
A RELIABLE TYPESETTING SYSTEM FOR WATERLOO

A Reliable Typesetting System for Waterloo

Joseph H. Buccino

ABSTRACT

The Math Faculty Computing Facility at the University of
Waterloo operates a Photon 737 Econosetter, a low speed
photographic typesetting device interfaced to the Honeywell 66/60
timesharing system. In the years since it was purchased a number of
people have worked on the Photon’s hardware and software.
Unfortunately very little of this work has been documented. The
purpose of this essay is to provide documentation for the Photon sys­
tem, and to describe the characteristics of each component in the
system as completely as possible. A new software system has been
developed to ensure that the typesetting process is reliable. It
handles the problems encountered as data is passed from the operat­
ing system to the Photon. This essay explains not only what the
software does, but also how it was developed and how it can be
maintained. Source code, regeneration procedures and many useful
techniques and procedures previously undocumented are included in
the appendices as a guide to future users.

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO

Table of Contents

1. Introduction
1.1 Preliminaries... 1
1.2 Computing Environment.. 1
1.3 General Description... 2

2. The Photon Econosetter
2.1 General Description... 3
2.2 The Photo Unit...3
2.3 The Microdata..4

3. The Interface
3.1 Design Goals... 6
3.2 Logic Description..6
3.3 The Interface Buffer... 8
3.4 Communication...8
3.5 A Caveat..9

4. The Software System
4.1 Some Terminology..11
4.2 The Formatters (PROFF, TROFF and TYPE)............................. 11
4.3 UNIX programs and Procedures...13
4.4 Some Problems on the Honeywell.. 14
4.5 Preparing a Program for the High-Core Loader............................. 14
4.6 The Boot Procedure..15
4.7 The Pass Procedure...16
4.8 Alternative Solutions.. 17
4.9 Summary...17

5. Acknowledgements

6. References

Appendix A: Explain Files

Appendix B: Regeneration of the Software System

Appendix C: TROFF Output

Appendix D: Source Code

Appendix E: The Micrùdata

A RELIABLE TYPESETTINQ SYSTEM FOR WATERLOO 1

1. Introduction

1.1. Preliminaries

Typesetting of documents is provided to the users of the Math Faculty
Computing Facility (MFCF) timesharing system via the Photon Econosetter. The
general procedure is as follows. A user prepares a text file as input to one (or
more) of the existing text formatters and preprocessors (TROFF, TBL, EQN,
PROFF, TYPE) which produce a file of typesetting codes. This output is then
passed to the Photon which interprets the codes as commands selecting the
character, font and spacing, then exposes the final document on photographic
paper. A built-in minicomputer controls the typesetting hardware within the
Photon. But this is just an overview. There are a number of other steps which
must be performed for all of this to run smoothly.

The Photon must be capable of interpretting the file passed to it, which
requires loading the proper software into the minicomputer’s memory. This
process, known as ‘booting’ the Photon, is one of the two major problems
addressed by this essay. The fact that more than one system is run on the Photon,
and that there is no reliable way for a user to determine which software package is
currently running, means that individual users must be able to load the proper
software for their own purposes whenever they desire. This is a major difference
from a standard typesetting shop where only one system is used, loaded once and
never changed.

When it was acquired in the summer of 1974, the Photon was designed for
this one-system operation, but the photocomposition capability was not the only
reason for the purchase. In addition to being able to produce high quality text
documents it was intended to provide valuable hands-on experience for faculty and
students doing research on document preparation. The major work that has been
done is the construction and programming of an interface that removes the
typesetter’s dependencies on its paper tape reader, and the programming of the
Photon’s internal minicomputer to accept more than the standard TTS typesetting
language. Both of these projects will be explained in later sections of this essay.

As the capabilities of the typesetting hardware and software grew, so did its
usage, particularly bv users who were not interested in how typesetting was
accomplished. These new users prefered to consider the Photon as a ‘black box’
that they could use to produce high quality output. Consequently, reliable and
robust software was needed to meet this demand. This essay documents the
development of the package which is currently being used for typesetting.

1.2. Computing Environment
To those unfamiliar with the computing facilities at the University of

Waterloo a brief introduction follows. The timesharing system provided by the
Math Faculty Computing Facility. TSS, runs on a Honeywell 66/60 mainframe.
A Datanet 355 acts as a front-end. communicating with user terminals. TSS
provides a wide variety of general and specialized timesharing services as well as
access to batch processing. The other system that was used in developing the new
software is the UNIX operating system which runs on a PDP-ll/45. Programs
and data can be sent between Honeywell and UNIX (without the need for an

2 JOE BUCCINO

intermediate storage device) using locally defined commands to the respective
systems. Data is transferred by a set of programs known as the ‘UNIX Daemon’.

13 . General Description

The Photon acts as a receive-only device and the Honeywell system considers
the Photon to be a terminal, just like all the others. The Photon considers the
operating system to be a paper tape. Because there is no way for the Photon itself
to send information to the system, it shares its communication line with a
terminal. A locally-built interface controls the data-flow between the Honeywell,
the terminal and the Photon by switching the line between the two output devices.
The line is switched by interpretting certain transmitted codes as switching
commands. Data is sent to either the typesetter or the terminal depending upon
the state of the interface. This type of control over a communication line is made
possible by installing the interface between the operating system and the two
devices, allowing it to shut off communication with either of them.

The software which controls the Photon and the interface runs on the
Honeywell 66/60 under TSS and is mostly written in the programming language
B. It was necessary to deviate from this environment for some stages of the
development since the software that runs on the Photon’s minicomputer was
developed on the UNIX system.

To avoid repetitive descriptions we first make a few definitions for referring
to the different hardware components. When we say ‘Honeywell’ we mean the
operating system, the Datanet and the mainframe. The word ‘UNIX’ will be used
similarly to denote the operating system and the PDP-11/45 hardware it runs on.
‘Photon’ will be used to refer to the entire typesetter, including its minicomputer.
When we wish to refer to the minicomputer by itself, we will use the term
‘Microdata’, the manufacturer of the unit. The unit that acts as the switch,
allowing us to control both the Photon and a terminal, will be called the
‘interface’ as above.

Understanding the design decisions which were made while developing the
new Photon software package requires a more complete knowledge of the various
components of this system. For this reason functional descriptions are given for
the various components. We will consider the Photon typesetter first, as the other
components depend heavily upon its characteristics. This will be followed by a
description of the interface and then of the software.

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO 3

2. The Photon Econosetter

2.1. General Description
The Photon 737 Econosetter is an electro-mechanical phototypesetter with a

self-contained Microdata minicomputer which controls the typesetting
components. The typesetter is connected to and controllable by the MFCF
Honeywell 66/60 computer. The Photon was originally a paper tape machine,
equipped with a high speed paper tape reader mounted on the cabinet. This device
has since been removed because it became unrepairable and because a locally built
interface to TSS made the reader obsolete. A complete description of the
Econosetter is divided into two parts, a description of the photo unit and a
description of the internal minicomputer - the Microdata. We will start with the
description of the photo unit.

