly to the framebu7er using a back-to-front painter’s algorithm. %is approach implies that

once a region has been occluded by a higher object, the underlying region is no longer available.

B

A

(a) (b)

(c)

B

A

B

A

Figure 4.4: Masked gui object transmission. With a standard unmasked dvi or vga display, a
source pc is required to send an image representing an entire screen, including the desktop back-
ground (a). Because a satellite displaymay composite gui objects on the display itself, it can receive
and process more complex graphics data.%is is shown by the masked windows being sent in (b).
In this example, the masked window shape is simply drawn onto a grey background to produce
the !nal output from the satellite display (c).

Second, the source pc may send each gui object as a discrete region, and allow the satellite

display to composite its own screen image. %is is shown in Figure 4.5, where individual window

objects are sent, and the satellite display handles compositing everything together. Note that there

is an arbitrary relationship between the window objects on the satellite display, and they do not
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necessarily correspond to the relationships on the source pcs. %is satellite display compositing

method is available to source pcs that use a compositing window server, such as Mac os x and

Microso6 Windows Vista. Recall that on a compositing window server, each heavyweight gui

object is rendered entirely in o7-screen vram at which point the image regions are assembled in

the correct order to make up a screen image. Using a satellite display, the compositing step can

be moved from the graphics board to the display device. A hybrid approach could perform some

compositing on the pc, but other compositing on the satellite display.

A
C

B

A

C
B

(a)
(b)

Figure 4.5: Fine-grained gui object transmission. %e gui objects that make up a screen may be
sent individually (a), and all of the compositing is done on the satellite display (b).

Processing on the satellite display is equivalent for both the masked and uncomposited gui

objects, as the satellite merely composites the regions it receives. %us the satellite display may

receive data from either type of source pc with no change. In addition, the satellite display may

provide its own data sources to composite. For example, the display may have a tv tuner built

in, or clock or calendar widgets. By compositing gui objects on top of a tv image, the familiar

picture-in-picture operation of a standard tv may be simulated.

Recommendation: Moving gui object compositing duties to the display device a7ords 1exi-

bility in the way a display may be used. Simple features, such as providing a tv stream as desktop

wallpaper, are straightforward to implement with this system and require little co-ordination be-

tween components.On the other hand, supportingmultiple source pcs, while technically straight-

forward from a compositing standpoint, o7ers a host of usability issues. For example, it is unclear
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what should occur when a user clicks on another user’s window. In an mde, it makes sense for this

event to be forwarded to the appropriate pc, but this adds unnecessary complexity to the satellite

display design. An ideal system design would allow an input redirection service to work in concert

with a satellite display to provide this feature. Further complications arise when considering how

to manage the space on a satellite display. As each pc independently recognizes a satellite display

as though it were a local display, there is nothing preventing two windows from being placed in

the same location.%e satellite display thenmust decide on a stacking order, potentially obscuring

one window.%e appropriate semantics for the user of the hiddenwindow to rescue their window

are unclear.

Technical Action: Implement basic satellite display compositing operations now. Iteratively

evaluate multi-user usage to determine the level of con1ict resolution support necessary. Many

problems are likely to be solved with social protocols, but explicit support for manipulating re-

mote gui objects may be necessary.

Compositing gui elements on a satellite display as described in this section would allow Sce-

nario 2 from Chapter 1 to conclude di7erently:

Scenario 2 revisited, changes in bold

Bob sits at his desk, which houses one each of a Mac os x and Windows pc, each

with its own display. As a web developer, Bob authors content on the Mac, and uses

browsers on both the Mac andWindows pcs to check cross-platform compatibility.

In addition, he runs an email client on the Windows pc, and an instant messaging

application on theMac.Utilizing a single satellite display as the primary display for

hisWindows pc, and connecting to the satellite display as a secondary display for

hisMacintosh, Bob is able to share the screen space on theWindows display, while

preserving the entireMacintosh display for his content authoring application. He

moves the Mac web browser and instant messaging client to unused space on the

pc display, while still being able to see the pc browser and email client on that

display as well.?is is illustrated in Figure 4.6.
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Windows PCMac

DVI/VGA link

Satellite display on network link

(c) (d)
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Figure 4.6: A single user with multiple computers and displays. %eMac (a) is directly connected
to a local display (c), and the satellite display (d) is used as an extended desktop.%eWindows pc
(b) uses the satellite display as a primary display.%e user authors content on theMac (e), and tests
it on browsers on both the Mac (f ) and Windows (h) pcs. In addition, the user runs an instant
message application on the Mac (g) and an email client on the Windows pc (i). %ese last four
applications are shown on the satellite display, regardless of the computer they are running on.

4.4.3.2 Requirement 8: multiple simultaneous users

An environment with multiple displays is likely to have multiple simultaneous users that must

be accommodated. Desktop pc-based operating systems make no attempt to solve this problem

on a single machine; two users simultaneously typing on two keyboards will result in multiplexed

gibberish, as there is no facility formultiple insertionpoints andmultiply focussedwindows.Using

multiple distinct computers behind the scenes to drive anmde solves this problem to some degree,

as long as each computer has at most one user controlling it at any given time.

Given the tight dependence on a mouse cursor to provide an insertion point for keyboard in-

put, a reasonable constraint is to create logical pairs of mice and keyboards, or input channels [89].

As operating systems continue to become more multitasking-friendly, support for multiple inser-

tion points and simultaneously focussed windows is slowly coming within reach.%is is achieved

in part asguimodality is phased out. For example, an opendialog box in one applicationno longer

prevents the user from interacting with another application.

Until multiple input is a pervasive feature of desktop operating systems, satellite displays may
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help simulate seamless mdes by providing display output 1exibility to multiple pcs. Each pc will

still be used as an input channel, but rather than being restricted to output on a dedicated display

per pc, the output may be composited to one or more satellite displays.

Recommendation: mdes should support arbitrary multi-user input and multi-display output

capabilities. %is would allow the users of an mde to control any application on any display from

any input channel.We have already considered some of the input redirection necessary to simulate

and explore multi-user input with theMightyMouse project [15].%e satellite displays presented

in this thesis complement Mighty Mouse by addressing multi-display output.

Technical Action: Utilize the compositing capabilities of a satellite display to simulate the abil-

ity for multiple users to share one display in an mde. By adding all of the satellite displays in an

mde to a user’s pc, the user is granted seamless access to the entire environment simultaneously

with other users who are using the space. Because the satellite display is simply an output device,

there is no mechanism to allow users to interoperate with each other’s gui objects. Interoperative

functionality may be achieved by using an input redirection system in parallel with the satellite

display.

Compositing gui elements on a satellite display as described in this section would allow Sce-

narios 5 and 6 from Chapter 1 to conclude di7erently:

Scenario 5 revisited, changes in bold

Five co-workers share an open plan o2ce with an adjoining meeting area and a large

shared satellite display projection screen for giving presentations. %ree of them

are working on the latest product design, and they quickly share with one another

snapshots of what they have accomplished. ?e three co-workers accomplish this

by adding the satellite display-based projector to their workstations as part of an

extended desktop. When they wish to brainstorm together, they may each drag

windows on and o> the projected display as though it were a personal extended

desktop, and the satellite display handles compositing the windows from di>er-

ent sources for &nal output.?is allows multiple users to share the projected dis-

play simultaneously, allowing for quick visual comparisons between documents

on di>erent pcs.
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Scenario 6 revisited, changes in bold

Carol and Dave are in their living room, planning a vacation on their laptops, and

watching tv on a 1at panel satellite display with a built-in tv tuner. As they !nd

1ight or lodging information on the Internet, they drag windows from their lap-

tops to the satellite display to compare prices and schedules. As the tv content

continues to play, the computer windows are displayed on top of the video pre-

sentation, emulating what is popularly known in the home entertainment market

as picture-in-picture.?is is illustrated in Figure 4.7.

(a)

(b)

Figure 4.7: Sharing content on a home entertainment display. In this example, the laptop on the
le6 has a window partially shared onto the tv (a), and the laptop on the right has a fully shared
window (b).

4.4.3.3 Requirement 9: privacy and security

All of the 1exibility discussed thus far comes at a cost.While the computing resources native to an

mde may be considered as a single unit, bringing a personal laptop into the environment changes

things dramatically. For example, if the laptop is used as a control surface for the existing system,
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should it also act as a display surface? Can other users of the system then view or alter data on the

laptop?

Solutions proposed for this mixed environment range from being able to divide portions of

the interface to limit what is displayed [38], to obscuring portions of the displayed objects [13].

Recommendation: As privacy requirements change from environment to environment, a plug-

in architecture or similarly 1exible framework may be utilized to allow the privacy of an mde to

be tailored to the speci!c application. In this way, privacy concerns may be explored iteratively to

determine the best !t.

TechnicalAction: For an initial prototype, prevent input redirection between pcs participating

in themde.%is allows the satellite displays to be used as shared output devices, but does not allow

multiple users to interact with each other’s data.

4.5 Summary

%is chapter has describedproblems that current display devices exhibitwhenusedwithin anmde.

%ese include connectivity, ease of use, and a lack of multi-user support. To solve these problems,

a new device was designed, called a satellite display.%e satellite display addresses the mde prob-

lems as follows:

Connectivity: To allowmultiple displays to be connected to a single pc, the hardware transport

layer was changed from a point-to-point graphics link to a multi-point network or bus (Require-

ment 1).Making this change required the addition of some on-display general purpose processing

capability (Requirement 3). Because of these changes, a satellite display may also easily represent

di7erent display topologies such as tiled displays, or displayswith non-standard sizes or resolutions

(Requirement 2).

Ease of use: With the replacement of the physical connection type for connectivity reasons,

new graphics transport protocols need to be designed. %ese protocols address ease of use issues

such as proper plug-n-play device discovery (Requirement 4), and con!guring a pc to use the na-

tive display resolution of a satellite display (Requirement 5). A requirement was added to ensure
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that satellite displays would be able to seamlessly replace existing point-to-point displays without

requiring legacy so6ware to be modi!ed to run on the new displays (Requirement 6).

Multi-user support: %e proposed general purpose computing and networked connectivity ar-

chitecture enables a single satellite display to support multiple simultaneous inputs. %is is ac-

complished by compositing multiple video streams together on the satellite display itself, rather

than on the source pcs (Requirement 7). As long as each user has his or her own pc, this allows

multiple users to simultaneously share a satellite display (Requirement 8). Digital privacy is inher-

ently supported due to the output-only nature of the satellite display–there is no way for a user to

manipulate or copy the contents of another user’s data through the display (Requirement 9).

As the requirements for an ideal satellite displaywere developed, solutions for each requirement

were suggested, along with a low-level or technical action that could be implemented immediately

as part of a prototype implementation.Our trip aroundMyer and Sutherland’s wheel of reincarna-

tion is continued in Chapter 5 with a description of a prototype satellite display implementation

based on the recommendations made in this chapter.



