Linear Time Isomorphism of Interval Graphs
-
James S. Diamond §57

Computer Science Department
University of Waterloo

Waterloo, Ontario.

N2L 3G1

ABSTRACT

A class of graphs known as interval graphs can be
tested for isomorphism in O(n+e) time. This test
is implemented in three stages: testing chordality
to produce a list of cliques, building PQ-trees to
represent the clique-vertex relationship, and
testing PQ-tree isomorphism (the interval graphs
are isomorphic iff the PQ-trees are isomorphic).

The first stage uses an algorithm of Rose, Tarjan

and Lueker; the implementation follows 1in this
paper. The second stage 1is performed using .an
implementation by Young (as modified by Panek)ubf
an algorithm due to Booth and Lueker. The third
étage is an implementation of Colbourn and Booth's

modification of Edmonds's tree isomorphism

algorithm.

January 10, 1981

Table 2£ Contents

Introduction

Chordality Testing

Interval Graph Testing

"Isomorphism Testing

Conclusions

Acknowledgements

References

Appendix 1: Pascal Program for Chordality Testing

Appendix 2: Pascal Program for Isomorphism Testing

Appendix 3: How to Access and Run the Isomorphism Test

Appendix 4: Examples

16

19

24

25

26

28

58

Introduction

Although testing isomorphism for general graphs is hard

(no sub-exponential algorithm is known), pairs of interval

graphs can be tested in time and space linear in the size of
the graphs. This testing 1is done by combining three
algorithms. The first algorithm [Ros76] tests for
chordality (a necessary condition for interval graphs) and
gives a list of cliques for each graph (if the graph is
chordal) . The second algorithm [Boo75] attempts to build a
special type of tree (called a PQ-tree) for each graph; this
can be done iff the graph is an interval graph. The leaves

of the PQ-tree represent cliques of the graphs; the vertex-

clique relationship determines the structure of the trees.
The third algorithm [Col79] tests the PQ-trees (with their
leaves labelled by degree sequences) for isomorphism. This
last algorithm differs from the version of Lueker and Booth
[Lue79] which uses a more complicated labelling for the PQ-

trees.

Given a graph G=(V,E), the number of vertices is n=|V]|,
and the number of edges is e=|E]|. We use the usual
definitions from graph theory ([Har69], {Bon76]); some
additional definitions which are not standard or perhaps not

well known follow.

A chord of a cycle is an edge which joins two vertices

not adjacent in the cycle. A graph G is chordal iff every

January 10, 1981

cycle of 1length greater' than three has a chord. Some

authors use the word triangulated instead of chordal.

One proper subclass of chordal graphs is the interval

graphs. Interval graphs are those graphs that can be
represented as an intersection model of intervals on the

real 1line. Given a set of intervals, associate one vertex

with each interval; two vertices are adjacent iff their

corresponding intervals have a non-empty intersection.

A clique is a maximal complete subgraph. This
definition differs from that of some authors, who don't

require maximality.

A matrix of zeroes and ones 1is said to have the

consecutive ones property if there exists a permutation of

the rows so that in the permuted matrix the ones in each

column occur consecutively. The following characterization
of interval graphs is proved by Fulkerson and Gross [Fulé65].
A graph G is an interval graph iff the clique vs. vertex
incidence matrix of G has the consecutive ones property. It
is not necessary to explicitly construct the matrix.

Rather, it suffices to find an ordering of the cliques so

that the set of cliques for each vertex is contiquous within

that ordering.

A PQ-tree is a tree with two types of interior nodes: P

nodes, whose children may be arbitrarily permuted, and Q

January 10, 1981

nodes, whose children may only be reversed left for right.

For a complete definition of PQ-trees, see [Boo75].

The following section discusses the first of the three
algorithms: the chordality test. Testing for the interval
graph property, which uses the PQ-tree algorithms, is then
mentioned briefly. The final main section deals with the

isomorphism test.

January 10, 1981

Chordality Testing

Chordality testing is performed in two stages. In the

first, the ordering algorithm assigns a number and a label

to each vertex. Labels consist of a string of vertex
numbers; the exact construction of this string follows

below. The second stage arises from the following

observation (which is a consequence of the way in which
labels are assigned): the vertices in each 1label form a

complete subgraph iff the graph is chordal. Maximal labels

correspond to cliques; these are important for the interval
graph test, so we will want to distinguish maximal 1labels

from non-maximal ones.

The labelling is done with a 1lexicographic breadth-

first search. The search is breadth-first, as each

neighbour w of v 1is examined when v 1is processed. The
search is lexicographic, as the queue of vertices yet to be

examined is ordered by the lexicographic rank of the labels.
If appropriate care is taken in the labelling procedure, it

can be accomplished in O(n+e) time. The 1lexicographic

ordering 1is the usual dictionary ordering, except that

integers are used in lieu of letters of the alphabet.

As well as assigning labels to vertices, the algorithm

assigns a number to each vertex. This number is not to be

confused with the name of the vertex, which is a necessary

means of identification.

January 10, 1981

Initially, each vertex is unnumbered and has a null
label. Note that the null 1label 1is considered to be
lexicographically 1less than any non-null 1label. The
vertices are numbered and labelled in an iterative process.
At step k (for k from n down to 1), an unnumbered vertex v
with maximal 1label is chosen. Vertex v then receives the
number k. All vertices adjacent to v as well as v itself
then have k appended to their label. This step is repeated
n times, after which the graph has been 1lexicographically
ordered. The basic algorithm is shown in Figure 1. Figure
2 shows a step-by-step labelling of a graph. The label of
each vertex is a sequence of integers enclosed in
parentheses; a right parenthesis signifies a completed label
and hence a numbered vertex. The number of a vertex |is

always the last integer of its completed label.

Mark each vertex unnumbered;
Give each vertex a null label;
FOR i := n TO 1 STEP -1 DO
BEGIN
Choose an unnumbered vertex v with
lexicographically maximum label;
Give v the number i;
Append i to v's label;
FOR all unnumbered vertices w adjacent to v DO

append i to w's label;
END

Figure 1.

The basic labelling algorithm.

January 10, 1981

(6) (6)

(6 (6 (6,5 (6,5)
(5 (5
(6) | (6)
(6,5,4) (6,5) (6,5,4) (6,5)
(4 (5,4 (5 (4,3 (5,4,3) (5,3
(6) " (6)

(6.5,4) (6,5) (6,5,4), (6,5)

(4,3 (5,4,3) (5,3,2) (4,3,1) (5,4,3) (5,3,2)

Figure 2.

An example of the labelling algorithm.

The 1lexicographic breadth-first search algorithm is
interesting for the reason mentioned above: the vertices in
each 1label form a complete subgraph iff the graph |is

chordal. To prove this, we need the following:

Lemma: Let G be any graph numbered by lexicographic

breadth-first search. If j and k are vertices whose
numbers are larger than i and both are adjacent to i

then there is a path between j and k, all of whose

January 10, 1981

internal vertices are both nonadjacent ¢to i and

numbered larger than i.

Proof: the proof is found in [Boo75] and will not be

repeated here.
The lemma allows us to prove the following:

Theorem: A graph G is chordal iff the 1lexicographic

breadth-first search labels form complete subgraphs.

Proof: This proof is a modification of one found in
[Boo75].

Proof =>: Suppose that G is chordal. Number the
vertices according to 1lexicographic breadth-first

search. The above lemma can be restated in a stronger

form.

Claim: If i < j < k and j and k are both adjacent to i,

then they are also adjacent to each other.

Proof of claim: Using the lemma, there must be a path,

nonadjacent to i, whose internal vertices connect i and
j and are all numbered higher than i. Choose a minimal
path which satisfies this condition. Add the edges
{i,3} and {i,k} to form a cycle. The cycle obviously
has no chord, because the path is minimal and i is only
adjacent to j and k, by assumption. But if the cycle
has length greater than three, the graph could not be

chordal. This 1implies that the path 1in question

January 10, 1981

actually is a single edge and hence that j and k are

adjacent in G.

Now consider the label of vertex i. By inspection

of the lexicographic breadth-first search algorithm, we
see that for every pair of vertices j,k > i in the

label, both j and k must be adjacent to i. Without

loss of generality, assume j < k. Then the claim tells
us that j and k are adjacent. Thus the label forms a

complete subgraph.

Proof <=: Suppose that the labels for G given by the

lexicographic breadth-first search form complete
subgraphs of G. Consider any cycle of length greater
than three. Select i to be the lowest numbered vertex
in the cycle and let j and k be the two immediately
adjacent vertices 1in the cycle. As j and k are
adjacent to i, and j,k > i, we must have both j and k
in i's label. By the supposition, j is adjacent to k.

Hence G is chordal.