2.2. The Photo Unit
Typesetting is accomplished by generating a flash of light which travels

through a master image of the symbol to be produced. The light is then reflected
180° by a mirror mounted on a moveable carriage which selects the horizontal
placement of the character on the current line. Finally this reflected light travels
through a lens which magnifies the character to the chosen point size, after which
the light exposes photographic material, producing an image. The film can be
moved vertically, either manually or automatically, by a series of rollers and
guides. After the document has been typeset the exposed film is collected in a
removable cassette by advancing the paper and using a built in paper cutter to free
it from the rest of the roll. Film can then be developed in the standard manner.
Figure 2.2.1 shows a pictorial layout of the components and indicates the optical
path.

1. STROBE
2. LIGHT SOURCE
3. CHARACTER DISC
4. MIRROR CARRIAGE
5. LENS TURRET
6. PAWL ASSEMBLY
7. PHOTOGRAPHIC MATERIAL

Figure 2.2.1

4 JOE BUCCINO

The flash unit consists of a high-voltage xenon flash component, appropriate
electronic circuits and a power supply which produces a high intensity flash at the
proper time to illuminate the desired character from a spinning disc. The master
images of the four available fonts (Times Roman. Times Italic, Times Bold and
Mathematics) are etched onto a glass disc covered by an emulsion. This unit is
called the ‘character disc’. Each font has 112 characters, as shown in Appendix C.
The disc is belt driven and has timing marks which makes it possible for the flash
to occur at the desired character.

The mirror carriage can move left and right along a track, positioning the
light beam horizontally on the paper. Limit switches prevent the carriage motor
from moving the carriage farther than the axis limits, although no software
mechanism for utilizing these switches has been found by the author.

The final component in the system is a lens turret. This is a moveable wheel
with lenses mounted in it, one for each point size. Our Photon has four point
sizes: 8, 10, 14 and 18. (A point is 1/72 of an inch). The point size is changed by
releasing a pawl on the turret so the wheel is allowed to rotate, then re-engaging
the pawl to lock it in position when the turret has moved to the chosen lens
position. As the wheel rotates, the Microdata can read its angular position,
enabling it to decide when to stop the motion.

The photographic paper is an 8 inch wide, 150 foot continuous roll in a
light-tight cardboard box. The hardware is able to sense when the unit is out of
film and will cause the Microdata to halt and await a new box.

23 . The Microdata

The Microdata is a sixteen bit, two’s complement minicomputer with a
twelve bit accumulator. It has no-other general-purpose, stack or index registers.
Instructions are sixteen bits and directly address all 4K of the sixteen bit memory
words. There is also the capability to directly access each of the 8K eight-bit
bytes. Core memory is exactly the size of this address space, 4K sixteen bit
words. It retains its contents even when the Photon is powered down. Memory
words are usually represented as four hexadecimal digits. Thus, the legal address
range is 0000 - 0FFF.

The controls provided on the front panel of the Microdata include four
SENSE switches, a RESET and RESTART switch, sixteen toggles and
corresponding indicator LED’s, and switches that allow the toggles to be used to
enter a program into core. There is also a switch that causes the contents of the
accumulator to be displayed on the indicator lights. Figure 2.3.1 shows the front
panel of the Microdata. Use of the various switches is described in Appendix E.

One front panel switch that is used frequently is the LOAD switch. When
depressed it will execute the hardware bootstrap loader. Originally this caused
successive frames to be read from the paper tape reader (ignoring leading blank
frames). Since the paper tape reader has been removed, the loader now reads
successive bytes from the interface buffer (ignoring the ASCII character NUL —
octal 000). The bytes read arc stored into successive locations in core starting at
the address given by the data switches. The most significant eight bits of a two-
byte word are always loaded first, followed immediately by the least significant
eight bits. The loader will display the address into which it is storing on the

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO 5

r ~ " ;' •

j® -JH a h h__

■■inri. j ; j . j u U d u "Bimr numi
« ta - wt

V » I 4 «OT U1M «•>? PM in« II» kJM

i_ . m a n aa oaa a a■ca I ■ ■

i
-

i

Figure 2.3.1

indicator lights and will eventually wrap around and start storing in location 0000
once it passes address OFFF.

The instruction set is a very simple one. There is no provision for indexing,
indirect addressing or stack manipulation. These constructs must be simulated in
software. The set of available instructions is logically separated into two
categories: the general use instructions and the I/O instructions. General use
instructions all have the same format: a four-bit opcode and a twelve-bit operand
or address. I/O instructions also share this format, but very few of the operands
are documented by Photon. Appendix E lists all known instructions and their
effects.

The interrupt mechanism provided is very elementary. Despite this, it is still
not fully understood even now. When interrupts are turned on, the Microdata is
interrupted every millisecond. When this interrupt occurs control is passed to
location 0001 which is supposed to contain a subroutine jump instruction to the
appropriate interrupt routine. Control of the individual components of the
typesetting hardware uses this as a timing mechanism, as described below.

Most components of the photo unit do not set any internal flags when they
are free or when their operation is finished. Instead they are documented to take
a certain number of milliseconds to complete their operation. This is usually
handled by initializing a counter when the operation is started and decrementing
the counter in the interrupt routine. When the counter reaches zero the operation
is assumed to be complete.

As mentioned above, this procedure is not fully understood. The difficulty
lies in the undocumented use of some I/O instructions in the software provided by
Photon: these apparently set up a return address from interrupts. Our solution is
to consider these instructions as a requirement of any interrupt routine, and we
blindly include them as they originally appeared in the supplied programs.
Interrupt routines are included in both of the programs listed in Appendix D. so
future programmers can copy them, adding or deleting counters where necessary.

6 JOE BUCCINO

3. The Interface

3.1. Design Goals

When the Photon was purchased its only input medium was paper tape. To
typeset a document a user would first have to load the supplied software for the
Microdata by paper tape. Since there was only one such program provided by
Photon, and because the core retains its contents when powered down, this
procedure did not have to be performed very often.

After a user had run his source text through the software that produced a file
of bytes understandable by the typesetter, the file would then have to be
transferred to paper tape before it could be typeset. In addition to being time-
consuming and wasteful, this extra step proved even more difficult due to the
unreliability of hardware to punch paper tape. It was obvious that it would be
preferable to provide a direct connection between the Honeywell and the Photon
so that typesetting codes could be transmitted in a straightforward manner. This
was the motivation for the construction of the interface.

Ideally the interface was expected to behave identically to a paper tape
reader, performing similar functions when the Microdata executed paper tape
reader instructions. In this way the Microdata program for interpreting codes did
not need to change. It was decided that the transmission of data be done by the
Honeywell under user program control, as if the Photon were a terminal. This
method has the advantage that the data can be stored in the file system just like
any other data.