Chapter 5

sde: A Prototype Satellite Display Implementation

For this thesis, a prototype satellite display was implemented based on the requirements set forth

in Chapter 4. %ese requirements are !rst reiterated and clari!ed in Section 5.1. %is is followed

by in-depth implementation details in Section 5.2. Next, usage of the prototype satellite display is

described in Sections 5.3-5.5. Finally, the prototype implementation is compared to the require-

ments for both the ideal satellite display and proposed prototype from Chapter 4 to determine

how well the goals were met.

5.1 Design

%e design of an ideal satellite display was laid out in Chapter 4 with three primary requirements:

improved connectivity over existing display devices, improved ease of use, and basic multi-user

support. %ose criteria were then distilled down to the following requirements for a prototype

implementation.

• Connectivity:

Requirement 1 Require only one hardware port on the pc for an arbitrary number of satel-

lite display devices (Section 4.4.1.1).

Requirement 2 Redesign existing link protocols to support satellite display devices with

arbitrarily large or small device resolutions (Section 4.4.1.2).

Requirement 3 Include computational capabilities in the satellite display, including basic

framebu7er memory and a gpu that supports minimal 2d graphics operations (Sec-

tion 4.4.1.3).

• Usability:

Requirement 4 Enable ease of device discovery and con!guration using existing network-

ing technologies such as dhcp and the ZeroConf service discovery protocol [20]

(Section 4.4.2.1).

65
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Requirement 5 Maintain visual !delity by only advertising the native resolution of the

satellite display (Section 4.4.2.2).

Requirement 6 Maximize compatibility by ensuring that existing legacy so6ware justworks,

and does not need to be recompiled or specially built to support the satellite display

(Section 4.4.2.3).

• Multiple users:

Requirement 7 Allow multiple source pcs to simultaneously use a single satellite display

by compositing the !nal output image on the satellite display device (Section 4.4.3.1).

Requirement 8 Enable multi-user support by allowing each user to connect to a satellite

display with their own pc (Section 4.4.3.2).

Requirement 9 Implement privacy measures by only allowing connected users to manip-

ulate their own gui objects, not those of other users (Section 4.4.3.3).

In addition to the requirements de!ned inChapter 4, three additional technical requirements

are speci!ed here to help manage the overall complexity of the system.

• Technical:

Requirement 10 Determine the feasibility of creating a prototype satellite display device

from contemporary hardware, so6ware, and available development resources.

Requirement 11 Do not allow display forwarding, i.e., a satellite display may not act as a

client for a further satellite display.%is prevents feedback loops from forming in the

graph of display connections.

Requirement 12 Donot provide input redirection services between clients sharing a satel-

lite display.

%ese requirements will be noted throughout the remainder of the chapter as they are satis!ed

(or not) by aspects of the prototype implementation. Note that Requirement 9 is subsumed by

Requirement 12.
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5.2 Implementation

Ideally, a satellite display device would be implemented in hardware. %e desktop version would

look like a regular computer display with a single multi-point-capable port (or internal wireless

equivalent) to replace the current dvi or vga graphics interface. Examples of similar devices are

the Samsung 940UX usb display [64], and many networked video displays [80]. For prototyping

purposes, however, a satellite display device was mocked up using a regular lcd panel, with the

addition of a small form factor pc to provide the necessary computational support. Because the

prototype implementation is an approximation of a real satellite display, it was called a Satellite

Display Emulator (sde).%e development sde is illustrated in Figure 5.1.

Figure 5.1: Prototype satellite display.%eMacMini computer used to prototype the graphics and
networking functionality is small enough to !t within the frame of the lcd panel.%ere are three
cables used to connect the prototype satellite display: power for the display, power for the pc, and
Cat-5 networking.

%e remainder of this section goes into greater depth on each piece of the implementation. A

general overview is given !rst, followed by a discussion of the hardware used to construct the sde.

Sections 5.2.3-5.2.5.1 detail portions of interest speci!c to each so6ware component that was de-

veloped. Networking and other shared so6ware concerns are covered in subsequent sections.%e

source code for all of the so6ware developed for the sde is available online. Details are available
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in Appendix D.

5.2.1 Implementation overview

%esde ismade up of both hardware and so6ware, with the bulk of the complexity being handled

in so6ware.%e hardware consists of standard pc equipment, while the so6ware is divided further

into three main components: a sdeClient, a sde Server, and a proxy framebu>er. Each of these

componentswill be covered indetail throughout the rest of this section.%esdewas implemented

using Mac os x due to the author’s familiarity with that operating system and the availability of

necessary apis.

Figure 5.2 illustrates the relationship between the components of the sde so6ware and asso-

ciated key os features. At a high level, the interaction between these components is as follows.

On the client pc, a proxy framebu7er provides a surface for the operating system to draw into,

at the lowest level possible in the system. Because an sde does not have any traditional display

hardware directly attached to the client pc, the client operating system must be tricked into be-

lieving that a traditional display does indeed exist. By implementing the proxy framebu7er at this

depth within the operating system, the remainder of the operating system and user applications

treat the framebu7er surface as though it were just another screen—no further modi!cations of

the operating system or applications are necessary to use themwith an sde.%e proxy framebu7er

is provided by a proxy graphics card–a piece of virtual hardware that does not exist in the tradi-

tional manner.

%e sde Client so6ware also runs on the user’s pc, acting as a driver for the sde. %e client

monitors the window server, watching for cursor movement or window update activity in the re-

gion de!ned by the proxy framebu7er. When one of these events is detected, the client captures

and encapsulates the event, and sends it over the network to the sde.

Finally, the sde Server so6ware runs on the small form factor pc that is built into the sde

device. %is so6ware receives cursor and window information from the client, and outputs it to

the display.

5.2.2 Prototype hardware

During development, the sde was implemented with a small-form-factor pc paired with an lcd

panel.%e pcwas aMacMini computer !tted with a 1.42GHz PowerPCG4 processor and 1GB
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(so"ware)
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Figure 5.2: %e sde architectural overview. %e client pc on the le6 has a real display attached
to a real graphics card, these components are indicated in the dashed box containing the Frame-
bu#er,Graphics card, and Local display. %e client pc also contains a Proxy $amebu#er and Proxy
graphics card, which appear to the user to be connected to the display provided by the sde. %is
is accomplished by the sdeClient so6ware, which reads image data from theWindow server, and
transmits it to the sde Server. Finally, the sde Server so6ware renders this data to the sde output
device.

of ram, and the lcd was an 18″ nec panel operating at a native resolution of 1280 x 1024. In

addition to easing development by not requiring custom hardware design and fabrication, devel-

opment time was cut dramatically, as the same networking and graphics apis were used on both

the source (user’s pc) and sink (sde) devices. Finally, implementing the sde with a pc and high

level so6ware further allowed the use of existing applications on the display. For example, view-

only utilities such as a clock or weather indicator may be le6 on the sde regardless of whether or

not source pcs are also connected.%eMacMini-based sde is depicted in Figure 5.1. For a more

faithful reproduction of a hardware-only satellite display, a 20″ iMac !tted with a 2 GHz Pow-

erPC G5 processor and 1 GB of ram was also tested. %is all-in-one form factor computer was
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a close replica of a hardware satellite display when only the power and network connections were

used.

%e existing Ethernet port on the pc was chosen to receive graphics data from client pcs.%is

choice is acceptable as it enables multi-point communication, allowingmultiple client pcs to con-

nect simultaneously. %is is needed to support Requirement 8. In addition, using either wired or

wireless Ethernet as a transmissionmedium allowsmultiple satellite displays to connect to a client

pc on a single physical port; this supports Requirement 1.

5.2.3 Proxy framebu>er

As mentioned in the overview, a proxy framebu7er is necessary to provide a surface on which the

operating system can draw graphics intended to be output on the sde.

%eproxy framebu7er is provided by a proxy graphics card that the operating system can use as

though it were real hardware outputting to a real display device. Rather than actively interpreting

what is being drawn, the proxy framebu7er simply provides a surface in display space—the appro-

priate window contents are copied by the sde Client from the window server with higher-level

system calls.%e relationship of the proxy framebu7er relative to the other components in the sde

system architecture is illustrated in Figure 5.2.

Because the sde Client copies image data from the window server, rather than directly from

the framebu7er, implementing a display surface at this depth is not necessary from a technical

standpoint. With direct access to the operating system source code, a better method for creating

a fake display would be to modify the window server, and allow it to create regions in display

space with no backing hardware.However, without substantial support from the operating system

vendor, this is di2cult or impossible. Although it is signi!cantly more convoluted and less 1exible

than modifying the window server, constructing a proxy framebu7er is within the means of a 3rd

party developer, and allows for a prototype implementation of the concept.

Although the proxy framebu7er faithfully reproduces a raw framebu7er, it does not imple-

ment 2d acceleration or 3d hardware rendering. While the goal was to make the framebu7er as

transparent as possible to 3rd party applications, it does not achieve this for graphics intensive

applications. In this case, the applications either do not work, or do not work well.

In addition, the lack of real hardware backing the proxy framebu7er can cause problems in-

tegrating it with the Mac os x driver architecture. Speci!cally, because there is no hardware to

generate interrupts, events such as device addition and removal are not possible to synthesize. As a
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result, the number of false displays attached to a proxy videocard is not dynamically con!gurable,

and requires a reboot to change.

Because the proxy framebu7er is a proof-of-concept workaround to functionality better pro-

vided within the window server, these limitations were a reasonable tradeo7.

Low-level implementation details for the IOProxyFramebu7er and IOProxyVideocard kernel

extensions can be found in Appendix A.

5.2.4 sde Client

Once a proxy framebu7er has provided a region in display space representing an sde, the sde

Client captures the contents of windowsmoved into this region and transmits the image data over

the network to a display server for !nal output.%e position of the sde Client within the overall

sde system architecture is shown in Figure 5.2.

5.2.4.1 Window capture

%ekey componentof the sdeClient is anundocumentedMacosx systemcall,CGContextCopy-

WindowCaptureContentsToRect(). %is system call grabs a bitmap of an entire window

regardless of its on-screen visibility. %is means that it does not matter whether the window is

partially obscured or fully hidden, a complete image may be retrieved. To accomplish this at inter-

active rates requires a compositing window server, which Mac os x o7ers. %is allows windows

to be sent to the sde in individual streams for compositing on the display (possibly among win-

dows from another client pc).%is satis!es Requirement 7, which requires a compositing window

server to support multi-user use of the sde.

%e Mac os x screen capture utility, Grab.app, exposed this functionality, and provided a

starting point to discover how it is accomplished. To uncover the CGContextCopyWindow-

CaptureContentsToRect() system call, Grab.app was reverse engineered using techniques

similar to those described in Appendix B.

An api call similar to CGContextCopyWindowCaptureContentsToRect() named

printwindow() is available in Windows XP. Although this call can also capture a hidden or

partially obscured window, it requires substantially more resources to do so. It cannot be called

at interactive rates as the window to be captured must be re-rendered to a special o7-screen con-

text speci!cally for the purposes of the printwindow() call, rather than each window being
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rendered in this manner by default.