Performing the labelling in linear time is really just
an exercise in 1list handling. Labels are not explicitly
stored with each vertex. Rather, we have a queue of lists,
where each list represents all vertices which (currently)

have the same 1label. The queue is arranged so that the

lists are lexicographically ordered; the vertices in the
first list have the 1lexicographically maximal 1label, the

vertices in the second list have the second largest label,

January 10, 1981

etc. This scheme provides the implicit labelling. The data
structure is not a queue in the strict sense of the word: as
seen below, insertions into the middle of the queue are
needed. This forces the queue to be implemented as a doubly

linked list.

Aside from the forward and backward links (respectively
called 'head' and 'back') each queue element (called a
'cell') has two additional fields. 'Next' is a pointer to
the first element in the list, and 'flag' indicates whether
or not this list is 'new' (see below). The elements in the
lists use basically the same data structure. 'Next' and
'back' are used to doubly link all vertices (i.e. all cells
corresponding to vertices) with the same 1label. 'Flag'
points to the queue entry for this list, and 'head' points
to the vertex corresponding to this cell. (In the Pascal
implementation these cells have the 'head' field called

'VertName' for clarity.)

Initially, there is only one list on the queue; this
list contains all of the vertices, since all vertices start
with the null label, and the list is marked 'old'. At each
step, a member v of the first non-empty 1list is chosen,
removed from the list, and numbered. Now comes the tricky
part! We would 1like to append the current number to the
label of all unnumbered vertices w adjacent to v. This
requires creating zero or more new lists (zero if v is not

adjacent to any unnumbered vertices). Further, if two

January 10, 1981

- 10 -

vertices w and x are both adjacent to v, and are both
currently on the same list, (i.e. they have the same label),
after the list structure is modified w and x must again be

on the same list. This can be done as follows.

As each w adjacent to v is found, remove w from its
list (say 1). Look at the list (lexicographically) above 1
in the queue (if any). If such a list exists and is marked
'new', add w to this 1list. Otherwise, create a new list,
mark it 'new', and add w to this 1list. Insert this 1list
directly above 1 in the queue. This scheme insures that w

and x are on the same list at the end of the step.

After v's adjacency list has been entirely examined,
mark all 'new' 1lists 'old'. This can be done without

examining all lists by keeping a list of all 'new' 1lists;
whenever a new list is created, make a pointer to it and
store this pointer in another 1list. Figures 3 and 4 show
the linked 1list structure after vertices 5 and 4 of the
sample graph have been 1labelled. For simplicity, the
vertices of the graph have names equal to their

lexicographic breadth-first search numbers.

January 10, 1981

- 11 -

e—f—
)

N
H

FLAG HEAD NEXT BACK

Figure 3.

The linked list structure after vertex 5 is removed.

8§
[d

A
IT
—V

<

J(\\
7. 8
—

P
<i

A
—

N B BN
N~—7

Figure 4.

The linked list structure after vertex 4 is removed.

January 10, 1981

- 12 -

A detailed algorithm for this process follows. Note
that this algorithm is slightly different from the one given
by Rose, Tarjan and Lueker [Ros76] because of some apparent
errors detected in their algorithm. On line 19 of the

algorithm in [Ros76] the first ':=' should be '='. Lines 24
and 25 should be replaced with 'if next(p) <> 0 then
back(next(p)) := back(p))'. Finally, a more subtle error
occurs on line 50 where '...flag(h)=v' should read

'...flag(h)=0". A corrected version of the algorithm

follows in Figure 5.

BEGIN
{ (implicitly) assign null label '}
to all vertices;

head (1) := 2;
back(2) := 1;
head(2) back (1)

: ext(l) := flag(1l)
flag(2) :

c := 3;
{ ¢ is the number of the first empty cell; }
FOR all vertices v DO
BEGIN
head (c)
cell(v)
flag(c)
back(c)
c :=c +
number (v)
END;
next(c-1l) := 0;
FOR i := number of vertices to 1 STEP -1 DO
BEGIN
{ skip empty sets; }
WHILE next(head(l)) 0 DO
BEGIN
head(l) := head (head(l));
back(head (1)) := 1;
END;
{ pick next vertex to number; }
select: p := next(head(l));
{ delete p's cell from its set; }
next(head(l)) := next(p):;
IF next(p) <> 0
THEN back(next(p)) := back(p):;

xt(c-1) := c;

QN3 <
«s (D ~o

Lo | S [I 1|

°e we

I
o I
“e
—
-e

January 10, 1981

- 13 -

{ assign v the number i; }
name_of (i) := v;
number (v) := 1i;
fixlist := null;
update: FOR all w adjacent to v DO
IF number(w) = 0 THEN
BEGIN
{ delete cell of w from its set; }
next(back(cell(w))) := next(cell(w));
IF next(cell(w)) <> 0 THEN
back(next(cell(w))) := back(cell(w));
h := back(flag(cell(w)));
{ if h is an o0ld set then create a new set; }
IF flag(h) = 0 THEN
BEGIN
head(c) :
head (h) :
back (head

= head (h);

t= c;

END;
{ add cell of w to this new set; }
next(cell(w)) := next(h);
IF next(h) <> 0 THEN back(next(h)) :
flag(cell(w)) := back(cell(w)) := h;
next(h) := cell(w);
END;
FOR all h in fixlist DO flag(h) := 0;
END;
END

= cell(w);

Figure 5.

Detailed labelling algorithm.

There are two points left to be determined:
(1) how are the labels actually produced, and

(2) how are the maximal labels (efficiently) found?

To produce the labels, two additional fields were added
to the 'cell' structure given in the algorithm of [Ros76].

One field, 'LabelPtr', is a pointer to a cell. The second,

January 10, 1981

- 14 -

'LabelNum', is an integer. Whenever a new list is created,
LabelNum of the list header is set to the number of v (the
vertex Jjust numbered). This indicates that all vertices
which will be on this set have this number as part of their
label. As they are yet unnumbered, and will be put on this
list iff they are adjacent to v, they receive v's number in
their 1label exactly as they should. At the same time,
LabelPtr of the new list header is made to point to the list
(currently) directly below it in the queue; this is 1 in
the description above Figure 3. By chaining through these
pointers (the initial 1list in the queue has a null LabelPtr
as it has a null label) the complete label for any vertex
can be found. The initial list was not created by numbering

a vertex and thus has no number.

When a vertex is numbered, it is easy to determine

whether or not its label is maximal. As stated above, the
vertex v to be numbered is chosen from the list having the
lexicographically greatest label. If no vertex on this list
is adjacent to v, then v's label can not be the prefix of
any other label; if a vertex on this list is adjacent, then
v's label will be the prefix of another 1label. Checking
each w adjacent to v for this condition is easily done: the
algorithm supplies each cell with a pointer to its 1list

header (i.e. 'flag').

The final stage of the chordality testing requires

checking the 1labels to insure that. they form complete

January 10, 1981

- 15 -

subgraphs. We don't want to check all pairs of each label:
as we have n labels, and each has 0(n) elements, examining
all pairs would require 0(n3) work, violating the O(n+e)
time bound. We first create a list of pairs (i,j) where i<j
and vertex i is adjacent to vertex j; this is a 1list of
actual edges. Next we create the list of necessary edges.
‘For each label of length greater than two, form all pairs of
the form (i,j) where i is the second smallest element of the
label and the j's are all integers in the label greater than

i.

It is sufficient to check only these pairs for two
reasons: (1) with the described method of assigning labels,
the smallest element must be adjacent to everything else in
the label, and (2) the pairs comprised of elements greater
than the second smallest are checked while processing labels

of other vertices.

The two 1lists of edges are then bucketsorted; the
bucketsorting of O(e) pairs over a range of n takes at most
O(n+e) time. One pass through the lists suffices to insure
that the needed edges form a subset of the actual edges.
Examining the theorem, we see that if the needed edges are a

subset of the edges then the graph is chordal.

January 10, 1981

- 16 -

Interval Graph Testing

As mentioned earlier, a chordal graph is an interval

graph iff there exists an ordering of its cliques so that

the set of cliques containing a vertex v 1is contiguous

within that order, for all vertices v.

The output of the chordality test gives us the cliques
(if the graph 1is chordal). Using the PQ-tree data
structure, in O(n+e) time it can be decided whether or not a
chordal graph is an interval gyraph ([Lue79]). The algorithm

is quite complicated and will not be discussed here.

Using Panek's ([Pan78] modification of Young's [You77]
implementation, PQ-trees corresponding to interval graphs
can be built. If the chordal graph is not an interval
graph, the program stops and reports this. 1If the graph is
indeed an interval graph, an encoding of the PQ-tree is

output.