In summary, the design of the interface was to be so that it could be
installed on the line between the operating system and the terminal allowing it to
direct the flow of bytes to either the terminal or the Photon. Also, this switching
should be done automatically so that users with no knowledge of the design of the
system could typeset documents. Within these constraints the Computer
Communications Network Group (CCNG) at the University of Waterloo designed
and built an interface. What follows is a functional description of that unit as it
now exists.

3.2. Logic Description

The interface is contained on an 8 X 9 inch circuit board installed in the
base of the Photon’s housing. There are two components of this unit: the logic
which controls whether bytes being transmitted are to go to the terminal or to the
Photon, and the buffer which collects bytes that will eventually be read by the
Microdata. Outlets for lines to the terminal and the operating system are marked
on the board. Figure 3.2.1 shows a schematic of how the interface is connected to
the various components. The arrows indicate how data flows through the system.

The interface is automatically powered up when the Photon is turned on. It
is also reset so that data is initially communicated between the terminal and the
operating system. The operation of the interface's logic is very simple. It
observes all transmission to and from the terminal until the byte octal 352 is
transmitted in either direction. This byte will be called the Start Of Message
signal or SOM*. From that point on all bytes go to the interface buffer (instead
of the terminal) until the byte octal 331 is sent. This byte will be called EOM*

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO 7

INTERFACE

MICRODATA

for End Of Message. Neither of these two bytes go into the interface buffer, but
are used only for switching the line. A small letter ‘j’ appears on the terminal’s
screen when the SOM byte is sent. This is because the line is still directed to the
terminal until after this byte is read. (Note that SOM is also the ASCII code for
the character ‘j’ if the parity bit is ignored.) Similarly nothing can appear on the
terminal until after the EOM signal is sent. EOM would print as a ‘Y’ if it could
get through the interface logic to the terminal.

Choosing these switching codes from the printable ASCII character set
would normally be disastrous, as an unaware user could accidentally switch the
line. Even more, the bytes that comprise typesetting commands, interpretted by
the Microdata, can contain these codes. It will be shown in the software section
that these codes need not appear in any transmission to the typesetter. But even
though this is the case we still have the undesirable situation that the letters ‘j’ and
‘Y’ cannot be sent to a terminal without unwanted side effects. This problem is
solved in the following manner. Recall that ASCII codes are seven bits and that
the Honeywell timesharing system uses even parity. Note also that both EOM
and SOM as eight-bit codes have an odd number of bits set. The key idea is to
operate in no-parity mode (which causes the Honeywell not to check and supply
the parity bits) when sending a file to be typeset. The terminal’s parity switch
need never be touched because only the typesetting software should be turning the
line so that the transmission goes into the interface buffer. In this way we
preserve all the capabilities of a normal terminal as well as providing for
typesetting.

There is only one other byte that is special to the interface; it will never go *

* These abbreviations are not standard ASCII mnemonics.

8 JOE BUCCINO

into the buffer for the Microdata to read. This is the EOL* byte (End Of Line) -
octal 021. This is the ASCII character DC1. Its purpose is to inform the
interface (or terminal) that the system is waiting for a response. The reason this
byte is ignored is that it is sent by the Datanet automatically after a group of
bytes have been transmitted over the line. This is the standard way that most
operating systems implement a hand-shaking mechanism with user terminals. It
will become clear why this is necessary in the explanation that follows concerning
the communication protocol with the interface.

3.3. The Interface Buffer
The buffer contains 256 eight-bit bytes arranged in a logically circular

fashion with sufficient electronics to allow the Microdata access to these bytes.
There are two independent pointers, one used to store bytes into the buffer, the
other for reading bytes from the buffer.

The store pointer always indicates the next available byte for storage of data
coming from the operating system. There is always an available byte for this store
operation, even if the buffer is ‘full’: the logic never checks to see if the buffer is
full and will overwrite data if no software check is made. This is unfortunate, but
cannot easily be changed, so the programmer has to make sure that the buffer
never overflows.

The read pointer always indicates the first byte not yet read by the
Microdata. The logic is designed so that the read pointer can never overtake the
store pointer. The buffer is defined as empty when both the read and store
pointers point to the same byte. It is possible to clear the buffer manually by
hitting the ‘break’ key on the terminal. This is used in the protocol to ensure that
thé buffer does not have anything left in it from previous use.

If the read pointer could overtake the store pointer an empty buffer situation
would be disasterous. Not only would the Microdata be reading bytes that have,
already been processed, but when the Honeywell finally sends the next buffer the
read pointer has gone far enough so that some or all of the new bytes have been
passed. This is because new bytes are added starting at the store pointer which
can get arbitrarily far behind the read pointer under these circumstances. This
would cause some bytes to be processed twice while other bytes would not be
processed at all. Therefore, the interface was designed so the that the read pointer
could not overtake the store pointer.

3.4. Communication

When the interface logic sees the EOL byte (meaning the system is waiting
for a response) it automatically responds with a carriage return (octal 012) as soon
as more than 128 positions are available in the buffer. This allows for
synchronization so that the problem of buffer overflow can be avoided.

The Honeywell software sends bytes in groups of less than or equal to 129.
Since each of these croups is automatically followed by an EOL. when the buffer
responds with a carriage return the operating system can be assured that there is
room for the next group of bytes. Clearly we cannot send more than 129 bytes at
a time, because the EOL response indicates only that 129 byte positions are
available. We have no assurance that more will be available when we are ready to

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO 9

send them. This convention assures that TSS never gets far enough ahead of the
Photon to overflow the buffer.

The complementary problem is far more common, and potentially more
difficult to deal with. As the TSS load increases, the system cannot supply the
interface buffer with bytes as quickly as the Microdata needs them. This can
happen when the timesharing system has a large number of users, a quite common
occurrence. When this happens the buffer will be empty, meaning that both the
read and store pointers indicate the same position. As the interface was originally
designed, if the Microdata attempted to read from the buffer in this state, the data
returned was the same as the last byte read. Since the read pointer can never
overtake the store pointer all subsequent requests from the Microdata for data
would also return this same byte until more data is stored in the buffer. This
effectively made the interface unusable during peak load times.

For this reason, the interface has been modified to partially correct this
problem. When the interface buffer is empty a read issued by the Microdata
returns an ASCII NUL. Since the Photon is a paper tape oriented machine all its
software ignores these bytes (which are tape feeds on a paper tape) and issues
another read*.