To determine which windows need to be captured by the sdeClient, the system call NSWin-

dowList() is !rst used to get a list of all of the windows on the system. Every gui object is

contained within a window, including the desktop background. Each window has a correspond-

ing z-index, which indicates the depth at which it is drawn to the screen. Anything at or below

the desktop level must be !ltered out by its z-index, so it is are not captured and sent. Next, CGS-

GetScreenRectForWindow() is called to compute a frame rectangle for each window. Fi-

nally, this rectangle is intersected with the screen frame of a proxy framebu7er representing an

sde. If the rectangle overlaps a remote display, the window is captured and transmitted.

By interpreting the screen data captured from the window server, it is possible to minimize

the bandwidth required to transmit the data. Static images do not need to be continually sent

over the network, as the sde is capable of maintaining a cached copy. In addition, windows that

are simply beingmoved only need to have positional coordinates updated on the sde, because the

window contents have not changed. A pair of callbacks have been provided by the window server

to help with this task. %ese callbacks notify application so6ware when regions of a screen have

been updated with new image data.%e !rst callback (CGScreenRegisterMoveCallback)

is executed when a region has moved, for example, if a window has been dragged. %e second

(CGWaitForScreenUpdateRects) is called if a region has changed, for example if an image

has loaded in a web browser. Unfortunately the region-moved callback cannot be used by the sde

Client, as experimental evidence suggests that it relies on the existence of 2d hardware acceler-

ation which the IOProxyFramebu7er does not support. %e region-changed callback does work

with the IOProxyFramebu7er, however, and from this informationwindow-moved eventsmay be

computed.

When the screen representing an sde is refreshed on the client pc, a region-updated callback

is triggered and the appropriate event is computed from the captured window data. If a window

has been dragged, this event is reduced from transferring a full bitmap to a smaller set of updated

coordinates. If window contents have been updated, a bitmap representing the window is sent to

the sde.

5.2.4.2 Cursor capture

%e implementation of a gui cursor on most computer systems is a predecessor to the composit-

ing window server architecture. To remain responsive, cursors must be guaranteed to update on
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each screen refresh, regardless of the load a cpu is experiencing. Compositing a cursor onto the

framebu7er, including asking applications to re-draw regions of their windows invalidated by the

cursor image, is toomuchwork for themouse-moved interrupt completion routine to accomplish

under all conditions. To solve this problem, the cursor is drawn by the graphics hardware. A cur-

sor image is sent to the graphics hardware, along with its state, such as visibility and position. Each

time the pointer hardware issues a mouse-moved interrupt, the operating system forwards the po-

sition information through to the graphics hardware, which is responsible for painting the cursor

at its new location and restoring the image at the previous cursor location. Whenever the cursor

image changes, for example from an arrow to a hand, a new image is sent to the graphics hardware.

One consequence of the hardware cursor architecture is a lack of api calls to determine the

current cursor image in Mac os x. Whether it is an intentional feature or a byproduct of further

cursor-based optimizations is unclear: the cursor image does not even show up in screen captures.

As a result, the cursor position can be determined and sent by the sde Client; however, without

a way to capture the cursor image on the client pc, the cursor shape that is drawn on an sde will

not change regardless of the appropriate shape for the context on the client pc.

5.2.5 sde Server

%esde Server so6ware is a lightweight application that advertises itself on a lan using the Zero-

Conf service discovery protocol. A6er an sde Client connects, the sde Server simply accepts in-

coming video streams, creates windows to house them, and sizes and positions them appropriately

on screen. %e position of the sde Server within the overall sde system architecture is depicted

in Figure 5.2.

%e sde Server so6ware was initially planned to be implemented in Java, with the intention

of delivering run-anywhere capability. %is idea was speci!cally targeting Unix-based rendering

clusters that drive large screen tiled displays.%e intent was to export the tiled displays seamlessly

as a single large display that could be quickly and easily accessed from any machine capable of

running the sde Client. Time restrictions and di2culties in developing a custom cross platform

serialization protocol resulted in aMac os x-only implementation of the sde Server, with a cross

platform implementation le6 as future work.

When running on a machine with multiple displays, there are two modes of operation for

the sde Server. Figure 5.3 illustrates the !rst mode, where each attached display is advertised sep-

arately, and a subset of the total number of displays may be chosen in the client. In Figure 5.3,
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the user has chosen to arrange the satellite displays on either side of the local client display. %is

con!guration gives the client user the most 1exibility in terms of display placement.

S1 S2

SDE Server

S1 Local 
display S2

Client PC

DVI/VGA link

Logical link/device

Network link

Satellite Display Emulator

Figure 5.3: Individual display export. In this case, eachdisplay (S1, S2, solid outline) attached to the
sde Server is exported individually. %e satellite displays may then be positioned independently
on the client pc.%is allows a user to create the arrangement shown at le6, where a local display is
inserted between two satellite displays (S1, S2, dashed outline).

If the sde represents a large tiled display, the relationship between the tiles is already deter-

mined. Rather than requiring the client user tomanually arrangemultiple displays into the correct

tiled con!guration each time the sde is used, the server so6ware may pre-tile attached displays

and export them as a single large framebu7er, as shown in Figure 5.4.%is, coupled with the proxy

framebu7er on the client, allows the client to use a single framebu7er that is much larger than

what is possible with one local device. Because this mode has not been fully implemented, the up-

per limit of the number and resolution of the tiled displays that can be supported has not been

determined. %e sde currently enumerates the displays connected to a multi-headed computer,

but does not automatically !nd and advertise the largest rectangle that !ts within the desktop area.

An initial solution would be to manually provide this setting in a con!guration !le.

5.2.5.1 Windowmanagement

Because each window sent from a client pc is being captured in its entirety and sent as a discrete

video stream, the compositing of client windows for !nal display can happen on the sde. %is is

in contrast to vnc and other remote desktop tools, which scrape an entire screen and send it as a

single pre-composited image.

%eon-display compositing is not a di2cult task compared to extracting un-composited video

streams on the client pc. Further on-display processing such as the decompression of mpeg2 and
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Figure 5.4: Tiled display export. In this example, the sde pre-tiles four displays (S1-S4), and ex-
ports them as a single large display (S) to the client pc.

h.264 compressed video streams was not considered for the sde, but thesee are obvious features

to add.

%e compositing that is done on the sde partially satis!es Requirement 3.%is feature allows

windows frommultiple client pcs to be simultaneously viewedon the sde, satisfyingRequirement

8.

5.2.5.2 Visual &delity

%e sde Server only advertises the current resolution of the attached display device in accordance

with Requirement 5. To achieve this, the sde must be pre-con!gured to use the native resolution

of the display device before the sde Server is run.

5.2.6 Shared system components

Components in this section pertain to both the sde Client and sde Server. %ese include net-

working and so6ware con!guration.

5.2.6.1 Networking

To facilitate ad hoc satellite display usage, the network con!gurationmust be e7ortless for the user.

%e ZeroConf service discovery protocol is designed to provide this facility between computers

on the same Local Area Network (lan) [20]. Because a satellite display is designed to be used in
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a co-located environment, limiting network connectivity to a lan is a reasonable requirement.

Recall that a lan may include both wired and wireless segments. By using the ZeroConf service

discovery protocol, an sde Client automatically sees all of the sdes on a network, and the user

may simply choose which one(s) to connect to.

A tcp network connection is used to transfer control and video data between sde Client(s)

andServer(s).Atcp connectionwas chosen to transmit videodata to simplify the so6ware design.

%e Cocoa Mac os x object orientated frameworks allow objects to be easily transmitted over a

tcp connection. Image objects may be transmitted directly in this manner, rather than requiring

the design of a custom network protocol. For a real-time application such as the satellite display,

udpmay o7er higher performance, especially when coupledwith custom image serialization code.

A6er a brief initial handshake, the client sends frames of video to the server. %e handshake

noti!es the client pc of the native resolution of the sde.Unlike the EDID [96] noti!cationmech-

anism for dvi and vga, there are no restrictions on the possible values that may be used to express

the resolution of an sde.%is satis!es Requirement 2, and allows sdes with non-standard resolu-

tions to be connected.

For the prototype implementation, an extremely basic transport protocol was used.%is pro-

tocol was based on NSArchiver, the built-in object serialization mechanism provided by the Co-

coa programming framework. Selecting this method has one advantage and numerous drawbacks.

While it enabled rapid development, NSArchiver is not portable beyond the Mac os x environ-

ment, and is less e2cient than protocols such as the remote framebu7er (rfb) protocol, which has

been designed for this speci!c application. Although the rfb protocol is open-source, its structure

does not lend itself well to being adapted tomulti-window video streams.Anewprotocol based on

rfb was designed, but implementation in both Objective-C and Java proved too time consuming

for the scope of this research, and was subsequently abandoned.

5.2.6.2 Con&guration

Because satellite displays are meant to be part of a very lightweight and ad hoc environment, min-

imal static con!guration is required.%e system automatically handles all network related con!g-

uration, and the participation of a particular computer is governed by its inclusion on the same

lan as the others.%e current sde implementation does not support password authentication or

other !ne-grained access control measures.

When the sde Client application is started, it presents a list of available sdes to which it can
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connect, as shown in Figure 5.5. Initially, it was intended that the sde Client would communi-

cate the sde resolution settings to the proxy graphics card, which would then recon!gure itself

to accurately simulate the connected sdes. As mentioned in Section 5.2.3, the prototype proxy

graphics card does not have this capability. Instead, the user must manually con!gure the proxy

framebu7er display resolutions tomatch the settings listed in the sdeClient connection window.

Because of this, Requirement 4 is only partially satis!ed.

Figure 5.5: %e sde Client connection window.%e !rst column lists available sdes on the lan.
%e second column provides information for each of the displays available on each sde; this is
intended to support the sde Server split mode illustrated in Figure 5.3.

5.3 Single User Usage

%e basic usage of an sde for a single user may be summed up as follows:

1. Attach participating client pc and sde(s) to a lan.

2. Install the IOProxyVideoFamily suite of kernel extensions on the client pc, per the instruc-

tions in Appendix A.

3. Start the sde Server so6ware on the sde(s).

4. Start the sde Client so6ware on client pc, and select and enable the desired remote dis-

play(s).
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5. Ensure that the display resolution(s) of the proxy framebu7er(s) are equivalent to those

advertisedby the sde(s). Positionormirror the sde(s) usingRe1ect, or the system-provided

Displays.prefpane con!guration utility.

6. Use the sde as though it were a display local to the client pc.

An example of an sdebeing used in extendeddesktopmode is shown inFigure 5.6.%e screen-

shot on the le6 represents the pc’s local display, and the screenshot on the right is of the sde.Note

that by simply looking at this image, it is di2cult to distinguish this con!guration from a single

screenshot taken on a traditional dual-head machine. However, these images were captured on a

Mac Mini pc, which only has a single graphics output–without an sde this con!guration would

be impossible.

(a) (b)

Figure 5.6: An sde in use. %e local display is on the le6 (a), and the output from the sde on the
right (b).