As an example, see the following figures. Figure 6
shows a three component graph, and Figure 7 1lists the
cliques for this graph. Figure 8 shows the corresponding
PQO-tree as determined by the program and the output given by
Panek's implementation with letters substituted for digits.
The P nodes are drawn as circles, and the Q nodes are drawn
as rectangles. The program output represents this with
angle brackets (') and square brackets (')

respectively.

January 10, 1981

- 17 -

ry 10, 1981

Janua

- 18 -

Clique Vertices
1 a 29 31 32 33
2 b 30 32 33
3 c 28 31 33
4 d 25 26 27 33
5 e 24 26 27 33
6 f 22 23 27
7 g 21 23
8 h 16 17 19 20
9 i 15 17 19 20
10 3j 14 17 19 20
11 k 18 20
12 1 12 13 19
13 m 11 13 19
14 n 6 8 910
15 o 7 910
l6 P 5 810
17 q 4 10
18 r 2 310
19] 1 310
Figure 7.

The cliques of the graph of figure 6.

Q ey
) Gememensneg

<[g £ <e d@>[c a bl]l[<m 1><j i h> k]<<s r>[p n o] gq>>

Figure 8.

The PQ-tree for the graph of Figure 6.

January 10, 1981

- 19 -

Isomorphism Testing

Isomorphism testing for interval graphs) is almost as
easy as isomorphism testing of the PQ-trees given by the
interval graph test. Testing the trees with no additional
information does not suffice, as a PQ-tree does not by
itself give a canonical representation of an interval graph.
For example, in Figure 9 two different interval graphs
(modified from graphs in [Lue79]) are shown which have the
same PQ-tree, shown in Fiqure 10. However, as shown 1in
[Col80], labelling the leaves (cliques) of the PQ-trees with
the degree sequences does give a canonical representation up

to isomorphism.

[3
<

Figure 9.

Two non-isomorphic graphs with the -same PQ-tree.

January 10, 1981

- 20 -

| L]

Figure 10.

The PQ-tree of the graphs in Figure 9.

The first part of the testing is to produce the sorted
degree sequences for the cliques. With a bucket sort, this
can be done in O(n+e) time. .Each leaf is given an i-number
which is équal to-the rank of its'degree.sequence within the

sorted list of degree sequences.

Isomorphism testing proceeds as follows. At every
level of the forest, beginning with the leaves of maximum

depth, the 1labels of all nodes at that depth are sorted.

The label of a leaf is its i-number; the label of a P node
is '1' followed by the sorted sequence of its children's i-

numbers; the label of a Q node is '2' followed by the i-

numbers of its children: left to right, or right to 1left,
whichever 1is 1lexicographically smaller. Then each node's

i-number is set equal to the rank of its label.

January 10, 1981

- 21 -

The above steps are repeated. until the roots have

received their i-numbers. The trees are 1isomorphic iff

their roots have the same i-numbers. See Figure 11 for the

pseudo code.

BEGIN

Sort the clique degree sequences;
Assign each leaf's i-number as the rank of
its degree sequence;
FOR d := maxi..um depth TO 1 STEP -1 DO
BEGIN ’
{ Create labels at this level }
FOR each node at this level DO
IF node if a leaf THEN label := i-number
ELSE IF node is a P node

THEN label := 1, <sorted sequence
of children's i-numbers>
else label := 2, min(<children's i-numbers
left to right>, <children's
i-numbers right to leftd>);
Sort all labels at this level;
FOR each node at this level DO
i-number := rank of label;
END;

IF i-numbers of both roots are equal
THEN isomorphic := TRUE
ELSE isomorphic := FALSE;
END
Figure 11.

PQ-tree isomorphism algorithm.

There are only two details of this algorithm which bear
comment. The first is the method of accessing nodes at a
particular level 1in the forest. The second 1is sorting

variable length strings of integers.

Searching through the forest at every iteration for
nodes of a particular depth is too inefficient. However,

with a depth first search of each tree, it is easy to create

January 10, 1981

- 22 -~

a list of nodes for each level. This allows us to build

these lists in time proportional to the size of the forest.

To sort variable length strings, a slight modification
of an algorithm in [Aho74] is used. The modification, done
for ease of programming, 'sorts' the strings in an order

different than the usual lexicographic order. This

modification does not increase the linear time bound of the
algorithm. As it turns out, this modification of the
ordering is not important; the only necessary requirement of

the 'sort' is that any set of equal strings be sorted into

one contiguous sequence.

As shown in [Aho74], the labels of a forest (two trees,
in our case) can be sorted in time proportional to the size
of the forest plus the sum of the lengths of the original
labels. The original labels are the <clique degree

sequences; thus the sum of their lengths is O(n+e). Also,

determining isomorphism of two n-vertex trees with labels in
the range 1 to n can be done in O(n) time. Hence the

isomorphism testing can be performed in O(n+e) time.

A more detailed explanation of the algorithm is found

in Figure 12,

January 10, 1981

- 23 -

BEGIN
sort clique degree sequences;
FOR each leaf v in the forest DO
v's i-number := rank of corresponding sequence;

FOR 1 := maximum depth in forest TO 1 STEP -1 DO
BEGIN
initialize label list to null;
FOR every node v at depth 1 DO
BEGIN
{ create v's label }
IF v is a leaf THEN v's label := v's i-number
ELSE IF v is a P node THEN
BEGIN .
get i-numbers of v's children;
sort them in ascending order;
v's label := this sorted list;
END
ELSE
BEGIN
{ v is a Q0 node }
get i-numbers of v's children left to right;
get i-numbers of v's children right to left;
v's label := lexicographic minimum of
the above sequences;
END;
add v's label to the list of labels;
END;
sort the list of labels;
FOR every node v at depth 1 DO
v's i-number := v's label's rank in sorted list;
END;

IF both roots have same i-number
THEN isomorphic := TRUE

ELSE isomorphic := FALSE:
END

Figure 12.

Isomorphism testing algorithm.

January 10, 1981

- 24 -

Conclusions

The chordality test and isomorphism test algorithms

were implemented in Pascal on the University of Waterloo

Math Faculty Computing Facility Honeywell 66/60. Panek's
implementation of the interval graph test is also

implemented in Pascal on the same computer.

The programs were then tested on various graphs. Some

of these appear in Appendix 4.

As a final note, a relatively small extension of the
isomorphism test will give the automorphism partition of the
forest. Most of the necessary work is in sorting variable
length labels, and this is already done for the isomorphism
test. The only non-trivial part remaining is to find the

node (or part of node!) of the PQ-tree which corresponds to

each vertex of the original graph. This is described in

detail in [Col80].

Januvary 10, 1981

- 25 -

Acknowledgements

It seems fitting at this point to quote Dolores

a former student of Kelly Booth:

"The writer is grateful to Kelly Booth
for patience far beyond any

expectation."

January 10, 1981

Panek,

- 26 -

References

[Aho74]

[Bon76]

(Boo75]

[Col80]

[Ful6s5]

(Lue79]

Alfred V. Aho, John E. Hopcroft and Jeffrey D.

Ullman. 1974. The Design and Analysis of

Computer Algorithms. Reading, Massachusetts:

Addison-Wesley.

J.A. Bondy and U.S.R. Murty. 1976. Graph Theory

with Applications. New York: North Holland.

Kellogg S. Booth. November 1975. PQ-Tree

Algorithms. Ph.D. Thesis, University of

California at Berkeley.

Charles J. Colbourn and Kellogg S. Booth. March,

1980. Linear Time Automorphism Algorithms for

Trees, Interval Graphs, and Planar Graphs. Dept.

of Computer Science Report CS-79-06, University of

Waterloo.

D.R. Fulkerson and O.A. Gross. 1965. "Incidence

Matrices and Interval Graphs," Pacific Journal of

Mathematics, Vol. 15, No. 3.

George S. Lueker and Kellogg S. Booth. April
1979. "A Linear Time Algorithm for Deciding
Interval Graph Isomorphism," Journal of the

Association for Computing Machinery, Vol. 26, No.

2, pp. 183-195.

January 10, 1981

[Har69]

[Pan78]

[Ros76]

[You77]

- 27 -

Frank Harary. 1969. Graph Theory. Reading,

Massachusetts: Addison-Wesley.

Dolores M. Panek. 1978. 1Implementing a Linear-

Time Test for Graph Planarity. Master's Essay,

Dept. of Computer Science, University of Waterloo.

Donald J. Rose, R. Endre Tarjan and George S.
Lueker. June 1976. "Algorithmic Aspects of

Vertex Elimination on Graphs," SIAM Journal on

Computing, Vol. 5 No. 2.

Sarah M. Young. 1977. Implementation of PQ-Tree

Algorithms. Master's Thesis, Dept. of Computer

Science, University of Washington.