Communication between the interface and the Microdata computer is
straightforward. The paper tape read instruction is executed when the CPU is
ready for the next byte of data. It clears the accumulator, reads one byte from
the reader into the accumulator and advances the paper tape one frame. With the
interface in place, the only difference is that the read pointer in the buffer is
incremented instead of advancing the paper tape. Eight bits of data are then
transferred into the least significant eight bits of the accumulator in time for the
next instruction to use it. The Microdata must then wait three milliseconds before
the next read can be requested. This delay is so that the interface logic has time
to settle. This is not a problem because there is usually a significant amount of
processing to do before the program is ready for the next byte, although it is
something which the Microdata program must guarantee. If you do not wait long
enough the byte read may be the same as the previous one and the logic may get
into a bad enough state to cause the Microdata to halt.

3.5. A Caveat
Anyone who has used the Photon will note that there is no longer any

capability to read paper tapes. The reader was in an unrepairable state in late
1977 and because of the prohibitive cost of buying a new unit, it was simply
removed. Since the interface had been in use for over a year and was able to
perform all of the functions of the paper tape reader, typesetting was still possible
and in fact easier due to the reduction in the number of procedures a user had to
perform. The fact that the only software system being used was the system

* There is one case where the software for PROFF will stop if it reads an
unintended tape feed, but experience shows that this does not happen in practice.
The hardware bootstrap loader does not ignore nulls, but this problem is solved by
using a software high core loader, to be discussed in a later section.

10 JOE BUCCINO

provided by Photon meant that booting was not necessary unless core memory was
overwritten.

When the reader broke, the software for the Microdata was still being
loaded by paper tape when necessary. Only typesetting codes were transferred via
the interface. No one had thought to utilize the interface for program loading as
it was rarely performed. It was clear that some method would have to be devised
to reload the software if the image in memory was damaged. It became even
more critical when the image was actually destroyed. After about six months
downtime due to not being able to reload the software such a method was found.
This method compensated for the interface not transmitting certain bytes but did
not completely solve the problems of synchronizing the Microdata and the
Honeywell due mainly to the Honeywell not responding fast enough as discussed
in section 3.4. This meant that the software could not be loaded when the
Honeywell load was heavy.

Various techniques were used to speed up the Honeywell’s response but the
problem never fully went away. The new software system described in this essay
does solve the protocol problem; more will be said about how it is done in the
following sections.

Persons who used the Photon before these changes mentioned in the previous
sections should be aware that there have been major changes to the interface. In
summary, the changes are as follows:
1) An empty buffer yields nulls as described above. This is only a partial

solution to the empty buffer problem, alternatives are discussed in section
4.8.

2) The EOM byte now does not go into the buffer and the Microdata is able to
read from the buffer at any time. The EOM byte used to go into the buffer
and as soon as it was seen by the interface logic it was impossible for the
Microdata to read bytes from the buffer. This caused some files to be
terminated improperly, and the beginnings of subsequent files to have extra
bytes at the beginning.
These changes were made because we believed that there were errors in the

original design; the original specifications did not anticipate all the problems that
were subsequently encountered. Solutions are proposed in section 4.8 based on
20/20 hindsight for the problems mentioned here and in the previous sections.

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO II

4. The Software System

4.1. Some Terminology
Now that the various hardware components have been described, the

software needed to produce a typeset document from a source file will be
considered. A note of clarification concerning the various software packages is in
order. The programs which process files of text interspersed with formatting
commands are called formatters and will be referred to by the name of the
software package (PROFF, TROFF or TYPE). The exception to this is that we
will usually use TROFF to mean the use of any combination of TBL, EQN and
TROFF. On the other hand, the programs that run on the Microdata to process
PROFF, TYPE or TROFF output and drive the photo unit will be called
Econosetler programs. The Econosetter program for PROFF will also be referred
to as the 737 program since it was the original code supplied by Photon.

The three formatters differ significantly in their method of operation and
capabilities. In the next section we explore these differences and the effects on the
corresponding Econosetter programs.

4.2. The Formatters (PROFF, TROFF and TYPE)

4.2.1. PROFF
The Photon machine was designed to be used as a classical typesetter as

discussed in section 1.1. When it was acquired, the 737 program was provided on
paper tape suitable for loading into the Microdata via the hardware bootstrap
loader. It was intended that the user would be able to punch his document
directly onto paper tape using commands that the 737 program accepted as input.
No other formatting program was needed, as the 737 program handled all
processing. Because of this functionality, typesetting proceeds slower than if the
formatting had been done elsewhere. Also, because of the limited core memory of
the Microdata, the formatting that can be done does not include some of the more
sophisticated techniques such as footnotes and page breaks.

PROFF was written as a technology bridge, allowing users familiar with
line-printer formatters to be able to typeset their documents without learning the
formatting language provided by Photon. PROFF was also designed to be
compatible with ROFF. the general purpose formatter for line printers used
extensively on the Honeywell. In fact, PROFF owes its name to ROFF. being
derived from the name Photon ROFF. Apart from this similarity in name and the
compatible input commands, the two programs perform entirerly different
functions. Whereas ROFF is a formatter, PROFF is a preprocessor which
translates its input to appropriate TTS codes for use with the 737 program
provided by Photon.

Appropriate macros are provided in PROFF so that users can debug their
commands by producing a line-printer version of the document, thus conserving
valuable Photon resources. Previously ROFFed documents can be typeset with
little or no change to the input file. Further information on the 737 program and
on TTS codes is available in Section IV of [1]. Information on PROFF can be
found in [2], which is a tutorial and reference manual.

12 JOE BUCCINO

4.2.2. TROFF
The TROFF program is a locally modified version of the Bell Labs

formatting program. The design of the output codes is simple, yet it provides
great power and flexibility. A summary of these codes is given in Appendix C.
TROFF is compatible with the line-printer formatting program NROFF (a variant
of ROFF) but the functionality of TROFF is very different from that of PROFF
as TROFF does its own formatting.

There was no reasonable way that the output from TROFF could be typeset
on the original Photon, as the 737 program was not designed to allow control of
the typesetter in any straight-forward manner. Work was started on such a low-
level program, but this task proved harder than first imagined. The
documentation in the manuals provided by Photon for the I/O instructions is
almost non-existent and the Photon Company had to be contacted directly to
clarify most of the codes. After long and tedious work, mostly involving trial and
error, methods to control the various components of the typesetter were
discovered. This and some intelligent extrapolation from the 737 program
provided enough information to write an Econosetter program for TROFF, which
in a modified form is the program currently being used. Unfortunately this work
was never documented so the steps leading up to the Econosetter program for
TROFF are unknown to the author.

This program for TROFF was developed on UNIX with the aid of PHO, a
locally written assembler. A description of the PHO language is given in
Appendix E.

There is one other program used in conjunction with TROFF, the previewer.
It allows a user to view a document on a graphics terminal before typesetting it.
The advantage of this over debugging on a line printer is its interactive nature and
the fact that the document can be shown in facsimile (for example, Greek letters
and mathematical formulae).