Whenmultiple sdes are connected to a lan, they all broadcast their availability to sdeClients

that are open. Currently the sde Client does not indicate to the user whether or not an sde is in

use by another client pc. Due to the multi-point nature of an Ethernet lan, multiple users can

each use their own sde, but this requires the use of social protocols to ensure that users do not

connect to other users’ sdes.

%e sde enables a subtle blend of single- and multi-user capabilities. Because the sde is con-

structed from a regular pc and 1at-panel display, it can locally run standard desktop applications.

%is is illustrated in Figure 5.7, where weather and clock widgets run on the sde, regardless of

whether or not a client pc is connected.



79

(a) (b)

Figure 5.7: An sde with local content. %e local display is on the le6 (a), and the output from
the sde on the right (b). In this example, the sde locally hosts a weather and clock widget, which
remain on-screen regardless of whether a client pc is connected or not. In addition, a diagnostic
window for the sde Server so6ware is shown at the bottom right; this lists the currently connected
client pcs.

5.4 Multi-User Usage

Using an sdewithmultiple users is accomplished in amanner remarkably similar to using it with a

single client. Rather than checkingwhether other users are already connected to an sde and avoid-

ing displays in use, a user simply connects anyway.%e result is that client windows are composited

on the sde, as shown in Figure 5.8. In this example, two users are sharing one sde. Although in

this instance all three displays align geometrically from le6 to right, this does not need to be the

case. Both users could con!gure the sde to be an extended desktop to the right of their local dis-

play: in this case, both users would access the sde by dragging gui objects to the right. %is may

be a more intuitive con!guration if two users were sitting to the le6 of a large shared display. To

both of these users, the shared display should be positioned to the right of their local displays.

In the current sde implementation, there is no visual distinction betweenmultiple client cur-

sors on a shared sde. One solution is to provide user con!gurable colour or shape settings.

5.4.1 Privacy

To both reduce the complexity of the sde implementation andmaintain somemeasure of privacy,

user input events such asmouse clicks and key presses are not forwarded between clients sharing an

sde. Although multiple users can share an sde as an output device, the collaborative capabilities
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(a) (b) (c)

Figure 5.8: An sde with multiple clients. %e sde is shown in the centre of the screenshot (b),
with a client to each side (a, c).

stop there. If users wish to support further collaboration, such as being able to interact with shared

gui objects, the sde systemmay be used in concert with an input redirection tool such asMighty

Mouse [15].

5.4.2 Usability

Simulatingmultiple-user support onwhat is essentially a single-user system is notwithout its draw-

backs.

A usability quirk stems from the lack of input forwarding mentioned in Section 5.4.1. With

many windows !lling a shared sde, it is easy to forget which windows are owned by another user,

and therefore unavailable for manipulation. By installing an input redirection tool in parallel with

the sde system, this problem can be minimized. Redirecting input between pcs connected to the

shared sde would allow each user to manipulate other users’ windows.

To help di7erentiate windows owned bymultiple users on a shared sde, each user may select a

di7erent gui theme on their pc. As the usersmove their gui objects to the shared sde, the themes

are retained, o7ering a visual cue to indicate the owner of each object.

Because the sde composites windows on the display, windows from multiple sources may

overlap and intermix as though they all originated from the same source. %is is shown in Figure

5.9. Currently, social protocol must be used to resolve con1icts between users sharing a display.

For example, if user A places a window such that it entirely user B’s window, user B has no way to

move the obscuring window to get at his or her window underneath. Again, an input redirection

tool would mitigate this problem as it would allow user B to interact with user A’s windows.

A somewhatpedantic problemmanifests itself ifmultiple users try tomirror their local displays
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Figure 5.9: An sde compositingmultiple sources. A user’s display (a) ismirrored on an sdedisplay
(b). In addition, a second user has placed an additional window on the sde display. Note how it
has been inserted between the two windows from (a), overlapping one and being overlapped by
the other.

to a shared sde. In this situation, global gui objects such as menu or task bars may collide due to

their !xed position on-screen.

5.5 Empirically Determined Performance Results

sde client performance was measured using the fastest pc on-hand, a 2.33 GHz Intel Core 2 Duo

MacBookProwith 3GBof ram.A1.42GHzPowerPCG4MacMiniwith 1GBof ramcoupled

to an 18″ 1280 x 1024 lcd display was used as the sde display device. Both systems were running

Macos 10.4.10, and datawas transferred over a 100Mb/s network switch. Allmeasurements were

taken with Activity Monitor.app on the client pc, and all values are approximate, with

an estimated accuracy of ±5 per cent. While the Mac Mini has substantially less power than the

laptop, the computations required on the display device areminimal, and assumed to be negligible

for the purpose of these measurements. Processing resources appeared to be the primary limiting

factor; minor additional network tra2c did not a7ect the performance of the sde system.

• System connected and idling:

Refresh Rate 0 Hz

cpu use 1.5 per cent

Bandwidth use 0 KB/s
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%ismeasurement indicates baseline performance for an idle system: nowindows have been

placed on the sde, and the cursor is motionless. A refresh rate of 0 Hz is appropriate.

• Cursor movement:

Refresh Rate 60 Hz

cpu use 3.3 per cent

Bandwidth use 16 KB/s

Moving the cursor on an sde is fast and responsive, as only cursor position information is

being transmitted.

• Window dragging:

Refresh Rate 8 Hz

cpu use 30 per cent

Bandwidth use 4 KB/s

Dragging a 500 × 500 pixel window with static contents on the sde consumes a relatively

large amount of cpu time. %is high cpu usage is due to the fact that the block movement

window server callback does not work with the proxy framebu7er. Because of this, both

windowmovement and window update events generate a screen changed callback, and the

sde Client so6ware must compute the di7erence between current and previous window

images to determine the correct update type. Once the sdeClient so6ware has determined

that a windowmove event has occurred, it only sends the updated position of the window,

resulting in low network usage.

%e 8Hz refresh rate is marginally lower than the minimum 10Hz necessary to e7ectively

simulate motion.

• Media playback:

Refresh Rate 5 Hz

cpu use 40 per cent

Bandwidth use 1.5 MB/s
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A 624 × 352 pixel movie was played in a 630 × 400 pixel window. Recall that because win-

dows were not further subdivided into changed regions, the additional pixels used by the

window borders must be sent on each refresh as well.

%e 5Hz frame rate is signi!cantly lower than the minimum 10Hz necessary to e7ectively

simulate motion, and far lower than the native 24 Hz frame rate of the source video.

• Intermittent update:

Refresh Rate 2 Hz

cpu use 10 per cent

Bandwidth use 35 KB/s

If the window contents update intermittently, for example due to a blinking insertion point

or sporadic typing, the sdeClient so6ware only sends changed frames.%is lowers network

tra2c signi!cantly, at a cost of increased cpu usage. Even though the sde Client so6ware

is noti!ed by the window server when screen contents have changed, computing image dif-

ferences to determine which window needs updating utilizes 10 per cent of the cpu for a

500 × 500 pixel window with an insertion point that blinks at 2 Hz. Once again this cpu

utilization is due to not subdividing windows further, and requiring the whole 500 × 500

pixel region to be compared on each update event.

For the sde to provide acceptable performance, it should be able to maintain a minimum re-

fresh rate of 15Hz for any of the operations listed above. Re-testing onmore substantial hardware

(i.e., a desktop pc) may yield such gains.

5.6 Requirements Re-visited

To determine if the sde met the design set out in Chapter 4, the requirements from Section 5.1

will be reviewed.

• Connectivity:

Requirement 1 Require only one hardware port on the pc for an arbitrary number of satellite

display devices. Satis&ed in Section 5.2.2.
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Requirement 2 Redesign existing link protocols to support satellite display devices with arbi-

trarily large or small device resolutions. Satis&ed in Section 5.2.6.1.

Requirement 3 Include computational capabilities in the satellite display, including basic$ame-

bu#er memory and a gpu that supports minimal 2d graphics operations. Satis&ed in

Section 5.2.5.1.

• Usability:

Requirement 4 Enable ease of device discovery and con!guration using existing networking

technologies such as dhcp and the ZeroConf service discovery protocol. Satis&ed in Sec-

tion 5.2.6.1.

Requirement 5 Maintain visual !delity by only advertising the native resolution of the satel-

lite display. Satis&ed in Section 5.2.5.2.

Requirement 6 Maximize compatibility by ensuring that existing legacy so"ware just works,

and does not need to be recompiled or specially built to support the satellite display. Par-

tially satis&ed in Section 5.2.3.

• Multiple users:

Requirement 7 Allowmultiple source pcs to simultaneously use a single satellite display by

compositing the !nal output image on the satellite display device. Satis&ed in Section

5.2.2.

Requirement 8 Enable multi-user support by allowing each user to connect to a satellite

display with their own pc. Satis&ed in Section 5.2.5.1.

Requirement 9 Implement privacy measures by only allowing connected users to manipulate

their own gui objects, not those of other users. Satis&ed by requirement 12.

• Technical:

Requirement 10 Determine the feasibility of creating a prototype satellite display system given

contemporary hardware and so"ware, and development resources. Satis&ed by overall

implementation.

Requirement 11 Do not allow display forwarding, i.e., a satellite display may not act as a

client for a further satellite display.Not satis&ed.
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Requirement 12 Do not provide input redirection services between clients sharing a satellite

display. Satis&ed in Section 5.4.1.

Of the twelve requirements speci!ed at the beginning of this chapter, tenweremet by the sde,

one was partially met, and one were not.%e two requirements that were not fully met (maximize

compatibility, and disallowing display forwarding) were dropped due to a lack of resources, as will

be discussed next.

Providing a framebu7er compatible with all third-party application so6ware requires the co-

operation of the operating system and graphics card manufacturers; with their support, it would

be straightforward to draw to an existing hardware framebu7er and copy the resulting bitmaps

directly to the network interface.%is would also provide a much-needed performance optimiza-

tion.

Explicitly disallowing display forwarding was a feature that did not seem necessary in the end

as this was a worst-case requirement. In practice this is unlikely to cause problems; a usage policy

of not running the sde Client and Server so6ware simultaneously on one pc will su2ce.

5.7 Contributions

%eprototype so6ware presented in this chapter provides a proof of concept technical implemen-

tation of a satellite display system. In the process, the sde demonstrated that it is possible to build

an ad hoc, easy to con!gure, compositing network display using current operating systems and pc

hardware. It is hoped that by demonstrating that it is possible to overcome the considerable tech-

nical hurdles standing in the way, satellite displays will open the door to continued interest and

further work on advancing the usability of multi-display environments. By providing complete

source code for the current system (see Appendix D), this thesis provides a framework for future

development.

%e sde project has provided basic multi-user display sharing, while continuing to support

familiar single-user application so6ware. It accomplishes this in a lightweight fashion, supporting

ad hoc use of shared display space.

In the process of working through the technical aspects of this project, this thesis has docu-

mented previously undocumented features of Mac os x. %ese features are o6en undocumented

for good reason–they may be works in progress, deprecated at any time, or untested and unstable.