January 10, 1981

Appendix 1

A Pascal Program for Chordality Testing

The following routines implement the chordality test.

They are found under the catalog gr/./zsd/iso-test/chordal.

gr/./zsd/iso-test/chordal/types.p:

const MaxVerts = 50;

type EPointer “edge;

CPointer “CellNode;

CligLPtr = “Cliquelist;

edge = record
{begin}
next: EPointer;
OtherEnd: integer;
end;
vertex = record
{begin} .
AdjList: EPointer;
LexNum: integer;
degree: integer;
cliques: CliqLPtr;
cell: CPointer;
end;
graph = record
{begin}
NumVerts: integer;
NumCliques: integer;
vertices: arrayl[l..MaxVerts] of vertex;
NameOf : arrayll..MaxVerts] of integer;
end;

CellNode = record

{begin}
next: CPointer;
back: CPointer;
flag: CPointer;
LabelPtr: CPointer;
LabelNum: integer;
case boolean of

true: (head: CPointer);

January 10, 1981

gr/ ./ zsd

{ This procedure reads in the graph from the tty or a file.
The first line should be the number of vertices,

- 29 -

false: (VertName:

end;

Cliquelist record
{begin}

next:

CligNum:

end;

text file of char;

/iso—-test/chordal/input.p:

integer);

CliqLPtr;
integer;

and the

subsequent lines should be the adj. lists for each vertex.

Each adjacency list should have the end flagged with a 0.

procedure InputGraph(var g: graph);

var

begin
write
readl
Fromt

if not Fromtty then openf(infile, filename,
[}
’

i, num: integer;

ej: EPointer;
Fromtty: boolean;
last: EPointer;
filename:

infile: file of char;

In('If data in a file,
n(filename);
ty := filename[1l]

else openf(infile, '

type name;

else return');

lr|)
'‘r');

' ,MaxVerts:1,') ?

write('List adjacent vertices for each vertex;');

with g do
begin
if Fromtty then
write('How many vertices (max =
readln(infile, NumVerts);
if Fromtty then
writeln(' end with a 0');
for i := 1 to NumVerts do
begin

new(vertices([i].AdjList);

vertices(i].AdjList” .next
:= vertices[i].Ad]jList;

last
vertices[i].degree := 0;
vertices[il.cliques :=

nil;

if Fromtty then write(i:1l, ':

January 10,

1981

nil;

')

’

}

packed array [l1..40) of char;

')

- 30 -

read(infile, num);
while num <> 0 do

begin
vertices([i].degree := vertices[i].degree + 1;
new(ej);
last” .0OtherEnd := num;
last” .next := ej;
ej" .next := nil;
last := ej;
read(infile, num);
end; {of while}
end; {of for}
end; {of with g}
if not Fromtty then closef(infile);
writeln;
writeln(' *** jnput complete ***'),;
writeln;

end; {of InputGraph}

gr/./zsd/iso-test/chordal/lex-order.p:

{ This procedure does the lexicographic breadth first
search as specified by Rose, Tarjan and Lueker.
It also writes out the vertex labels as they are found.
The maximal labels are numbered, and the non-maximal labels
are flagged with a '*', }

var outfile:

procedure LexOrder (var g: graph;
type LPointer = “ListEl;

ListEl =

{begin}
next:
cell:

end;

record

var w:
FixList:
ListElm:
WCell:
first:
second:
empty:
old:

h:

temp:

v:

i:

max imal:

January 10,

1981

LPointer;
CPointer;

EPointer;
LPointer;
LPointer;
CPointer;
CPointer;
CPointer;
CPointer;
CPointer;
CPointer;
CPointer;
CPointer;
integer;

boolean;

text);

- 31 -

procedure AddToCliquelList(CliqueNumber, VertexName: integer);
CLP: CliqLPtr;

var
beg

in
new(CLP);
CLP".CligNum := CliqueNumber;

CLP".next := g.vertices[VertexName].cliques;

g.vertices[VertexName].cliques := CLP;

end;

beg

in

{ Write out the headings for the label lists }

writeln(outfile,

'The labels generated by the lexicographic BFS are:');

writeln(outfile,
'Vertex names

{ Initialize }
new(FixList);
new(first);
new(second);
first®.head := second;
second” .back := first;

first®.back := nil;
first®.flag := nil;
first®™.next := nil;

second” .flag := nil;
second” .head := nil;
second” .LabelPtr := nil;
g.NumCliques := 0;

BFS numbers');

{ Empty is (a pointer to) the next cell to be used }

new(empty) ;

{ Initialize the list of vertices }

old := second;

for i := g.NumVerts downto 1 do

begin
empty” .VertName := i;
g.vertices(i]l.cell :=
0ld” .next := empty;
empty”.flag := second;
empty” .back := o0ld;
old := empty;
new(empty) ;
g.vertices[i].LexNum := 0

end;

0ld" .next := nil;

empty;

.o

{ Do the lexicographic ordering }
for i := g.NumVerts downto 1 do
begin
{ Initialize this iteration }
maximal := true;
FixList”.next := nil;

January 10, 1981

- 32 -

{ Skip empty sets }
while first®.head”.next = nil do
begin
first” .head := first”.head” .head;
first” .head” .back := first;
end;

{ Get a vertex with maximum label }
{select:} v := first”.head” .next;

{ Delete it from it's set }

first®.head” .next := v”.next;

if v¥.next "= nil then v~ .next”.back := v~ .back;

{ Give the vertex the number i }
g.NameOf[(i] := v".VertName;
g.vertices[v”.VertName].LexNum := i

e

{update:} w := g.vertices[v”.VertName] .AdjList;
while w”.next ~= nil do
begin
WCell := g.vertices[w” .OtherEnd].cell;
{ Is this vertex yet to be lexicographically numbered? }
if g.vertices[WCell”.VertName] .LexNum = 0 then
begin
{ If w was in same set as v then
the label is not maximal }
if WCell”.flag = v~ .flag then maximal := false;

{ Delete cell of w from it's set }
WCell” .back” .next := WCell” .next;
if WCell” .next ~= nil
then WCell”.next” .back := WCell”.back;
h := WCell".flag”.back;

{ If h is an 0ld set then create a new set }
if h".flag = nil then
begin
empty” .head := h”.head;
h®.head := empty;
empty” .head” .back := empty;
empty” .back := h;
empty” .flag := first;
empty”.next := nil;
empty” .LabelPtr := WCell“".flag;
empty”.LabelNum := i;

{ Add empty to FixList }
new(ListElm);

ListElm~.cell := empty;
ListElm”~.next := FixList”.next;
FixList” .next := ListElm;

h := empty;
new(empty) ;

January 10, 1981

- 33 -

end;

{ Add cell of w to new set }
WCell” .next h” .next;
if h".next "= nil then h".next”.back := WCell;
WCell”.flag h;
WCell” .back h;
h” .next := WCell;

end; { of if LexNum = 0 }

w = w .next;
end; { of while w "= nil }

{ Fix the flags - make the new sets old }
ListElm := FixList".next;
while ListElm ~= nil do
begin
ListElm”~.cell”.flag := nil;
ListElm := ListElm”.next;
end; .

{ Output the label - first a number iff maximal, then
the label with vertex names, then the label with
BFS numbers. }

if maximal then

begin

g .NumCliques := g.NumCliques + 1;

write(outfile, ' ',g.NumCliques:2, ' ', g.NameOf[i]:1);

AddToCliquelList (g.NumCliques, g.NameOf([i]);

end
else write(outfile, '* ', g.NameOf([i]:1);

{ The label with original vertex names... }
temp := v~ .flag;
while temp”.LabelPtr ~“= nil do
begin

write(outfile, ',', g.NameOf [temp” .LabelNum]:1);

{ For each vertex in the clique, add this clique

number to it's list of cliques }
if maximal then AddToCliqueList(g.NumCliques,
g .NameOf [temp” .LabelNum]);

temp := temp”.LabelPtr;
end;

{ The label with the lexicographix BFS numbers... }
temp := v~ .flag;
write(outfile, ° v, 1:1);
while temp”.LabelPtr = nil do
begin
write(outfile, ',', temp”.LabelNum:1);
temp := temp”.LabelPtr;
end;
writeln(outfile);

January 10, 1981

- 34 -

end; { of for statement }
end; { of LexOrder }

gr/./zsd/iso-test/chordal/output.p:

procedure OutputGraph(g: graph; var outfile: text);

var i: integer;
DegreeSum: integer;
NumEdges: integer;
ej: EPointer;
CLP: CliqLPtr;
begin
with g do
begin