The previewer displays TROFF output simulating the actions of the
typesetter. A user can specify a start and end position in his document so that
only certain sections are previewed. The program can also act as a simple editor
when used in conjunction with the selection commands and an option to leave its
output in the form of a TROFF output file. Thus whole documents can be stored
as one piece and if just one page is needed it can be typeset separately. The
program is available on Honeywell under ‘troff/preview’ and the explain file is
under ‘expl/trof/prev’. (See Appendix A.)

The Econosetter program for TROFF is listed in Appendix D. It can also
be found on UNIX in 7 usr/ src/ tr°ff/P*1oton/ntroff.p’. This is a modified version
of the original program with the capability to reset the typesetter, include colour
information (for the previewer) and page separators (also for the previewer).

4.2.3. TYPE
TYPE is a locallv writtten package usine macro-stvle formatting commands.

Like TROFF it is a powerful formatter that can be used with many typesetters.
The Econosetter program for TYPE was originally a slightly modified version of
the 737 program and the program TYPE generated TTS codes. This modified

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO 13

Econosetter program became unmaintainable during 1979. Because of this, TYPE
was converted to generate output codes compatible with the TROFF Econosetter
program. Documentation for this formatter can be found on Honeywell under
‘typeset/expl/type/manual’.

4.2.4. Selecting a Formatter
The trade-offs between the different types of formatters are fairly simple.

TROFF and TYPE, being very general and very powerful formatters are large and
consume considerable resources formatting a text file. Once they have finished,
typesetting can proceed rapidly. PROFF is very fast because it is only a
preprocessor. Most of the processing must be done in the Microdata
minicomputer, so restrictions must be placed on the power of the formatting
language. TROFF is probably the best documented and is actually the only
‘supported’ software package. It is also the only system available on both the
UNIX and Honeywell systems.

4 .3. UNIX Programs and Procedures
The only procedure requiring UNIX is assembling the Econosetter program

for TROFF. The assembled code is then sent to the Honeywell system for use on
the Photon. The program PHO assembles the source file and creates a UNIX-
style object module. This makes the output of PHO compatible with other UNIX
software, but incompatible with the Photon. A detailed description of PHO
appears in Appendix E.

The output of PHO must be translated before it can be sent to the
Honeywell system. This is accomplished by a C program on UNIX. The input
section of this program strips control and loader information from the UNIX
object module and produces a stream of bytes which is the core image of the
assembled code. The order of the bytes is: least significant byte of word 0, most
significant byte of word 0. least significant byte of word 1, most significant byte of
word 1, and so on. The output section then maps these bytes so that they can be
sent via the Daemon* to the Honeywell. Care must be taken in sending files this
way as only text files are guaranteed to be transmitted correctly bewteen the two
syetems.

Since any possible 8-bit value may occur in the object form of a program,
the data is not sent directly, but instead it is first translated to a text file
(containing only the printable ASCII characters) which can be transferred reliably.
Each byte is split into two four-bit pieces and ofTset by the integer value of the
character 'a'. Since a four-bit field has a value of at most 15 the resulting bytes
have values in the range “a’ to ‘p\ The character ASCII NL (newline) is added
after every 100 output bytes (50 actual bytes of program data. 25 sixteen bit
words) to keep the line length compatible with the buffers in TSS. This stream of
bytes is then written to the UNIX standard output which is sent to the Daemon
program by the ‘hsend’ command, resulting in the translated assembler program
being transferred to the Honeywell.

• See section 1.2.

14 JOE BUCCINO

The object module for this program is under 7 usr/ src/trofT/photon/send\
It reads the standard input and writes to the standard output device. The source is
found on UNIX under ‘/usr/src/troff/photon/send.c’ and on Honeywell under
‘photon/src/c/send.c’.

4.4. Some Problems on the Honeywell
The inverse mapping must be performed on the Honeywell to recover the

original core image of the translated assembler program. Pairs of bytes must be
reversed because the Photon loader expects the most signifiacant eight bits to
come first. Also we must assure that the file does not contain any of the bytes
that the interface considers to be special switch commands. Two separate
problems arise in this process.

The first problem is that the interface will not transmit to the typesetter the
EOL, EOM or SOM bytes correctly if they are included as data. The second
problem is that if the transmission of data ever gets behind (that is, the buffer is
empty when the loader wants another byte) an ASCII NUL will be read and
stored (incorrectly) into memory as part of the program. The first problem is
handled by patching the assembled code where the unsendable bytes occur, the
second is solved by choosing another ‘special’ byte that when read will indicate
that the buffer is empty. We then arrange to fix up the data so that none of these
special bytes are ever transmitted. A more detailed description of this method is
given in the next section.

4.5. Preparing a Program for the High-Core Loader
A program was written for the Microdata which simulates the hardware

bootstrap loader exactly, except that it ignores the ASCII NUL byte, reducing the
problem to loading this software loader and then transmitting the actual
Econosetter program without using the bytes NUL, EOL, EOM or SOM. This
may sound like pushing the empty buffer problem one level deeper as we first must
load this new program into core, but in fact it is not. Because the loader can be
written in less than 128 words (256 bytes) it can be transferred to the interface
buffer in one block. Thus there is never a chance that the buffer will be empty
during transmission of this program.

After the software loader is in the Microdata we must move the loader into
high core. This is because the Econosetter programs for TROFF and PROFF
both start at core location 0000. exactly where the software loader has just been
stored. Fortunately, neither uses the last 128 words of core. We thus make the
loader resident in high core, (from OFAF to OFFF). This is achieved by having
the software loader transfer itself to high core. Finally, we need another special
byte to terminate the loading process. The byte octal 240 which we will call EOB
(End Of Boot) was chosen after analysis of the minimum frequency of occurrences
of the bytes in the Econosetter programs for PROFF and TROFF.

Programs can be loaded correctly and reliably if the data being transmitted
does not contain any of the bytes NUL. EOL. EOM, SOM or EOB. Clearly
these bytes might appear in Econosetter programs, particularly NUL which is
quite common. We do not want to burden future designers with the chore of
removing all occurrences of these bytes.

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO 15

What was done in the past is to ‘patch’ the code. This involves setting the
low twelve bits of the word containing the illegal byte to some pattern that can be
sent to the interface buffer. At the end of the actual assembler code, special
instructions are generated to reset these twelve bits to their intended value. This is
the method we have chosen to prepare files for transferring via the interface. In
general we use a three instruction patch; a load immediate of a quantity that can
be sent, an add immediate so that the unsendable twelve bits are in the
accumulator and finally a store to set the proper word to its intended value. These
patches are kept together in straight line code at the end of the actual Econosetter
program. The program is finally set up so that it first executes these patches and
halts leaving the desired program is in core. Still, if we attempted to patch all the
occurrences of the NUL byte using this method the resulting code would grow too
large for the Microdata’s memory.