However, cutting-edge research code is also a work in progress, and not intended to be used for
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shipping products. By exposing and using some of the hidden features of an os, it is hoped that

the os vendors will gain a deeper understanding of what third-party developers wish to do, and

that they will help support research that moves the community forward as a whole.

5.8 Limitations

Setting aside the performance issues with the prototype implementation, the satellite display has

some further limitations. As the goal was to faithfully reproduce a multi-display con!guration,

issues inherent to this setup are adopted by a satellite display. For example, in an extended desktop

con!guration, there may be long distances across many displays to traverse to reach the desired

display. Due to the depth at which the sde Client so6ware gains access to the operating system,

third party solutions to correct multi-display navigation issues ought to just work. For example,

the MouseWarp utility introduced in Chapter 3 would allow a user to jump their cursor between

both local and satellite displays. Other projects such as theMulti-monitor mouse [12]may also be

adapted to this platform.

5.9 FutureWork

%ere are two main technical areas where improvements would provide substantial bene!t to the

current sde. First, working with operating system vendors may yield the system apis necessary to

provide proxy displays and e2ciently determinewhichwindows need to be captured. A signi!cant

engineering e7ort was spent on this aspect of the project, and the lack of information led to per-

formance and feature limitations in the sde. Second, a custom network protocol implementation

would increase network performance by lowering both the bandwidth and computational over-

head of the current image serialization scheme. %is protocol may be similar to the existing rfb

protocol used by vnc, with the necessary extensions to support independent video streams for

each gui object being transmitted. More importantly, such a custom protocol would allow inter-

operability between sdeClient and Server so6ware running on di7erent architectures. Achieving

this would also open the door to a custom hardware implementation of a satellite display, which

was an initial long-term goal of this thesis.
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5.10 Summary

%e prototype satellite display system, sde, provides a framework that closely models a standard

single computermulti-display setup. It does this by allowing the user of a client pc to dragwindows

and other gui objects to a display that is not connected via standard dvi or vga protocols. %e

sde display device composites incoming graphics on the display itself, allowing it to be driven by

multiple source pcs simultaneously.%is allows multiple users to share and collaborate with their

familiar single-user so6ware

By attempting to maintain a faithful reproduction of a traditional multi-display system, it is

hoped that the cost of entry to the satellite display system is minimized, leading to high rates of

user adoption.



Chapter 6

Conclusion

A6er considering previous work (both academic and commercial) related to mdes, two so6ware

components were developed for this thesis. %e !rst was a utility that allows users to con!gure

multi-display pcs in several ways, augmenting the standardmirrored and extended desktopmodes.

%e second was a new display device architecture that allows multiple displays to be connected to

a single physical port on a pc. In addition, multiple pcs may be connected to a single display,

allowing multiple users to share the display simultaneously.

6.1 Contributions

%eRe1ect display con!guration utility works well and attains its intended goal of expanding the

number of available multi-display con!gurations. Re1ect is augmented by MouseWarp, an auxil-

iary tool to enable further usage of the disjoint con!guration mode that Re1ect provides. Both

tools have been released as an open source project that may be useful to more than just the re-

search community. Several scenarios have been identi!ed that take advantage of the additional

multi-display con!guration modes that the Re1ect utility provides. As mdes become more com-

monplace, additional con!guration needs may be discovered. %e 1exibility of the Re1ect utility

should allow support for these new con!gurations.

In previous work I developed theMightyMouse project which allowed the input devices (e.g.,

keyboard and mouse) of any pc to control a networked, co-located pc [15]. %e satellite display

concept is a natural complement to thatwork. Rather than distributing input capabilities through-

out an environment, the satellite display is a shared output device. As such, the satellite display

concept !lls a gap in a larger vision of co-located shared input and output.

%e success that the Satellite Display Emulator (sde) achieves is more reserved. As proof-of-

concept so6ware, it demonstrates that the necessary pieces are in place today to build a networked

display. %e IOProxyVideoFamily, a sub-project of the sde, provides rare documentation

and a sample implementation of this arcane corner of Mac os x driver development.

88
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6.2 Lessons Learned

%e primary di2culty encountered while conducting the research reported in this thesis was the

development of the sde.While an ideal satellite display seemed straightforward on paper, imple-

menting it was a daunting task.%roughout development, success always seemed just over the next

hill, but progress was inevitablymet with another technical mountain to ascend once each hill was

surmounted. Looking back, itmayhave beenbene!cial to also build and test a lo-! orWizard ofOz

prototype that explored the usability of the satellite display concept before implementing the sde.

Such a prototype would augment the feasibility !ndings made possible by the sde by allowing us

to focus on interaction techniques without having to rely on e2cient and robust so6ware.

6.3 FutureWork

As so6ware projects grow in complexity, it becomes increasingly di2cult for a single developer

to implement a complicated project with su2cient quality. %e sde is clearly prototype, proof

of concept so6ware: it establishes the possibility of a working system in this domain, but lacks

the stability and features required to use it on a daily basis. A complete re-write, engineered from

the start for cross-platform interoperability and e2cient use of network and processor capacity, is

probably necessary before further explorations should be made.

Once a stable implementation is achieved, the satellite display concept requires formal evalu-

ation. Such an implementation needs to be benchmarked against both the performance of tradi-

tional multi-display con!gurations, and against other mde management suites to determine the

utility of its particular shared display paradigm. As mentioned in Section 6.2, the latter task may

be accomplished in part by alternative prototyping methods.

Finally, the capabilities of shared display systems to support collaborative tasks needs further

exploration. From the current vantage point, it is possible to imagine how a satellite displaymay be

used within the context of the surrounding constraints: pcs, modal guis, and relatively slow net-

works.However, it will only be possible to fully realize the potential of thismulti-display paradigm

with the availability of a working implementation and future advances inmulti-user operating sys-

tems.%is is a chicken and egg process, and must be approached iteratively.
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6.4 Recommendations

As demonstrated by this research, future exploration in the multi-display domain will be di2cult

unless operating system vendors provide improved access to the underlying functionality. In order

to support third party developers, it would be necessary for Apple to fully expose the apis for the

novel technologies they develop. To successfully interoperate with Windows, Microso6 would

need to do the same.

6.5 Conclusions

%e wheel of reincarnation concept explained by Myer and Sutherland [52] continues to hold

to this day. Van Dam et al. may not have foreseen the rapid miniaturization of cpus, but their

approach to push general purpose computing capabilities away from the central cpu towards a

display device was e7ective and timely, leveraging the maximum amount of performance from

existing hardware and paradigms [94]. Perhaps the next 30 years will bring a revolution in display

technology that unbinds display devices from the pcs they have become tethered to. Until then,

we must use what is currently available in the best way possible.
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Appendix A

IOProxyVideoFamily

A.1 Introduction

At themost basic level, a display device is representedon a computer by a framebu>er, or a contigu-

ous region in memory which stores a raster representation of the current image being displayed.

%is memory is known as vram and is usually provided by the graphics hardware, although com-

puters with integrated graphics processors may reserve a portion of the main system memory for

use as the framebu7er. By mapping addresses in the framebu7er to locations, or pixels, on the

display screen, a raster image may be represented inmemory by setting each location in the frame-

bu7er to an appropriate value. Once the operating system has written a full image into the frame-

bu7er, supporting video hardware reads the framebu7er pixel by pixel, converting it into an elec-

trical signal suitable to drive the attached hardware display device.

Newer video graphics hardware typically provide extended commands to enable 3d rendering

or accelerated graphics operations such as region copies or moves. %ese commands may operate

on the framebu7er in an optimized way, for example by allowing the graphics hardware to ac-

cess memory in parallel, but ultimately produce the same net e7ect as the cpu manipulating the

framebu7er directly; a new image is produced on the framebu7er for display by the output elec-

tronics. Since the level of accelerated support provided by various hardware manufacturers varies

and acceleration is not guaranteed to exist, operating systems generally support drawing to a raw

framebu7er as a fallback rendering technique.

%e IOProxyVideoFamily suite of kernel extensions provides a combination of the above tech-

niques to simulate a real framebu7er to the operating system.As far as the operating systemknows,

real hardware-supported vram is being made available to it. %e key di7erence between a proxy

framebu7er and a real framebu7er is the method for reading data out of it for eventual display

to the user. While a real framebu7er is read once per screen refresh by dedicated hardware, the

proxy framebu7er is never read by hardware; instead it may be read by operating system calls that

copy portions of the framebu7er back into user-space accessible regions of memory for further
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processing.

A.1.1 Mac os x driver architecture

Todiscuss the design and implementationof the IOProxyVideoFamily, somebackgroundof theMac

os x driver architecture, IOKit, is necessary.

In Mac os x, device drivers are loaded and unloaded dynamically as the underlying hardware

state changes (devices comeonline or are removed).%ismodel provides 1exibility for hot-plugged

hardware such as pcmcia cards and usb devices. In addition, a layered model is used to represent

hardware from the base level of the system, up through various busses to a particular device. Each

driver in a given layer publishes nubs which specify properties of the device. Drivers in the layer

above may match on a nub in a lower level driver if the properties indicate that the nub provides

services applicable for that driver. At the interface between two drivers, the driver publishing a

nub is a provider, while the driver which matches on the nub is a client. If a client doesn’t match

on a nub, it is discarded and the next driver is tried. Each driver that successfully matches a nub is

given a probe score–a measure of the !tness of that client to interact with the device. In the event

of multiple matches, the client with the highest probe score assumes control of the device.

Typically a driver will publish a nub for each independent device capability, for example a pci

bus driver would have a nub for each pci slot in the system, and a driver for a multi-protocol

communications card may publish a nub for each protocol it supports over the physical medium.

Drivers may publish zero or more nubs for their device, but only one client may match per nub.

Similarly, clients may possess multiple personalities, or matching interfaces for nubs. To illus-

trate the need for multiple personalities, consider a manufacturer that has several models of the

same type of device, each slightly di7ering in capability. By writing a single driver with multiple

personalities, it may be used for all the devices even though they advertise nubs from the layer

below.

At a leaf node in the device tree, drivers no longer publish nubs for further in-kernel drivers to

match on but instead provide user clients for user space applications to access.

A.1.2 Virtual devices

Because there is no real hardware to back virtual devices, IOKit provides IOResources, a so6ware

only nub for drivers to connect to. IOResourcespublishes a single nub, but unlike regular providers,
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permitsmultiple personalities tomatch on it to allowmultiple virtual device drivers to exist simul-

taneously.

A.1.3 IOFramebu>er

Framebu7ers onMacosx are leaf nodedrivers in the IOKit, and are subclasses of the IOFramebuffer

abstract base class. As Figure A.1 illustrates, instances of IOFramebuffer have one user client, the

WindowServer. In turn, they are typically clients of proprietary hardware drivers that are responsi-

ble formanaging the graphics hardware, including vram.During initialization, the IOFramebuffer

portion of the driver queries its provider for a memory range to use as the framebu7er.

Application

Window Server

Application

IOFramebu!er

Proprietary Video Card Driver

IOAccelerator

Figure A.1: IOFramebu7er Components

A.1.4 Related work

As a simulated framebu7er o7ers little functionality without additional supporting so6ware, they

are di2cult to !nd information on.