DegreeSum := 0;
writeln(outfile);
writeln(outfile, 'Name: LexNum: ',
'Degree: AdjList: Clique Membership List');
for i := 1 to NumVerts do

begin
DegreeSum := DegreeSum + vertices[i].degree;
write(outfile, i:3, ': ');

write(outfile, vertices(i]l.LexNum:3, ':

write(outfile, vertices[i).degree:3, ':
ej := vertices[i].AdjList;
while ej”.next = nil do
begin
write(outfile, ej”~.OtherEnd:1, ' ');
ej := ej” .next;
end;
write(outfile, ': ');
CLP := vertices([i]l.cliques;
while CLP ~= nil do
begin
write(outfile, CLP".CligNum:1, ' ');
CLP := CLP".next;
end;
writeln(outfile);
end; {of for}
writeln(outfile);
writeln(outfile, ' Vertices Edges Cliques');
NumEdges := DegreeSum div 2;
writeln(outfile, NumVerts:7, NumEdges:11, NumCliques:12);
end; {of with}
end; {of OutputGraph}

')
')

-e weo

January 10, 1981

- 3§ -

gr/./zsd/iso-test/chordal/c-test.p:

{ This procedure creates a list of the necessary edges
(necessary for chordalaity) and a list of all edges.
It then sorts each list (using a bucket sort) and
compares the lists to insure that the list of
necessary edges is a subset of the list of actual
edges. {

function CheckChordality(g: graph): boolean;

type ElPtr = "ListEl;
ListEl = record
{begin}
v: arrayl(l..2] of integer;
pred: E1Ptr;
suc: ElPtr;
end;
var tempc: CPointer;
tempe: EPointer;
act: El1Ptr;
actual: ElPtr;
need: ElPtr;
needed: ElPtr;
i: integer;
LexOfI: integer;
second: integer;

procedure insert(list: El1Ptr; vl, v2: integer);
var ListElm: ElPtr;

begin
new(ListElm);
ListElm~.v[1] vl
ListElm~.v[2] v2
ListElm” .pred list” .pred;
ListElm”™ .pred”.suc := ListElm;
list®.pred := ListElm;

end; { of procedure insert }

we wo

procedure BucketSort(list: El1Ptr);

var bucket: array[l..MaxVerts] of ElPtr;
temp: E1Ptr;
temp2: ElPtr;
i, j: integer;

procedure move(item, ThisBucket: ElPtr);
begin

item” .pred := ThisBucket”.pred;

item” .pred”.suc := item;

ThisBucket” .pred := item;
end;

January 10, 1981

- 36 -

begin
{ Initialize the buckets }
for i := 1 to g.NumVerts do new(bucket[i]);

for i := 2 downto 1 do

for j := 1 to g.NumVerts
do bucket[]j] “.pred := bucket([j];

temp := list”.suc;
while temp ~= nil do
begin

temp2 := temp” .suc;

move (temp, bucket[temp”.v([i]]);

temp := temp2;
end;

{ Concatenate the buckets back into 1 list }

list” .pred := list;

for j := 1 to g.NumVerts do
if bucket[j] “.pred ~= bucket(j] then { if ~ empty }

begin
list” .pred” .suc := bucket[]j] " .suc;
bucket[j] “.suc”.pred := list”.pred;
list”.pred := bucket[]j] ".pred;

end;

list”.pred”.suc := nil;

end; { of for i }
end; { of procedure BucketSort }

{ Finally....begin the function body! }
begin
new(actual);
new(needed);
with g do
begin
{ First: create the actual edge list }
actual”.pred := actual;
for i := 1 to NumVerts do
begin
LexOfI := vertices[i].LexNum; { must translate }
tempe := vertices[i].AdjList;
while tempe”.next ~= nil do
begin
{ Only need (i,j) where i < j }
if vertices[tempe”.OtherEnd].LexNum > LexOfI then
insert(actual, LexOfI,
' vertices[tempe” .OtherEnd].LexNum) ;
tempe := tempe”.next;
end;
end;
actual”.pred”.suc := nil;

{ Create the list of necessary edges }
needed” .pred := needed;

January 10, 1981

- 37 -

for i := 1 to NumVerts do

{ Only look at labels with at least two entries }

if vertices[i].cell”.flag”.LabelPtr ~=
begin

tempc := vertices[i]l.cell”.flag;

second := tempc”.LabelNum;

tempc := tempc”.LabelPtr;

while tempc”.LabelPtr ~= nil do

begin '

nil then

insert(needed, second, tempc”.LabelNum);

tempc := tempc”.LabelPtr;
end;
end;
needed” .pred”.suc := nil;

{ Now snort the two lists }
BucketSort (actual);

BucketSort(needed) ;

{ See if needed is a subset of actual }
act := actual”.suc;

need := needed” .suc;

CheckChordality := true;

while need "= nil do { Assume at least 1 actual edge }

begin

while (act”.v[1l] < need”.v([(1l]) and (act”.suc ~= nil)

do act := act”.suc;
if act®”.v[1] “= need”.v[l] then
begin
CheckChordality := false;
need := nil;

:= need” .suc

end
else
begin
while (act”.v[2] < need”.v[2]) and
(act”.suc = nil) do act := act”.suc;
if act™.v[2] = need”.v[2] then need
else
begin

CheckChordality := false;
need := nil;
end;
end; { of else }
end; { of while }

end; { with g }

end;

{ of function CheckChordality }

January 10, 1981

- 38 -

gr/./zsd/iso-test/chordal/main.p:
{ This is the main procedure for the chordality test. }

procedure main;

var g: graph;
outname: packed array(l..50] of char;
outfile: text;

procedure InputGraph(var g: graph); extern;

procedure LexOrder(var g: graph; var out: text); extern;
procedure OutputGraph(g: graph; var out: text); extern;
function CheckChordality(g: graph): boolean; extern;

begin
InputGraph(q);

writeln('What is the output file name?');
readln(outname);
openf(outfile, outname, 'w');

LexOrder (g, outfile);

OutputGraph(g, outfile);

if CheckChordality(g) then writeln('Graph is chordall!')
else writeln('Graph is not chordal!');

closef(outfile);
end;

January 10, 1981

- 39 -

Appendix 2

A Pascal Program for Isomorphism Testing

The following routines

test. They are found

test/iso.

under

implement the tree isomorphism

the catalog gr/./zsd/iso-

gr/./zsd/iso-test/iso/types.p:

const MaxVerts = 50;
type NodeTypes = (P, Q, leaf);

SonList = “son;

TreePtr = “tree;

son = record

{begin}
sibling: SonList;
child: TreePtr;

end;

tree = record

{begin}
depth: integer;
num: integer;
INumber: integer;
JNumber : integer;
father: TreePtr;
case NodeType: NodeTypes of

P, Q: (sons: SonlList;
symmetric: boolean);

end;

list = “ListElm;

ListElm = record

{begin}
data: integer;
next: list;
case boolean of

true: (position: integer);
false: (tree: TreePtr);
end;

January 10,

1981

- 40 -~

filename = packed array [1..40] of char;
InfoArray = array [l..MaxVerts] of integer;
InfoSet = array [l..MaxVerts] of list;
BigInfoArray = array [l..2*MaxVerts] of integer;
BigInfoSet = array [l..2*MaxVerts] of list;
QueueHeader = “qu;

?u = record
be

gin}

first: list;

last: list;
end;

gr/./zsd/iso-test/iso/stacks.p:
{ stack functions follow...}

procedure push(var elm, lizst: list);
begin

elm” .next := lizst;

lizst := elm;
end;

function empty(lizst: 1list): boolean;
begin

if lizst” .next = nil then empty := true else empty := false;
end;

function pop(var lizst: list): list;
begin

pop := lizst;

lizst := lizst”.next;
end;

{ Queue functions follow }

function NewQueueHeader: QueueHeader;
var temp: QueueHeader;
begin

new(temp);

temp”.first := nil;

temp”.last := nil;

NewQueueHeader := temp;

January 10, 1981

- 4] -

end;

function QEmpty(Q: QueueHeader): boolean;

begin
if Q".first = nil then QEmpt
else QEmpt

true
false;

y :
y :

end;

function dequeue(var Q: QueueHeader): list;
begin
dequeue := Q" .first;
if Q".first = Q".last { we are emptying the queue
then Q" .first := nil
else Q" .first := Q".first” .next;
end;

procedure enqueue(elm: list; wvar Q: QueueHeader);
begin
if QEmpty(Q)
then Q0" .first := elm
else Q" .last” .next := elm;
Q" .last := elm;
end;

procedure concatenate(var Ql, Q2: QueueHeader);
begin
if QEmpty(Ql)
then Q1" .first := Q2" .first
else Ql1".last”.next := Q2" .first;
Ql1%.last := Q2".last;
Q2" .first := nil;
Q2°%.last := nil;
end;

January 10, 1981

- 42 -

gr/./zsd/iso-test/iso/handlelist.p:

{ These functions are used to facilitate list handling. }

var FreeList: list;

function empty(l: list): boolean; extern;
function pop(var 1l: list): list; extern;
procedure push(var 11, 12: list); extern;

function GetList: list;

var gnu: list;

begin
if not empty(FreeList) then GetList := pop(FreeList)
el se
begin

new(gnu) ;
GetList := gnu;
end;
end;

function NewList: list;
var temp: list;
begin
temp := GetList;
temp” .next := nil;
NewList := temp;
end;

procedure GivelList(var lizst: list);
begin

push(lizst, FreelList);

lizst := nil;
end;

procedure InitializeFreelist;
begin
new(FreelList);
FreeList”.next := nil
end;

~e

January 10, 1981

- 43 -

gr/./zsd/iso-test/iso/utility.p:

function empty(l: list): boolean; extern;

function pop(var 1l: list): list; extern;

procedure push(var item, 1lst: list); extern;

function NewQueueHeader: QueueHeader; extern;

function QEmpty(Q: QueueHeader): boolean; extern;
function dequeue (var Q: QueueHeader): list; extern;
procedure enqueue (elm: list; var Q: QueueHeader); extern;
procedure concatenate(var Ql, Q2: QueueHeader); extern;
function GetList: list; extern;

function NewList: list; extern;

procedure GiveList(var lst: list); extern;

procedure InitializeFreelist; extern;

gr/./zsd/iso-test/iso/get-g-info.p:

{ This procedure reads in the description of the graph
which is output by the chordality test. }

procedure add(num: integer; var 1l: list);
var gnu: list;
begin

gnu := GetList;

gnu”.data := num;

push(gnu, 1);
end;

procedure BucketSort(var lst: list;
DataRange, PosRange: integer); extern;

procedure GetGraphInfo(var NumVerts, NumCliques: integer;
ChordInfoFile: filename;
var degrees: InfoArray;
var DegSeqs: InfoSet);

var kar: char;
i, j: integer;
ChordData: file of char;
begin
openf(ChordData, ChordInfoFile, 'r');
kar = ' ';
while kar = 'V' do

readln(ChordData, kar); { Skip the headers }
{ skip the * (first label maximal iff only 1 node) }
read (ChordData, kar);

January 10, 1981

- 44 -

readln(ChordData, NumVerts);

while kar "= 'N' do if eoln(ChordData) then readln(ChordData)
else readln(ChordData, kar);
for i := 1 to NumVerts do
begin
for j :=1 to 2 do
begin
while kar = ':' do read(ChordData, kar);
kar = ' ';
end;
readln(ChordData, degrees[i]);
end;

while kar = ' ' do if eoln(ChordData) then readln(ChordData)
else readln(ChordData, kar);
read (ChordData, i, j, NumCliques);

reset(ChordData);

while kar = 'V' do readln(ChordData, kar);
for i := 1 to NumCliques do
begin

read (ChordData, kar);

while kar = '*' do

begin

readln(ChordData);
read (ChordData, kar);
end;

{ We have a line with a clique on it }
read (ChordData, j);

kar :="',';

DegSeqs[i] := NewList;
while kar = ',' do
begin

read (ChordData, j, kar);
add (degrees[jl, DegSeqgs[i]);
end;
readln(ChordData);
BucketSort(DegSeqs[i], NumVerts, 0);
end; { of for

closef(ChordData);
end; { of procedure GetGraphInfo }

January 10, 1981

- 45 -

gr/./zsd/iso-test/iso/inputree.p:

{ This procedure reads in the PQ-tree output by
the interval graph test and builds a PQ-tree. }

function InputPQTree(PQfilename: filename): TreePtr;

var pos: . integer;
depth: integer;
NodeNum: integer;
PQTree: packed array(l..200] of char;
PQData: file of char;

{ This procedure adds a son to a tree }

procedure AddSon(var T, NewSon: TreePtr);
var list: SonList;
begin
new(list);
list”.sibling := T".sons;
T" .sons := list;
list”.child := NewSon;
end;

procedure SkipBlanks;

begin

while PQTree[pos] = ' ' do pos := pos + 1;
end;
function GetInt: integer;
var i: integer;
begin

i :=0;

while (PQTreelpos] >= '0') and (PQTree([pos] <= '9') do
begin
i := i*10 + ord(PQTreel[pos]) - 48;
pos := pos + 1;
end;
GetInt := i;
end;

function BuildTree: TreePtr;

var current: char;
close: char;
NewSon: TreePtr;
T: TreePtr;
begin

depth := depth + 1;
NodeNum := NodeNum + 1;
SkipBlanks;

{ Create a null tree }
new(T);

T" .father := nil;
T".sons := nil;

January 10, 1981

- 46 -

T" .depth := depth;
T .num := NodeNum;

if PQTree([pos] = '[' then
begin
close := "

begin
close := '>!';
T" .NodeType :
end;
pos := pos + 1;

Ski pBlanks;

while PQTree(pos] ~= close do
begin
current := PQTreelpos];
if (current = '[') or (current = '<')
then NewSon := BuildTree
else
begin
new(NewSon) ;
NewSon” .NodeType := leaf;
NewSon” .num := GetlInt;
NewSon” .depth:= depth + 1;
end;
NewSon” .father := T;
AddSon (T, NewSon);
SkipBlanks;
end; { of while }
pos := pos + 1; { Skip the closing]

depth := depth - 1;
BuildTree := T;
end; { of procedure BuildTree }

begin { procedure InputPQTree }
openf (PQData, PQfilename, 'r');

while not eof(PQData) do readln(PQData,

closef(PQData);
pos := 1;

NodeNum := 0;
depth := 0;
InputPQTree := BuildTree;

end;

January 10,

1981

or > }

PQTree);

- 47 -

gr/./zsd/iso-test/iso/bucketsort.p:

{ This procedure bucketsorts a list of pairs;
if PosRange is < 0 the list is sorted only on one field

procedure BucketSort(var llist: list;
DataRange, PosRange: integer);

var bucket: BigInfoSet;
current: list;
i: integer;

procedure move(var item, into: list);
var temp: list;
begin
temp := item”.next;
push(item, into);
item := temp;
end;

begin
for i := 1 to DataRange do bucket[i] := Newlist;
current := llist;
while current”.next ~“= nil do
move (current, bucket[current” .datal);

= current;
1 to DataRange do

for i := 1 to DataRange do GiveList(bucket([i]);

if PosRange > 0 then

begin
for 1 := 1 to PosRange do bucket[i] := NewList;
current := llist;

while current”.next “= nil do
move(current, bucket[current” .posi

llist := current;
for i := 1 to PosRange do
while bucket[i] “.next ~= nil do move(bucket([i],

for i := 1 to PosRange do GiveList(bucket([i]);

end;
end; { of procedure BucketSnort }

January 10, 1981

.}

i:=
while bucket([i] “.next “= nil do move(bucket([il, 1list);

tion]);

llist);

- 48 -

gr/./zsd/iso-test/iso/vlssort.p:

{ variable Length String Sort - we use a modified lexicographic
sort algorithm to "sort" an array of lists; each list is a
sequence of integer.

The ranks are returned in "rank".

The lists are passed in "strings".

"tuples" tells how many lists there are to be sorted.
"largest" gives the largest integer appearing in any tuple.

}

procedure BucketSort(var lst:
DataRange, PosRange: integer); extern;

list;

procedure VLSSort(strings: BigInfoSet; var rank: BigInfoArray;
tuples, largest: integer);

var NonEmpty: arrayll..2*MaxVerts] of QueueHeader;
Q: arrayll..2*MaxVerts] of QueueHeader;
queue: QueueHeader;
NE: list;
elm: list;
temp: list;
tmp2: list;
current: list;
pointers: BigInfoSet;
Max Length: integer;
i, 1: integer;
count: integer;
previous: integer;
begin

{ First make a list of all pairs
of (list number) vs (list data) }
NE := NewList;
MaxLength := 0;
for i := 1 to tuples do
begin
count := 0;
elm := strings[i]
while elm”.next ~
begin
count := count + 1;
temp := GetList;
temp”.data := elm”.data;
temp” .position := count;
push(temp, NE);
elm := elm” .next;
end;
if count > MaxLength then MaxLength := count;
end;

z nil do

{ Now sort this list of pairs }
BucketSort (NE, largest, MaxLength);

January 10, 1981

- 49 -

{ Now create the NonEmpty lists }
for i := 1 to MaxLength + 1 do NonEmpty([i] := NewQueueHeader;
current := NE;
while current”.next “= nil do
begin
temp := current;
current := current”.next;
{ If the list element following temp is the same as temp,
ignore temp }
if (temp”.position = current”.position) and
(temp”.data = current”.data) and (current”.next ~= nil)
then GiveList (temp)
else enqueue(temp, NonEmpty[temp”.position]);
end;