The method used to solve this dilemma is to offset all bytes that are sent by
the operating system and have the high-core loader remove the offset. This still
means that a certain five bytes have to be patched but the offset can be chosen to
make the number of patches reasonable. This is the case when all the bytes have
an offset of +3 added before an Econosetter program is transmitted to the
Microdata. The high-core loader simply subtracts this same offset before it stores
the byte.

The process of translating a file that has been sent from UNIX, then
offsetting and patching the code so that it can be sent correctly via the interface, is
performed on the Honeywell by the B program ‘photon/prepare’. This program
will also read a file that has already been reconstructed from the coded UNIX file.
In particular, since the Econosetter program for PROFF has no PHO source, the
offset and patched version is created from the Honeywell file. The difference
between the two types of files is described in detail in the explain file for this
program.

The program also has the capability of executing the patches in an existing
program so that patches in an older version can be removed. (Remember, after
the bytes are offset the original patches are not needed.) The program allows the
user to specify bytes to be patched on top of the usual EOL, EOM and SOM, and
the offset to use. There is also an option to produce a disassembled listing of the
program for debugging purposes. The source and explain files are on Honeywell
under ‘phdton/src/b/prepare.b’ and ‘expl/phot/prep’. They are also included in
this report in Appendix D (source) and Appendix A (explain file). It should be
noted that this program is just for preparing an Econosetter program for use with
the new software and is not needed for preparing a file to be typeset. It should
never be necessary to use it unless the entire typesetting system changes or new
Microdata programs are written.

4.6. The Boot Procedure
Up to this point we have been concerned with writing software so that the

user’s task becomes as simple and reliable as possible. Someone unconcerned with
designing new software for the Microdata need never worry about the preceding
discussion. The peculiarities of the UNIX-to-Honeywell file transfer, the
offsetting and the patching of code are all transparent to the typesetting user; the

16 JOE BUCCINO

only procedures he has to know are how to boot the Photon and how to pass a file
to it. Detailed explanations of these procedures as well as their user interface are
in the associated explain files which are online on Honeywell. They are also
included in Appendix A.

We will now look at the operation of these two programs as well as the
design decisions made when they were developed. The source for these programs
is on Honeywell under ‘photon/src/b/boot.b’ and ‘photon/src/b/pass.b’. A listing
of the source is included in Appendix D.

The boot procedure loads the appropriate Econosetter program. The first
step is to load the high-core loader using the hardware loader. The software
loader is then executed and either the PROFF or TROFF Econosetter code is
transferred. When the transmission is complete the code EOB is sent to stop the
loading process. The user then hits RESTART to cause the required patches to
be performed.

As mentioned in the description of the hardware the core memory retains its
contents even when powered down. Since the Econosetter program for TROFF is
entirely contained in the first 2K words it is only necessary to load the part of the
PROFF program that could have been overwritten. This gives us a four-fold
savings in the time required to boot for PROFF. Of course it is possible to
disturb the high core portion of the 737 program (either maliciously or
accidentally) so an option to transfer the full program is provided in the boot
command. Since most boots that fail are caused by the hardware RESET and
RESTART switches not working, one should make sure this is not the case before
using this option.

4.7. The Pass Procedure
The pass program takes the output from TROFF or PROFF and sends it to

the interface to be read by the Microdata. It assumes that the correct Econosetter
program has been booted. The only special procedure it performs is to ensure that
none of the bytes EOL. EOM or SOM appear in the transmission. This can be
done using the parity bit as discussed in the interface section, as both Econosetter
programs ignore the high bit of a byte.

There used to be two separate programs to send TROFF and PROFF
output* but they performed the same function so they were combined. The only
difference between sending the two types of output is that when sending a TROFF
file an extra byte is sent at the very end of the file. This is used to cause the
program executing in the Microdata to stop, forcing the user to hit RESET and
RESTART before typesetting another file. This ensures that the carriage always
starts at the proper olfsct. It is a trivial test for the program to automatically
decide what type of output is being sent. When the TROFF formatter eventually
puts out this byte itself, the code for generating it in the pass program will be
removed.

* They were called 'photon/ts' and ‘photon/pass’. respectively.

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO 17

Both of these user programs (boot and pass) keep a record of their usage in
‘photon/etc/nbooters’ and ‘photon/etc/nusers’. The id of the user, the day, time
and software used are all recorded. Both programs buffer bytes to be sent to the
interface in groups of 127 bytes. The number 127 was chosen because it is less
than or equal to 129 (see section 3.4) and because the bufTcr has 256 positions.
This means that on start-up, after the first 127 bytes are sent there are still greater
■than 128 positions left in the buffer so the interface immediately sends a carriage
return and another bufTer can be sent right away. With this method the buffer is
almost completely full before we start, effectively providing double-buffered
transmission.

4.8. Alternative Solutions
The preceding sections traced the development of the new software system

which increased the reliability of the typesetting process. There were many
decisions made along the way that may have seemed quite arbitrary to the reader.
This section discusses the major decisions and some of the alternatives considered.

The one component that was already designed and built (before work was
started on this essay) was the interface and it seemed that most of the software
was written to overcome its restrictions. The fact that three bytes (SOM, EOM
and EOL) cannot be used seems very restrictive. An obvious improvement is to
have an escape character along with these three special bytes. If you desired to
switch the line between the terminal and the Microdata the codes could be sent
normally, but if you wanted to put these codes in the buffer they could be
preceeded by the escape character. If it was necessary to send the escape as a
légitimité byte you would send two in succession. The hardware for recognizing
this logic does not seem to be too difficult to construct and it may even be a
feasible modification to the existing interface.

Related to this is the problem of the Microdata recognizing an empty
interface buffer. Clearly it would be desirable to be able to check a flag in the
interface that would indicate whether there is data to be read or not. Making the
READ instruction itself wait until data is available is even more preferable. This
concept of waiting for data to become available seems to be beyond the design of
the Photon hardware as it is based upon paper tape and inherently ‘knows’ when
the next byte is available. Due to the nature of the Photon it seems we must be
content with our ‘solution’ that sets aside a special byte (NUL in our case) that
when read from the buffer indicates that the buffer is empty. Both the high-core
loader and the Econosetter program for TROFF are written with this
consideration in mind.

As mentioned in section 4.5 we set aside an extra byte to terminate the
loading process. We could just as well have sent the length of the program to be
transfered in the first few bytes and have the loader stop when it had read that
many bytes. This has the disadvantage that certain lengths can not be sent, and
their is extra processing required to set up such a scheme. Although this is a
straightforward procedure the method of distinguishing an EOB byte is quicker.
If a suitable byte could not he found or if it would cause loo many patches, this
alternative might be appropriate.