Although the source to the IOKit IOFramebuffer abstract base class is available, it is rather

opaque and o7ers little information to clarify what is necessary to write a custom subclass. An

old IOKit sample project, AppleSampleFramebu7er, may have been of use, but it was di2cult to

!nddocumentation for it.Much of the otherwork in this area is comprised of closed source drivers
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written by graphics cardmanufacturers whowork directly with the os vendors, and as such, useful

public documentation is di2cult to !nd.

Searching outside of the Apple sample code archives turned up Xydra, an early attempt at

a remote display [31]. Xydra includes a limited virtual IOFramebu7er implementation, but no

source or instructions are available, and the project crashes immediately onMacOS 10.4.

Finally, Ryan Rempel wrote XPostFacto, an open-source project that allows Mac os x to run

on old, no longer supported Apple hardware [72]. Part of this project,OpenControlFramebuffer, is

an IOFramebuffer subclass that illustrates the required functions and their rough implementation.

Rempel has also provided a basic virtual framebu7er implementation, with the useful instruction

that the driver must be loaded at boot rather than run time [71].

A.2 Implementation

%e initial virtual framebu7er prototype consisted of a single IOProxyFramebuffer instance that

matched on IOResources. %is method is adequate for providing a single framebu7er, however

simulating multiple heads would require additional personalities to match against IOResources.

Further, theWindow Server has exclusive access to an IOFramebufferUserClient, meaning that it is

not possible for other user space applications to communicate with IOFramebuffer instances [85].

%is hampers the ability to toggle virtual heads on and o7, as well as being able to set custom

resolutions at runtime.

To overcome the above issues, the project was split into two components. First, an IOProx-

yVideoCardwas created to simulate a multi-headed graphics card.%is serves multiple purposes: it

publishesmultiple nubs for IOProxyFramebuffer tomatch on, provides a user client that can receive

communication from outside the kernel, and manages the memory that simulates vram. Second,

a stripped down IOProxyFramebuffer matches on the nubs published by the new IOProxyVideo-

Card, loads screen resolution con!guration information from a nub, and exposes a framebu7er

aperture to theWindow Server.%is architecture is illustrated in Figure A.2.

A.2.1 IOProxyVideoCard

To best support the satellite display project, an IOProxyVideoCard should be able to support a

dynamic con!guration of an arbitrary number of heads, each of arbitrary size, matching remote

extended desktops as they appear and disappear on the network.
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Application

IOFramebu!er

Proprietary Video Card Driver

IOAccelerator

IOResources

IOProxyVideoCard

IOProxyVideoHead

IOProxyFramebu!er

IOProxyVideoFamily

Figure A.2: IOProxyVideoFamily Components

Due to restrictions imposedby the IOKit architecture, the engineering e7ort required to realize

this goal, or determine its feasibility, is beyond the scope of this project. First, the total amount of

vramusedby each IOFramebuffer subclassmust be set at boot time, andmaynot bemodi!edwhile

the system is running, making it impossible to dynamically create arbitrarily large framebu7ers

at runtime. Secondly, there is no documented way to initiate a hardware interrupt from within

a virtual device driver, which means that events such as display addition and removal are also not

possible at runtime.As such, the current IOProxyVideoCard is restricted to a static number of heads,

each with a !xed maximum resolution.

A.2.1.1 Static con&guration

Each nub of the IOProxyVideoCard represents a virtual display connection, or head.%e necessary

information for con!guring a simulated graphics card is expressed by a list of heads, each with a

maximum allowable resolution as well as a list of valid smaller resolutions.%exml representation

of a graphics card with 3 heads is illustrated in Figure A.3. A maximum resolution for each head
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is required due to memory management constraints of the Window Server, as explained in the

following section.

<key>com_doequalsglory_driver_HeadList</key>

<array>

<!-- each dictionary in this array represents one virtual head -->

<dict>

<!-- this dictionary has explicit parameters set -->

<key>enabled</key>

<true/>

<key>height</key>

<integer>1050</integer>

<key>maxHeight</key>

<integer>1200</integer>

<key>maxWidth</key>

<integer>1920</integer>

<key>name</key>

<string>DEG,ProxyVideoHead_A</string>

<key>width</key>

<integer>1400</integer>

</dict>

<!-- these two dictionaries are empty - they create two

virtual heads with default settings -->

<dict/>

<dict/>

</array>

Figure A.3: IOProxyVideocard static con!guration options

A.2.1.2 Memory allocation

Due to performance requirements of theWindow Server, and the reasonable assumption for real

hardware that the vram size doesn’t change during the operation of a computer, this aspect of the

hardwaremust be simulated faithfully. Speci!cally thismeans that shortcuts cannot be taken, such

as dynamically allocatingmemory for the framebu7ers in use at any given time. It also imposes the

constraint that the driver must load before the Window Server does, and unload a6er it dies. As

mentioned in the previous paragraph, each head has a maximum allowable resolution speci!ed in

the con!guration !le, and these values are parsed when the IOProxyVideoCard is loaded. Using

these values, enough memory is allocated at load time to represent the set of the framebu7ers

speci!ed.
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Prototype versions of the IOProxyFramebufferused theIOBufferMemoryDescriptor::

withCapacity() function call to allocate simulated vram in the kernel. %is call could allo-

cate a limited amount of memory, less than the amount required to support two 1920 by 1200

pixel framebu7ers (approximately 18MB).%eApple Technical Q&AQA1197 explains why this

is the case, and suggests a replacement function that is capable of allocating much more memory

from outside the kernel [6].

A.2.1.3 Dynamic con&guration

Unlike the IOProxyFramebuffer, there is no restriction on which user space processes may talk to

the user client of an IOProxyVideoCard. With this approach, dynamically con!guring the IOProx-

yFramebuffer should be possible as the IOProxyVideoCard canmake changes and trigger a refresh of

the display system.%ere are three target settings for this con!guration step: the connection state

(connected, disconnected), a custom resolution, and the display name.

A con!guration utility was created to interface with the IOProxyVideoCard, updating its pa-

rameters fromuser space.Once the con!guration is stored in the IOProxyVideoCard, itmust notify

the appropriate IOProxyFramebuffer instances that parameters have changed. In a real hardware

driver, the IOProxyFramebuffer base class responds to an interrupt generated by the underlying

hardware, and re-reads applicable con!guration information. Initial research indicates that it is

not possible for a provider to simulate or initiate hardware interrupts to a client within the IOKit

architecture, which has hampered development in this area. Further exploration of this limitation

is beyond the scope of this thesis.

A.2.2 IOProxyFramebu>er

Until a method is devised to synthesize hardware interrupts in the IOProxyVideoCard, runtime

con!guration of the IOProxyFramebuffer is limited. To simulate the ability to connect and discon-

nect a virtual display at runtime, a resolution of 0 × 0 pixels is provided by the IOProxyFramebuffer.

%e user can then enable the framebu7er by selecting a valid resolution, or disconnect by selecting

0 × 0.
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A.3 Usage

%e IOProxyVideoFamily suite of kernel extensions, IOProxyFramebuffer and IOProxyVideoCard, are

installed by copying them into the /System/Library/Extensions folder, and invalidat-

ing the kernel extension cache, as shown in Figure A.4. Note that unlike other kernel extensions,

IOFramebuffer subclassesmust be instantiated at boot time, andwill not function if they are loaded

via kextload at runtime.

sudo cp -R IOProxyFramebuffer.kext /System/Library/Extensions/

sudo cp -R IOProxyVideoCard.kext /System/Library/Extensions/

sudo touch /System/Library/Extensions

sync

reboot

Figure A.4: IOProxyVideoFamily Installation Procedure

A6er rebooting, the additional virtual displays provided by IOProxyVideoFamily aremade avail-

able to the system, as shown in Figure A.5. In this example, the display with the menu bar is a real

hardware display, while the remaining three are virtual.%is screenshot was taken on aMacMini,

which has a single video output and no graphics hardware expansion capabilities. As far as the

operating system or 3rd party applications know, they are real, hardware framebu7ers. %ese can

now be used with the satellite display system, or other remote display application.

Figure A.5:%ree virtual displays
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A.4 Limitations and FutureWork

%eIOKit provides extensive capabilities for con!guring andmanagingdrivers.While the require-

ments of the ideal IOProxyVideoFamily appear to be attainablewithin the IOKit framework, amore

signi!cant engineering e7ort would be required to do so. As this piece is simply a shim to work

aroundother limitations in theWindowServer, applying the necessary engineering e7ort to create

this ideal con!guration is beyond the scope of this thesis.

With unlimited resources, the following features are candidates for further development to-

wards more accurately simulating real graphics hardware:

1. Add and remove nubs at runtime, or extend the simulation one level deeper and create a vir-

tual graphics card bus with hot-swap graphics card capabilities. Nub addition and removal

may be simulated by toggling nubs on and o7. It is not clear whether current versions of

Mac os x can hot-swap real graphics cards; initial research suggests that this is not possible.

2. Synthesize and initiate hardware interrupts fromwithin a virtual device driver, to allow the

IOProxyVideoCard to trigger changes in a framebu7er, such as resolution, bit depth, or the

display name.

3. Falsify Extended Display Identi!cation Data (edid) information to provide more descrip-

tive remote display names to the user.

4. Subclass IOAccelerator to support some 2d acceleration operations, such as block moves.

Finally, when considered in the context of the satellite display, memory is not used e2ciently

by the proxy framebu7er. %e IOProxyFramebuffer consumes enough memory to represent a full

framebu7er, and thus its overall size and depth is only limited by the amount of available memory.

In addition, the window server keeps its own o7screen copy of each window, and only composites

down to the framebu7er as a last step in the rendering pipeline.%e private window grabmethods

onMac os x allow windows to be captured directly from the window server, and so the windows

never need to be composited out to the IOProxyFramebuffer in order to be captured. As a result, a

more e2cient implementation would be built directly into the window server, providing a logical

region in which to place windows, but not backing this with a real framebu7er.
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A.5 Conclusion

%e IOProxyVideoFamily is a so6ware-only implementation of multi-headed graphics hardware,

intended to provide a simulated display for the satellite display project. It succeeds in this capac-

ity, however development di2culties prevented it from being as robust and 1exible as initially

planned. Because the IOProxyFramebuffer was always considered a workaround for a larger prob-

lem, further development to overcome the issues faced by this piece were deemed an unproductive

use of resources. For full source code to the IOProxyVideoFamily project, see Appendix D.



Appendix B

Code spelunking

To a 3rd party developer on a closed- (or predominantly closed-) source operating system, the

implementation of system calls is o6en opaque: the results are clear, but themethod bywhich they

are accomplished are not.With a good systemdesign this usually doesn’tmatter; it’s the results that

the programmer is a6er, and it doesn’t matter how they are generated. Occasionally it is necessary

to delve into the workings of a system call; for example, when a bug is suspected, or when the calls

are not provided at a !ne enough granularity to allow the functionality desired.