{ Now we are (finally!) ready to start sorting }
previous := 0;
queue := NewQueueHeader;
for i := 1 to tuples do
begin
pointers[i] := strings(il;
new(temp) ;
temp”.data := i;
enqueue (temp, queue);
end;
for i l to largest do Qfi] := NewQueueHeader;
1 to MaxLength + 1 do
begin
while not QEmpty(queue) do
begin .
current := dequeue (queue);
if pointers[current”.data] ".next = nil
then begin
{ This tuple is "sorted"...find it's rank }
if previous =0
then begin
previous := current”.data;
rank[current” .data] := 1;
end
else begin
{ Compare this string for equality
with the previous string }
temp := strings[previous];
tmp2 := strings[current”.datal;
while (temp”.next “= nil) and (tmp2~.next ~= nil)
and (temp”.data tmp2~.data) do
begin
temp := temp” .next;
tmp2 := tmp2~.next;
end;
if (temp”.next = nil) and (tmp2”®.next = nil)
then rank[current”.data]l] := rank[previous]
else begin
rank[current”.data]l] := rank[previous] + 1;

January 10, 1981

- 50 -

previous := current”.data;
end;
end; { of long else clause }
end { of big then clause }
else begin
enqueue (current, Q[pointers[current”.data]”.datal):
pointers(current”.datal :=
pointers[current”.data] ".next;
end;
end; { of while }

{ Concatenate all of the appropriate queues together }

while not QEmpty(NonEmpty[l]) do

begin
current := dequeue (NonEmpty[1l]);
concatenate(queue, Q[current”.datal);
GiveList(current);

end;

end; { of big for 1 := 1 to MaxLength }
end; { of procedure VLSSort }

gr/./zsd/iso-test/iso/i-number.p:

procedure VLSSort(strings:BigInfoSet; var rank: BigInfoArray;
tuples, largest: integer); extern;

procedure BucketSort(var 1lst: list;
DataRange, PosRange: integer); extern;

function number (DS1, DS2: 1InfoSet;

Tl, T2: TreePtr;
NumVerts, NumVert2: integer;
NumCliques, NumClique2: integer): boolean;

var Deg Seqs: BigInfoSet;
i: integer;
ranks: BigInfoArray;
levels: InfoSet;
temp: list;
procedure GetLevels(var T: TreePtr; start: integer);
var son: SonList;
temp: list;
begin
{ This procedure creates an entry in the list 'level[i]' for
each vertex of T whose depth is 1i. Also, given the rank

information a working label is given to each leaf. }

temp := GetList;

January 10, 1981

- 51 -

temp” .tree := T;
push(temp, levels[T".depth]);

if

end;

T" .NodeType ~= leaf
then
begin
son := T".sons;
while son “= nil do
begin
GetLevels(son®”.child, start);
son := son”.sibling;
end;
end

else if start >= 0 then T .INumber

{ of procedure GetLevels }

procedure INumber;

var

begin

1:
largest:
strings:
i:
MaxDepth:
T:
labels:
son:
node:
symbol:
temp:
stak:

¢:= ranks[T" .num + start];

integer;
integer;
integer;
integer;
integer;
TreePtr;
BigInfoSet;
SonlList;
list;
list;
list;
list;

{ Create the lists of nodes at each level }

GetLevels(T1,

0);

GetLevels (T2, NumCliques);

MaxDepth
while empty(levels[MaxDepth]) do MaxDepth

:= NumCliques;

stak := Newlist;

:= MaxDepth - 1;

{ Do the i-numbering from bottom of tree to top }

for 1

:= MaxDepth downto 1 do

begin
{ Create labels at this level }

strings := 0;
largest := 2;

node := levels(l];
while node”.next ~“= nil do
begin

T := node”.tree;

strings := strings + 1;

labels[strings] := NewList;
if T" .NodeType = leaf then
begin

temp := GetList;

temp”.data :=

January 10,

T" .INumber;
push(temp, labels([strings]);

1981

- 52 -

if T".INumber > largest then largest := T".INumber;
end
else
begin
son := T".sons;
while son "= nil do
begin
temp := GetList;
temp” .data := son”.child”.INumber;
if temp”.data > largest then largest := temp”.data;
push(temp, labels[strings]);
son := son”.sibling;
end;

{ P and Q0 nodes handled differently wrt label }
if T" .NodeType = P
then BucketSort(labels([strings], 2*NumVerts, 0)
else :
begin
{ Choose the smaller of the label
and it's reversal. }
symbol := labels([strings];
while symbol”.next ~= nil do { Create reversal }
begin
temp := GetList;
temp”.data := symbol” .data;
push(temp, stak);
symbol := symbol”.next;
end;

{ Compare them }
T" .symmetric := true;
symbol := labels[strings];
temp := stak;
while (temp”.next “= nil) and T" .symmetric do
begin
if temp”.data “= symbol”.data then
begin
T" .symmetric := false;
if temp”.data < symbol”.data then
begin
temp := labels([strings];
labels(strings] := stak;
stak := temp;
end;
end;
symbol := symbol” .next;
temp := temp”.next;
end;
while not empty(stak) do
begin
temp := pop(stak);
Givelist(temp);
end;

January 10, 1981

- 53 -

end; { of else }

{ Add a P/Q indicator }
temp := GetlList;
if T".NodeType = P
then temp”.data :=1
else if T".NodeType = Q then temp”.data := 2;
push(temp, labels[strings]);
end; { of else clause }
node := node” .next;
end; { of while }

{ Sort the labels and assign the i-numbers }

VLSSort(labels, ranks, strings, largest);

strings := 0;

while not empty(levels[l]) do

begin
strings := strings +
node := pop(levels[l
node” .tree” . INumber
GivelList (node);

end;

0p v
|~ =

ranks([strings};

{ Give back the storage used by the labels }
for i :=1 to strings do
begin
while not empty(labels[i]) do
begin
temp := pop(labels(i]);
GiveList(temp);
end;
GivelList(labels[i]);
end;
end; { of for 1 := .. }
end; { of procedure INumber }

begin { function number }

if (NumVerts ~= NumVert2) or (NumCliques ~= NumClique?2)
then number := false
el se
begin

{ Concatenate the clique degree sequences and sort them }
for i := 1 to NumCliques do
begin
DegSeqs{i] := DS1[i];
DegSeqs [NumCliques + i] := DS2[i];
end;
VLSSort (DegSeqs, ranks, 2*NumCliques, NumVerts);

{ Initialize the lists of nodes at each level }
for i := 1 to NumCliques { really only need about }
do levels[i] := NewList; { log(NumCliques) }

{ And do the i-numbering }

January 10, 1981

- 54 -

INumber;

{ Compare the i-numbers of the roots of Tl and T2 }
number := T1".INumber = T2".INumber;
end; { of else }
end; { of function number }

gr/./zsd/iso-test/iso/main.p:
function InputPQTree(f: filename): TreePtr; extern;

procedure GetGraphInfo(var i,j: integer; f: filename;
var d: InfoArray;
var ds: InfoSet); extern;

function number (DS1, DS2: InfoSet;
Tl, T2: TreePtr;
NumVerts, NumVert2: integer;
NumCliques, NumClique2: integer): boolean;

extern;

procedure main;

var PQTreel: TreePtr;
PQTree2: TreePtr;
ChordOutputDatal: filename;
ChordOutputData?2: filename;
PQOutputDatal: filename;
PQOutputData2: filename;
degreesl: InfoArray;
degrees2: InfoArray;
DegSeqgsl: InfoSet;
DegSeqgs2: InfoSet;
NumVertsl: integer;
NumVerts2: integer;
NumCliquesl: integer;
NumCl iques2: integer;
isomorphic: boolean;

begin

InitializeFreelist;

writeln('What is 1 chordality test output file name?');

readln(ChordOutputDatal);
writeln('What is 1 PQ output file name?');
readln(PQOutputDatal);

GetGraphInfo (NumVertsl, NumCliquesl, ChordOutputDatal,
degreesl, DegSeqgsl);

January 10, 1981

- 55 -

PQTreel := InputPQTree(PQOutputDatal);

writeln('What is 2 chordality test output file name?');
readln(ChordOutputData2);
writeln('What is 2 PQ output file name?');

readln(PQOutputData2);

GetGraphInfo (NumVerts2, NumCliques2, ChordOutputData2,
degrees2, DegSeqgs2);

PQTree2 := InputPQTree(PQOutputData2);

isomorphic := number (DegSegsl, DegSeqs2, PQTreel, PQTree2,
NumVertsl, NumVerts2, NumCliquesl,

NumCliques2);
if isomorphic then writeln('Graphs are isomorphic!')
else writeln('Graphs are not isomorphic');

end;

January 10, 1981

- 56 -

Appendix 3

How to Access and Run the Isomorphism Test

The entire set of programs and all (available) related
information for the interval graph isomorphism test is found
under the catalog 'gr/./zsd/iso-test' on the University of
Waterloo Math Faculty Computing Facility Honeywell 66/60.
If this catalog is partially or wholly non-existent, it can
be restored (by someone with appropriate privileges) by
typing 'arch r gr/./zsd/iso-test'. This catalog should have
read and execute permissions on it; i.e. any user should be

able to use the programs.