18 JOE BUCCINO

4.9. Summary

This new system is by no means perfect: it only reflects our current
knowledge of the Photon. In the past the internal workings have been discovered
only by tinkering, and the knowledge gained was only available through word of
mouth. This made it difficult for any original work to be done. This essay has
documented much of what is known about the Photon, but it should be noted that
some areas are still not well understood. In particular it would be of great benefit
to understand the I/O mechanism more completely; as a side effect this would
lead to documentation of the software supplied by Photon. To accomplish this
much experimenting needs to be done by a hardware-oriented person who can read
and understand circuit diagrams as these seem to be our only source of
documentation. This work would also allow the removal of any remaining bugs in
the Econosetter programs and allow more effective use of the typesetter in general.
It is hoped that this essay can act as a stepping stone towards such research.

A RELIABLE TYPESETTING SYSTEM FOR WATERLOO 19

5. Acknowledgements
Appreciation is expressed to John Corman, who helped me to understand the

various hardware components. His patience has been sorely tried by various
hardware failures. I would also like to thank Rick Beach. Kelly Booth and
Johann George for their ideas on developing the software package, especially
Johann’s knowledge of the Photon’s I/O and the many hours he spent figuring
them out while writing and debugging the Econosetter program for TROFF.
Finally Charles Forsyth wrote the assembler PHO which made modifications to
the Econosetter programs less painful.

Rogues gallery

Interface: Walter Banks, Roger Sanderson, Rick Madter, John Corman

Early work on 737: Dr. Laurie Rodgers, Mark Brader, Rick Beach

Early PASS: Karl Boekelheide

PROFF: Rick Beach, Johann George

TROFF: Johann George. Damon Permezel

TYPE: Johann George, Bill Ince, Alex White, Rick Beach

PHO: Charles Forsyth

BOOT: Johann George. Keith Dorken

Users: Dr. Mike MacKiernan. Dr. Gaston Gonnet. Bill Ince, Rick Beach,
Mark Brader. Ian Allen, various mathNEWS personnel. Dr. Mike
Malcolm

Original idea: Dr. W. Morven Gentleman

20 JOE BUCCINO

6. References
[1] The Photon Econosetter Reference Manual

This is the original manual provided to us by Photon Incorporated and
contains general desciptions, some documentation on the Microdata, an
explanation of the software supplied and the circuit diagrams. The manual
is usually in the possesion of John Corman in MC 3066.

[2] The PROFF Formatter - Richard J. Beach
A University of Waterloo RESEARCH REPORT CS-76-08 available in
MC 5181.

Appendix A

Explain Files

This appendix lists all the explain files mentioned in this essay exact­
ly as they appear online. They can be found on the Honeywell under the
filename given at the top of the page on which they appear. The files are
listed in the order in which they will probably be needed by a user. Special
purpose and maintenance command descriptions are included and appear
after the ‘normal’ user interface commands.

The Photon
Explain..A.1.1
Index...A. 1.2
Schedule....................................... A. 1.3
Boot..A. 1.4
Pass... A. 1.7
Help..A .1.8
List TTS Codes........................... A. 1.10
Send..A .l.ll
Prepare..A. 1.12

The Previewer
Explain..A.2.1

expl/phot/expl

PHOTON - the PHOTON Econosetter typesetter
(32 lines follow)

Description:
The PHOTON Econosetter is a programmable analog

phototypesetter/ connected to and controllable from the MFCF
Honeywell 66/60 computer. It contains movable disks of type
styles# and exposes a roll of photographic paper# which is
cut and developed. The PHOTON supports up to four different
typefaces ("fonts")# each in several different sizes. The
only fonts currently available on the typesetter are Times
Roman# Times Italic# Times Bold# and a special Mathematics
font. The smallest size of type available is 8 "points" (a
" p o i n t ” is 1/72 inch)# and the largest is 18 points (1/4
i n c h) .

There are several different varieties of text for­
matters which can be used to prepare input for the PHOTON
(see below). The PHOTON itself must be programmed
("booted") to accept this input# and then the file must be
transmitted from the Honeywell# using a special communi ca­
tions interface connected to the terminal in the PHOTON room
(MC 3017). "exolain photon index" will point you to more
detail on the operation of the PHOTON; in particular# "expl
phot boot" and "expl phot sched" explain how to "boot" the
photon and schedule time for its use# respectively.

See Also:
expl phot index - PHOTON explain index
expl trof - TROFF text formatter

Files u s e d :
p h o t o n /p /<software> - various PHOTON internal programs

(Copyright (c) 1980# University of Waterloo)

A . 1 .1

e xp l /pho t/ i ndex

PHOTON - index
(13 lines follow)

Under catalog "expl photon":
boot - boot the Econosetter from TSS
expl
help
index
l
pass
prepare
s c h ed
send

- description of the Econosetter
- a short guide on the use of the Photon
- this index
- list TTS typesetting codes from file
- pass a PROFF* TROFF or TYPE file to the Econosetter
- read* offset and patch a Microdata program
- reserve or cancel time on the Econosetter
- send PHO output from UNIX to TSS

(Copyright (c) 1980* University of Waterloo)

A 1 2

e x p l / p h o t / s c h e

photon /sc hed - Schedule time on the Photon Econosetter
(38 lines follow)

Syntax:
ph oton/sched C-Reserve I -Cancel]

Options:
-Reserve

Display schedule and request time to be reserved.
-Cancel

Display schedule and request reserved time be can­
celled.

Description:
Photon/sc he d maintains a schedule of time for using the

Photon Econosetter. The -Reserve option displays the
schedule for the current week* and prompts you for times
that you wish to reserve the typesetter according to the
following rules:

1) Only 1.5 hours at one sitting between 08:00 and
24:00

2) At least 1.5 hours between sittings between 08:00
and 24:00

The program will prompt you for more reserved times until
you enter "done''* "quit" or an empty line.

The -cancel option permits you to cancel a time reser­
vation. The schedule will be displayed and you may enter
the time reservation that you wish deleted.

Files used:
p h o t o n / e t c / schedule - list of dates* times and userids

Bugs:
You cannot schedule a time which spans more than 1 day.

(Copyright (c) 1979* University of Waterloo)

A . 1.3

e xpl/pho t /boo t

photon/boot - Boot the PHOTON Econosetter from TSS
(113 lines follow)

Syntax :
photon/boot [software-file I option]

Examples:
photon/boot -Proff
photon/boot -Troff
photon/boot photon/p/newsoftware

Options:
Defaults:

-Proff
- T r o f f

Bootloads the TROFF software.
- P r o f f

Bootloads the standard Econosetter software supplied
by Photon Inc. This is the default software loaded
if no option is provided.

-Type
Bootloads software suitable for use with typeset/type
(same as that for TROFF).

-RST
This options provides the capability to boot the e n ­
tire PROFF software/ including high core tables. It
should not be used by those who do not know what this
means. It takes about twice as long as the regular
boot for PROFF and the final light pattern should be
06D3 (h e x).

f ilename
You can specify a file containing different software.
This option is for use only by those select few who
know how to modify the internal software for the
Photon. You must also be familiar with the code for
the high core loader and this boot program. Any ex­
isting software will have to be prepared to be ac­
cepted by the new system. See jhbuccino for details.