%e development of the so6ware used in this thesis skirts the edges of what is possible on

current operating systems. As system implementers can’t know ahead of time all potential appli-

cations 3rd party developers may develop, apis provided are occasionally inadequate. Even if all

the required functionality is in place to achieve an obscure result, its use may not be su2ciently

well understood by those outside the teams that created it. As a result, it was o6en necessary to

explore the operating system to gain a greater understanding of it’s inner workings. Further, on

a few occasions the existing operating system code implementing certain api calls needed to be

modi!ed to provide the necessary functionality.

Several freely available exploration tools will be discussed in thisAppendix. Patching theCore-

Graphics framework to allow for arbitrary display placement will be used to illustrate the explo-

ration and modi!cation process.

B.1 Locating SystemCalls

CoreGraphics is a system framework that provides a means for 3rd party developers to con!gure

extended desktop display placement via the CGConfigureDisplayOrigin() function call.

In order to allow for arbitrary display placement as desired for the Re1ect project discussed in

Chapter 3, this call must be patched so that it does not reposition the display to a valid location

when given invalid parameters.
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Before starting the search, CGConfigureDisplayOrigin() was tested with invalid pa-

rameters, positioning a display such that it partially overlapped or was separated from another dis-

play. In both cases, CGConfigureDisplayOrigin() succeeds, but in the process moves the

display to the nearest location that ensures that the displays do not overlap or have edges disjoint

from other displays. From this it is deduced that either CGConfigureDisplayOrigin() is

moving the display itself, or is calling a helper function to do so.

%e function CGConfigureDisplayOrigin() is provided by the CoreGraphics frame-

work.%e executable binary for this framework is found at:

/System/Library/Frameworks/ApplicationServices.framework/

Frameworks/CoreGraphics.framework/CoreGraphics.

A selection of open-source code exploration utilities are available with Apple’s free Developer

Tools. Two tools that operate on object !les are used here: nm lists the symbol table, and otool

disassembles and displays the corresponding assembly source code.

Using nm to dump symbols from the CoreGraphics binary, as shown in Figure B.1, indi-

cates that CGConfigureDisplayOrigin() does indeed exist in that !le, along with a func-

tion named CGSConfigureDisplayOrigin(). %e T in the column preceding the name

indicates that the symbol exists in the Text, or executable code, section of the !le. %is indicates

that it is amethodname, unlike thekCGSDisplayOrigin* symbols, which are in theData sec-

tion and thus are global constants. Anupper-caseT is used to indicate that this symbol is exported,

or available for use from outside the !le it exists in.

> nm -g /System/Library/Frameworks/ApplicationServices.framework/

Frameworks/CoreGraphics.framework/CoreGraphics |grep DisplayOrigin

906ce404 T _CGConfigureDisplayOrigin

906c0484 T _CGSConfigureDisplayOrigin

a0374448 D _kCGSDisplayOriginX

a037444c D _kCGSDisplayOriginY

>

Figure B.1: Selected public symbols in the CoreGraphics framework

%e listing in Figure B.2 indicates that the last opcode of CGConfigureDisplayOri-

gin() is a jump to CGSConfigureDisplayOrigin(). %e CGS pre!x in this context rep-

resents CoreGraphicsServer, or the window server component of the windowmanager.



111

> otool -tV /System/Library/Frameworks/

ApplicationServices.framework/Frameworks/

CoreGraphics.framework/CoreGraphics |grep -A 20

CGConfigureDisplayOrigin

_CGConfigureDisplayOrigin:

906ce404 or. r4,r4,r4

906ce408 mfspr r0,lr

906ce40c stmw r27,0xffec(r1)

906ce410 stw r0,0x8(r1)

906ce414 or r30,r3,r3

906ce418 stwu r1,0xffa0(r1)

906ce41c or r29,r5,r5

906ce420 or r28,r6,r6

906ce424 bne+ 0x906ce430

906ce428 bl _CGMainDisplayID

906ce42c or r4,r3,r3

906ce430 lwz r0,0x68(r1)

906ce434 addi r1,r1,0x60

906ce438 or r3,r30,r30

906ce43c or r5,r29,r29

906ce440 mtspr lr,r0

906ce444 or r6,r28,r28

906ce448 lmw r27,0xffec(r1)

906ce44c b _CGSConfigureDisplayOrigin

_CGConfigureDisplayMode:

>

Figure B.2: Assembly dump of CGConfigureDisplayOrigin()

Tracing through additional symbols and assembly inCoreGraphicswithotool reveals the fol-

lowing set of calls made by CGConfigureDisplayOrigin(): CGXCompleteDisplay-

Configuration(),CGXLCorrectDisplays, andCGXLFindBestPositionForDis-

play(). %e nm utility indicates that these are local symbols, and may not be called directly by

code external to the CoreGraphics binary. CGXLFindBestPositionForDisplay() does

what its name suggests, moving an improperly positioned display to the best position for it.

B.2 Patching

%ere are two main steps to the patching process: determining what to replace the existing code

with, and implementing the binary patch.
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B.2.1 Replacement code

A replacement function for CGXLFindBestPositionForDisplay() is created that sim-

ply returns success without actually moving an incorrectly positioned display to a valid location.

Figure B.3 shows this function written in C, and the corresponding PowerPC and x86 assembly.

In this !gure, the otool output has been augmented with the hex values that represent the opcodes

on disk or in memory, these are shown in the third column.

int
fakeCGXLFindBestPositionForDisplay() {

return 1;
}

_fakeCGXLFindBestPositionForDisplay_ppc:
+0 00002c24 38600001 li r3,0x1
+4 00002c28 4e800020 blr

_fakeCGXLFindBestPositionForDisplay_x86:
+0 00002e23 55 pushl %ebp
+1 00002e24 89e5 movl %esp,%ebp
+3 00002e26 b801000000 movl $0x00000001,%eax
+8 00002e2b 5d popl %ebp
+9 00002e2c c3 ret

Figure B.3: Assembly dump of fakeCGXLFindBestPositionForDisplay(). (a) C code, (b) corre-
sponding PowerPC assembly, (c) corresponding x86 assembly.

Both functions simply load a value of 1 into a register or stack locationdependingon the calling

convention of the architecture, and then return.

To patch CGXLFindBestPositionForDisplay(), the existing binary code in the op-

erating system is replaced by the hex values listed in Figure B.3.

B.2.2 vmutils

Mac os x includes vmutils, a private, undocumented framework that allows Apple internal de-

velopers to manipulate executable binaries on disk and in memory. By using class-dump1, an

open-source wrapper around otool, header !les may be generated to allow vmutils to be used as

a regular public framework by 3rd party developers.
1http://www.codethecode.com/Projects/class-dump/

http://www.codethecode.com/Projects/class-dump/
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Once vmutils is working, the executable binary is loaded from disk or memory into an image

object. At this point, !nding the memory address of a symbol is a one-line method call in vmutils:

[image addressOfSymbolWithCName:

‘‘CGXLFindBestPositionForDisplay’’];

Armed with the address of the original function, the binary code at that location can now be

replaced by the modi!ed implementation developed in Section B.2.1.

B.2.3 In memory

%e initial approach to patching CGXLFindBestPositionForDisplay() was via an in-

memory patch, applying it just before calling CGConfigureDisplayOrigin(), and revert-

ing to the original binary code a6er the call had completed.%is just-in-time approachwould o7er

the most 1exibility in the face of system upgrades, and would ensure that the system remains in an

untouched state for other clients of the CoreGraphics framework.

BecauseCoreGraphics is used by every gui-based process, it is alreadymapped into the address

space of the that process. An initial attempt wasmade to patch in this space, which failed.%is was

due to theCGXL* calls running in theWindowServer process, rather than in the patching process.

Inspecting CoreGraphics with nm shows that CGXLFindBestPositionForDisplay is

a local (i.e. non-external) symbol. %is means that the symbol is not available to outside callers,

and makes it more di2cult to determine the memory address from a client application to patch

the running memory image.

Further, the virtual memory page containing CGXLFindBestPositionForDisplay()

is marked as read-only. Initially it appeared as though it may be unlocked and patched via some

virtual memory manipulation calls, but the memory page is marked as copy on write[5], and the

page is copied to the address space of the process doing the manipulation before the changes are

applied. Calling CGConfigureDisplayOrigin() generates an event in theWindowServer,

which then is responsible for calling CGXLFindBestPositionForDisplay(). Since the

modi!ed virtualmemory page is nowa copy that exists in the patching application’smemory space,

the WindowServer runs the unmodi!ed original and the patch is not utilized. %is is illustrated

in Figures B.4 and B.5.

Attempting to patch within the WindowServer’s address space results in the same problem:

unless the WindowServer itself executes the patch, the changes are not made in its process space.
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Process B

Framework

Page 1

Page 1

Process A

Page 1

Figure B.4: Before modifying a read-only virtual memory page.

Process B

Framework

Page 1

Page 1 copy

Process A

Page 1

Figure B.5: A6ermodifying a read-only virtualmemory page.%e page is copied to the the address
space of the patching process.

Injecting a patch into the WindowServer was deemed too complicated for the purposes of this

research.

B.2.4 On disk

To work around the di2culties encountered with patching CoreGraphics in memory, a !le-based

patch was developed. Editing the !le on disk has the advantage that, a6er rebooting, the read-only

memory image has the patch applied and available in all process spaces—no further runtime ad-

justments are necessary. In other situations, having the patch applied for all processesmay adversely

widen the scope of its impact beyond the one process that it is intended for.

%ere are disadvantages to this method, however. Firstly, it requires editing a core system !le

and rebooting, which users may be hesitant to do. Secondly, the patch must be applied whenever

the !le is legitimately changed by system upgrades—it’s yet another thing to remember to !x a6er
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applying an upgrade. %is process may be streamlined by incorporating the patch utility into the

client application to ensure that the patch is applied before the application can be used.

B.2.5 Implementing the patch

To implement the patch on disk, vmutils is used to load the !le and determine the address of the

CGXLFindBestPositionForDisplay() symbol in the PowerPC executable image.

To !nish the patch, the 8 bytes of PowerPC code developed in Section B.2.1 are copied into

the !le at the address supplied by vmutils.%is procedure is illustrated in the thesis source code, see

Appendix D for details.

Note that current versions (10.4) of Mac os x for x86, and future versions (10.5) for both

PowerPC and x86, contain signed operating system binaries to prevent tampering. %is will have

to be circumvented for this patching method to continue working.

B.3 Conclusion

%isAppendix has provided an illustrative example, using arbitrary display placement, of the types

of code spelunking that were necessary to carry out this research project. In a larger context, it

documents tools and techniques that are available for implementing novel functionality within

the con!nes of a predominantly closed-source operating system.



Appendix C

Graphic Interface Speci&cations

Current computer displays are raster devices—each pixel on screen is addressable, and is repre-

sented in the computer by a framebu7er. Because it is impractical to provide a data line from a

computer to a display for each pixel, the parallel data of a framebu7er must be serialized before it

is transmitted to the display. In the case of a crt, the data is re-converted back to its initial parallel

form by themechanics inherent to the technology. Flat panel displays digitally unserialize the data

to some degree prior to !nal display by the low level panel driver chips.