There are two methods one might wuse to run the
isomorphism test. The first 1is to type 'gr/./zsd/iso-
test/exec.ec' which will run the programs in the correct
order, ask the appropriate questions, and insure that the
files are correctly specified. This method suffers from the

'asking redundant questions' illness; this can lead to a

mild case of tedium.

The second method is to type all of the appropriate
command lines directly. The method suffers from the dreaded
'user must have a basic idea of what he is doing' disease.

Both of the methods are shown in the examples in Appendix 4.

Using either method, the user must know how to specify
a filename. On the Honeywell, a temporary file (which

disappears when the user signs off) is specified by one to

January 10, 1981

- 57 -

eight letters, digits, periods and some other characters.
For example, 'graphl', 'new.data' and 'g' are all valid
temporary file names. Any valid temporary file name (as
well as others) preceded by a '/' specifies a permanent

file; these files do not disappear when the user signs off.

The only other critical part of running the isomorphism
test is the input format for the graphs. The data can be
interactively typed in while running the chordality test or

it can be stored in a file. The latter is the preferred
choice; in the former case the data 1is 1lost after the
chordality test finishes, and if an error is made the user
will have to start over from the beginning. The format for
typing in data can be found in Appendix 1 in the 'input'

subroutine and also in the examples in Appendix 4.

January 10, 1981

58
Appendix 4
Examples

In the following examples, both methods of running the

isomorphism test (see Appendix 3) are displayed. The column

of c's (for computer), b's (for both) and U's (for user) is
not typed out at any time; it was added to distinguish lines

types solely by the user from those typed solely by the user

from those typed by the computer and user. All input graphs
used here are stored under the catalog 'gr/./zsd/iso-test';
see Appendix 3 for the details of accessing these. The

graphs all have file names like 'examplel'.

The first example demonstrates the use of both
gr/./zsd/iso-test/exec.ec and typing in data interactively.
The program tells the user that the graph is not chordal;

thus the graph is not an interval graph and is not amenable

to this isomorphism test.

U ec gr/./zsd/iso-test/exec.ec

c First graph:

c If data in a file, give filename; else hit return
b How many vertices (max = 50) ?? 4

c List adjacent vertices for each vertex; end with a 0
b1l: 2 40

b2: 130

b3: 240

b4: 1 3 0

c

c *** jnput complete ***

c

c What is the output file name?

U graph

c Graph is not chordal!

c Do you want to stop? (y or n)

Uy

January 10, 1981

- 59 -

The second example shows input being taken from a file.

The first graph happens to be a chordal graph, but not an

interval graph. This is signified in the print out of the
tree by the phrase 'before rejection'. The data for this

graph is as follows:

6

340
350
12450
13560
23460
4 50

ec gr/./zsd/iso-test/exec.ec

First graph:

If data in a file, give filename; else hit return
gr/./zsd/iso-test/chordal/chordal .dat

*** jnput complete ***

What is the output file name?

graphl

Graph is chordal!

Do you want to stop? (y or n)

n

Second graph:

If data in a file, give filename; else hit return
gr/./zsd/iso-test/chordal/rtl.dat

*** jnput complete ***

What is the output file name?
graph2

Graph is chordal!

Do you want to stop? (y or n)

n
What was the first graph output file again?
graphl

And the second again?

graph2

The data from the chordality tests have been modified
and are now in 'massagel' and 'massage2' respectively.

Type in massagel

massagel

Type in massage2

massage?2

The PQ tree for the first graph has been strored in 'treel'.

nCcCcaocaononoaogocCconcCcaocCconcCcaonNnnNaoacaoocaoocaoaonon0caonc

January 10, 1981

- 60 -

c Here it is:
c And the data file name is:

for the set of sets
1 (4)

2 | 3)

3 2 3 4)
4 (1 2 4)
5 (1 2 3)
6 (1

)
the last structure before rejection
[3 < 4 2 > 1]

Do you want to stop? (y or n)

y

caoaoaoaoaoaaoaoaoaa00a0aaan

The third example shows two non-isomorphic

graphs. The two data files follow.

r/./2zsd/iso-test/chordal/intrvall.dat:

(%]
o

AUVINDN NN JQ
OO On
o)
o

~N oOJdwunn nNnwo

./2sd/iso-test/chordal/intrval3.dat:

a]

O O
wn
o

VU HFNDIWQ
o)
~
o

oo wuuvy wWwo

ec gr/./zsd/iso-test/exec.ec

First graph:

If data in a file, give filename; else hit return
gr/./zsd/iso-test/chordal/intrvall.dat

*** jnput complete ***

What is the output file name?
graphl

Graph is chordal!

Do you want to stop? (y or n)
n

Second graph:

ncCcoaocaoaononaoacaoancG

January 10, 1981

interval

aaoaonoo0q0Qoaoaon0a000caoanonooo00Q00ao00C00NO0nNNnNcaconNNn0cacocoaoacaonNnaoNca

- 61 -

If data in a file, give filename; else hit return
gr/./zsd/iso-test/chordal/intrval3.dat

*** jnput complete ***

What is the output file name?
graph2

Graph is chordal!

Do you want to stop? (y or n)

n
What was the first graph output file again?
graphl

And the second again?

graph?2

The data from the chordality tests have been modified
and are now in 'massagel' and 'massage2' respectively.

Type in massagel

massagel

Type in massage2

massage2

The PQ tree for the first graph has been strored in 'treel'.
Here it is:

And the data file name is:

for the set of sets

1 (5)

2 3 4 5)

3 (4)

4 (3)

5 (2 3 4)

6 (1 2)

7 (1
temp2 is nil
oops 1
oops 2
oops 3

[5 < 4 3> 2 1]
Do you want to stop? (y or n)
n

The PQ tree for the second graph has been stored in 'tree2'.
Here it is:
And the data file name is:

for the set of sets

)

N ound WN -

~ NN~~~

HNNRFRWABWWM
~

Januvary 10, 1981

- 62 -

c [5 < 4 3> K 1 2 >]

c Do you want to stop? (y or n)

Un

c

c Now just answer the following questions with the appropriate
c filenames.

c What is 1 chordality test output file name?
U graphl

c What is 1 PQ output file name?

U treel

c What is 2 chordality test output file name?
U graph2

c What is 2 PQ output file name?

U tree2

c

Graphs are not isomorphic

The final example shows two isomorphic interval graphs
as well as the method of using the isomorphism test without
the 'exec.ec' file. In reality, the 'treel' and 'tree2'
files should be printed and examined, to insure that the
graphs are both interval graphs. If this check is not made
and the tree 1isomorphism test 1is run, for non-interval
graphs the result will (in general) be meaningless. The
file gr/./zsd/iso-test/chordal/intrvall.dat is shown above.

The other file follows.

gr/./zsd/iso-test/chordal/intrval2.dat:
3

570

50

570

6 70

1 2370

4 0

1 3450

January 10, 1981

ncCcaoanonoaoacac

ncCcaoaoaoacao cc

cc

ancCcaocaoacaoacac cccc

- 63 -

gr/./zsd/iso-test/chordal/chord.1lm
If data in a file, give filename; else hit return

jsdiamond/iso-test/chordal/intrvall.dat

*** jnput complete ***

What is the output file name?
graphl
Graph is chordal!

gr/./zsd/iso-test/chordal/chord.1lm
If data in a file, give filename; else hit return
jsdiamond/iso-test/chordal/intrval2.dat

*** jnput complete ***

What is the output file name?
graph2
Graph is chordal!

gr/./zsd/iso-test/interval/massg.lm <graphl >massagel
gr/./zsd/iso-test/interval/massg.lm <graph2 >massage?2

gr/./zsd/iso-test/interval/pgqtre.lm >treel
massagel
gr/./zsd/iso-test/interval/pgtre.lm >tree2

massage?2

gr/./zsd/iso-test/iso/itest.1lm

What is 1 chordality test output file name?
graphl

What is 1 PQ output file name?

treel

What is 2 chordality test output file name?
graph2

What is 2 PQ output file name?

tree2

Graphs are isomorphic!