C.1 Extended Display Identi&cation Data

%e extended display identi!cation data (edid) is a speci!cation designed to provide con!gura-

tion information of a sink device (typically a display) to a source device [96].%is data includes the

operating parameters of the device, for example, device name, resolution, and colour capabilities.

%e current version of the edid format is enhanced-edid (e-edid) 2.0, the speci!cations of

which are not freely available. A6er several revisions of a struct-based edid, the e-edid format

now allows for chunk-based extensions to the base format to future-proof against new display

capabilities.

Based on information in the Openldi speci!cation, e-edid 1.2 and later contain a Preferred

Timing Mode bit that may be used to indicate the native or best resolution of a display device

[57].%e udi speci!cation requires udi sinks to advertise their native resolutions in the !rst dis-

play timing descriptor of the e-edid [93]. %ese con1icting requirements, along with anecdotal

evidence, indicate that this aspect of the edid speci!cation is not implemented e7ectively enough

to achieve the desired result. Note that it is incorrect to assume that the highest advertised reso-

lution is the native resolution of the device, as many sinks contain scaling hardware capable of

downsampling as well as upsampling.
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C.2 Analogue Video Data

Analogue video data for computer display use is transmitted on !ve channels: red, green, blue,

horizontal sync, and vertical sync (rgbhv).%is is commonly and incorrectly known in consumer

terms as vga, due to the graphics hardware that !rst popularized its use. Similarly, the connector

used is properly known as hd-15, however it is widely referred to as a vga connector. Of the 15

total pins in the connector, 10 are used for rgbhv data, and three are used for edid.

C.2.1 Bandwidth

Current consumer analogue displays typically support amaximumbandwidthof 350MHz, spread

across all !ve channels. Each full-colour pixel requires a discrete value for the red, green, and blue

pixel elements (pels), and each pel takes one clock cycle to transmit. Equation C.1 estimates the

maximumnumber of pixels a given devicemay support based on the total link bandwidth. Because

the horizontal and vertical sync channels don’t require as much bandwidth as the rgb data, they

are ignored for the purposes of this calculation. However, it should be noted that between each

frame is a blanking interval, which was originally designed to give the electron beam in a crt time

to return to the origin. In the rgbhv format, this interval is a !xed duration, so it consumes a

greater percentage of the total available bandwidth as the pixel clock rate increases [22].

350 MHz × 1 s
60 frames

× 1 pixel
3 channels (rgb)

=
1.94 Mpixels

frame
(C.1)

%e common 4:3 aspect ratio resolution of 1600 × 1200 uses 1.92 Mpixels per frame, which

utilizes 345 MHz of bandwidth at 60Hz. Professional equipment can support resolutions up to

2048 × 1536 with approximately 500 MHz of bandwidth. %e Matrox TripleHead2Go has an

input resolution of 3840 × 1024, using bandwidth in excess of 700MHz [47]. Because rgbhv is

an analogue format, the upper bandwidth limit is not explicitly !xed by the format speci!cations,

but is implicitly determined by cable and component quality.

C.3 Digital Visual Interface (DVI)

dvi is currently the most popular digital graphics interface for computer display use, and is the

basis for the video portion of the hdmi and udi formats.



118

C.3.1 Bandwidth

%edigital portion of dvi supports one or two links, and each link is comprised of three channels,

one each for red, green, and blue. Because the link sends the rgb triples simultaneously, much

lower signalling speed is necessary to transmit the same amount of data as an equivalent rgbhv

connection. Resolutions up to and including 1920 × 1200 are supported on a single-link capped

to 165MHz. Dual-link dvi, which transmits two pixels per clock, is provided for resolutions and

refresh rates requiring more bandwidth than the single-link can provide. Dual link bandwidth is

not capped by the speci!cation, and is only restricted by cable and component quality. Consumer

displays with resolutions of 2560 × 1600 are currently being driven with a dvi-dl interface.

When driving a digital 1at panel display or other technology that does not require crt beam

synchronization between frames, dvi may use a reduced lcd blanking, which requires only 5 per

cent of the total clock, rather than a !xed duration [22]. %is leaves much more bandwidth for

image data at high pixel rates.

C.3.2 Analogue

dvi is unique among digital graphics interfaces, because it may also include an analogue rgbhv

link. dvi-a provides only the analogue link, dvi-d is digital only, and dvi-i integrates both an

analogue and a digital link. Example dvi connectors are shown in Figure C.1.%is allows for the

creation of a gender bender adaptor, which features a dvi-i connector on one end, and an hd-15

connector on the other. %is is a popular way to allow current source devices with dvi-i outputs

to utilize rgbhv sinks. %e analogue component of dvi is speci!ed to support a bandwidth of

400MHz.

C.3.3 Other features

As currently implemented, dvi transmits the entire image each time the screen is refreshed. How-

ever, displays are growing in logical size faster than copper interconnect speeds are increasing, and

thismodelwill eventually lead to starvation.To counter this, thedvi protocol designers havemade

provisions for selective refresh, in which only frames that have changed are sent [22].

When used in dual-link mode, two pixels are sent per clock. Link 1 transmits odd pixels, and

link 2 transmits even pixels. Scan lines start on pixel one.
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(a) (b)

link 1 data

analogue data
link 2 data

Figure C.1: Di7erent dvi connectors. In a dvi-i (dual-link) connector (a), both analogue and
digital signals are supported. In a dvi-d connector (b), the connector is missing the four analogue
pins surrounding the large 1at pin, and the central six pins for the second digital link.

C.4 High-De&nitionMultimedia Interface (hdmi)

hdmi is an integrated digital audio and video interface, designed for home theatre use. hdmi

used dvi as the basis for the video portion of the link; however, in recent revisions it has diverged

from the dvi speci!cation somewhat. Notably, hdmi supports di7erent colour formats (RGB

4:4:4, YCbCr 4:4:4, and YCbCr 4:2:2), increased bit depth (24-48 bits per pixel), and increased

signalling frequencies on both single (340MHz) and dual (680MHz) link versions [33].

While revision 1.3a of the hdmi makes provisions for substantially increased data rates over

those of dvi, it should be noted that this bandwidth must be shared with the audio data. In ad-

dition, the hdmi speci!cation has not yet de!ned any resolutions with a total number of pixels

greater than 1920 × 1080 (1080p).

C.5 Uni&ed Display Interface (udi)

Like hdmi, udi is an extension to dvi. Rather than adding audio capabilities, udi augments dvi

with further high resolution and high depth video capabilities [93]. udi is o7ered in both an em-

bedded (for laptops or other devices with built-in displays) and external version.

In the external pro!le, udi utilizes three lanes to transmit image data, one each for colour in
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an rgb pixel. One byte or symbol is transmitted per lane per clock, thus one pixel is transmitted

per clock in in the 24 bits per pixel format. Higher and lower bit depths are supported by packing

pixels and running the symbol rate at a direct ratio of the pixel clock.

C.6 Low Voltage Di>erential Signalling (lvds)

lvds is o6en incorrectly used to refer to the display interface in a laptop or other computer with

a !xed 1at panel. lvds is analogous to the transition minimized di7erential signalling (tmds)

digital data transport technology employed by dvi and its derivatives. Two higher level protocols

that use lvds to interface 1at panel displays are Openldi and fpd-Link [57, 56]. As these links

are quite specialized and used to drive displays that are physically restricted in size, their resolution

speci!cations will not be discussed here.

Unlike dvi, dual link Openldi divides the screen vertically in two, and sends the top and

bottom halves simultaneously.

C.7 DisplayPort

%e Video Electronics Standards Association (vesa) have introduced DisplayPort, a competing

standard to dvi and its derivatives [95]. BecauseDisplayPort shares no common ancestry with the

dvi derived formats, it is not capable of interoperating with those standards. In addition, version

1.0 of the speci!cation used DisplayPort content protection (dpcp) rather than the more preva-

lent high-bandwidth digital copy protection (hdcp) used by dvi and its derivatives. DisplayPort

version 1.1 adds support for hdcp.

Unlike the other formats, DisplayPort acts more like a generic digital bus than a specialized

graphics transport: the link rate is decoupled from the pixel rate, and pixels are timestamped,

padded, and packetized before being placed on the bus. %e Main Link, responsible for carry-

ing video data, is comprised of 1-4 laneswhich transmit pixels in an interleaved fashion, similar to

the approach used by dvi-dl.%eMain Linkmay operate at two speeds and use 1, 2 or all 4 lanes

to achieve the necessary bandwidth to carry the requested pixel format and image size.

In an e7ort to support multiple displays driven from a single graphics card, vesa have sized

the DisplayPort connector so that 4 will !t within standard atx/btx bracket opening used by

agp, pci, and pci-e add-in cards.
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C.8 Summary

Table C.1 summarizes the similarities and di7erences between the video interface standards out-

lined above. Recall that for an analogue interface (vga, dvi-a), one pel is transmitted per clock,

requiring 3 clocks for an rgb pixel. At 24 bits per pixel, the digital formats transmit at least one

whole pixel per clock. At higher bit depths, they may utilize a faster symbol clock or more links to

transfer a pixel.

%e stream-based analogue rgbhv interface heavily in1uences the data transfer paradigm of

dvi and its derivatives—pixels are transmitted one a6er the other in linear scan lines. DisplayPort

is the !rst graphics interface to break from this mould, and while the current implementation is

also stream-based, the architecture supports a more general data transport mechanism that may

one day see an entire frame compressed and packetized at the frame level, rather than at a per-pixel

granularity.

Table C.1: Comparison of video standards

Max. Res.* Max. Bwidth Conf. Protocol drm
vga (rgbhv) 3.9 350+MHz e-edid 2.0 none
dvi-a 3.1 400MHz e-edid 2.0 none
dvi 1.0 2.6 165MHz e-edid 2.0 hdcp
dvi-dl 1.0 5.8 350+MHz e-edid 2.0 hdcp
hdmi-a 1.3 2.1 340MHz e-edid 2.0 hdcp
hdmi-b 1.3 2.1 680MHz e-edid 2.0 hdcp
lvds (Openldi) 3.1 160MHz e-edid 2.0 none
DisplayPort 1.1 6.9 10 Gbps e-edid 2.0 dpcp & hdcp
udi 11.1** 16 Gbps** e-edid 1.3 hdcp

* Maximum resolution in megapixels at 60 Hz refresh, 24 bits per pixel.
* Estimated.



Appendix D

Project Source Code

%e source code developed for this thesis may be found online.

• http://code.google.com/p/reflect

• http://code.google.com/p/satellitedisplays

• http://code.google.com/p/ioproxyvideofamily
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Appendix E

Current Developments

At the time of this writing, Microso6’s new operating system, Windows Vista, has just been re-

leased. Every e7ort has been made to follow the development of this system and keep abreast of

the technological advancements over its predecessor,Windows xp, and the impact they may have

on the work presented here. It should be noted that the speci!cations for Windows Vista were

quite volatile during its development, so technical information available prior to release was o6en

informal, incomplete, and subject to change.
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