Description:
Photon/boot is used to reload or change the software

operating in the Photon Econosetter typesetter. The
bootloading procedure is outlined below.

To begin/ ensure the typesetter has all switches set to
their "green dot" positions. You will have to open the small
panel on the front cover to reach the LOAD switch and to see
the indicator lights. All the black toggle switches on the
Mi crodata panel should be in their "up" position except
SENSE 3 which must be in the "down" position for the boot
procedure to work. After typing the boot command you will

A . 1 . A

e x p l / p h o t / b o o t

be asked to hit the break key on the terminal. This ensures
that the interface buffer is emptied before the software is
sent to it. After this you will be requested to "Press
RESET and LOAD". The RESET and LOAD switches are located
inside the small front cover. The row of lights should im­
mediately begin "counting". If not/ the boot sequence
should be restarted by hitting the break key on the terminal
and the RESET switch on the typesetter. A small letter "j"
will appear to overwrite the word "Press". This is a normal
part of the bootload sequence.

About 10 seconds after the LOAD switch is pressed/ a
message will appear on the terminal asking you to "Press
RESET and RESTART". The indicator lights will still be
counting at this time. When RESET is hit all of these
lights should go out/ and after RESTART is hit the lights
should indicate 0069 (lights 1/ 4/ 6 and 7). You must then
check that the lights do show this pattern. If they are
correct you simply hit the "return" key to continue. If for
any reason they are incorrect you must hit break and the
boot procedure must be repeated from the start. After the
"return" key is hit you will then be asked to "Press RESET
and RESTART again". When RESET is hit all the indicator
lights must go out/ and then RESTART will cause the STOP
light (on the upper panel) to go out and as cause the in­
dicator lights to flicker. Again/ the small j is printed
just before the word Press.

Depending on whether you are booting TROFF or PROFF the
STOP light will remain off for about 30 or 50 seconds
respectively. After waiting this amount of time the STOP
light should come on and the indicator lights should show
0 FC9 (lights 1/ 4/ 7/ 8/ 9/ 19/ 11 and 12). If the lights
show anything else or the STOP light does not come on after
a reasonable amount of time the boot procedure must be
repeated from the start. You can now follow the instruction
"Press RESTART". If you are boot loading the PROFF software
then hitting RESTART should cause the lights to show 06E8
(lights 4/ 6/ 7/ 8/ 10 and 11). Otherwise you are
bo otloading the TROFF software and hitting RESTART should
cause the lights to show 0321 (lights 1/ 6/ 9 and 10). If
after hitting RESTART the lights do not show correctly (as
indicated above) then you should repeat the bootload se­
quence.

To check if the typesetter is working/ try typesetting
a small file and either listen for the "right" noises or
develop the output. Sample test files are in
p h o t o n /test/proff and p h o t o n / t e s t / t r o f f . Output created by
these files is be posted in the typesetter room.

The date/ time/ your userid and the software loaded are
recorded in a statistics file after successful bootloading.

A . 1 . 5

e x p l / p h o t / b o o t

Files u s e d :
ph oto n/etc/nbooters - statistics file
photon/p - catalog of Econosetter programs
photon/test - catalog of test files

B u g s :
The RESET and RESTART toggle switches on the Photon do

not always work when first pressed. You can tell that the
RESET worked by observing that the indicator lights all go
out. If they do not you must hit RESET again. The RESTART
toggle will cause the STOP light to go out and the indicator
lights to flicker and/or change.

Comments and suggestions to userid jhbuccino.

(Copyright (c) 1980/ University of Waterloo)

A 1 6

e x p l / p h o t / p a s s

photon/pass - Send a PROFF/ TROFF or TYPE file to the Econosetter
(35 lines follow)

S y n t a x :
photon/pass filename

Description:
This command transfers the output from the various for­

matters to the Photon Econosetter typesetter. The typesetter
must be loaded with the appropriate software (see "expl
photon boot").

You will first be requested to hit the break key on the
terminal to ensure that the interface buffer is cleared.
The command will then prompt "Press RESET and RESTART" which
requests you to press the RESET and RESTART switches on the
typesetter. You should hear the mirror carriage in the
typesetter move to its home position when you press RESET.
The typesetter should begin making noises when you press the
RESTART switch. It is a good practice to wait until you see
the small j print just before the word Press (indicating the
file is being sent) before you press the RESTART switch.

You may interrupt the transmission by hitting the BREAK
key on the terminal. You may have to wait a short while u n ­
til the typesetter stops/ and the usage information is
recorded by photon/pass.

Files used:
photon /e tc/ nuser s - statistics file for typesetting usage

Bugs:
It is sometimes possible for the transmission to get

scrambled and the line hangs until BREAK is hit. If the
system crashes or your line disconnects/ you don't see the
message as the typesetter trys to typeset it!

(Copyright (c) 1979/ University of Waterloo)

A . 1 .7

e x p l / p h o t / h e l p

How to use the Econosetter

Power Up Procedures
1. Turn the PWR ON switch to the ON position.
2. Wait five seconds and switch the DISC ON to the on

position.
3. Power up the terminal and sign on to TSS as usual.
A. Ensure that all switches on the top panel of the

Photon are in their 'green dot' position.
5. If the cannister for collecting the paper is not

mounted over the output slot remove it from the
developer and mount it.

6. Open the door to expose the Microdata panel. All the
toggles must be in their 'up' position except that the
SENSE 3 toggle must be in the 'down' position.

7. Turn the developer and stabilizer unit on.
8. Determine by looking at the card that indicates which

softawre package is currently booted whether it is
necessary to re-boot or not. If you don't trust the
card try passing a test file.

Boot Procedure
1. Type the command 'photon/boot -t' to boot TROFF (or

TYPE) and simply 'photon/boot' for PROFF.
2. Follow the instuctions given.

Pass Procedure
1. Type the command 'photon/pass filename' on the ter­

minal where filename is the output from PROFF# TROFF
or TYPE.

2. Follow the instructions given.

Developing Procedures
1. After advancing the paper cut it with the built-in

paper cutter.
2. Remove the cannister (being careful that the exposed

paper remains in the unit) and place it in the input
section of the developer.

3. Edge the paper forward until it engages the rollers.
A. Close the casing and when the paper starts to emerge

from the rollers# help guide the paper out.
5. When the document is free of the rollers lay it aside

to dry.
6. Replace the cannister on top of the Photon.

A . 1 .8

e x p l / p h o t / h e l p

Powering Down
1. Turn off the developer.
2. Turn the DISC ON switch to the OFF position.
3. Sign off of TSS and turn the terminal off.
A . Wait five seconds and then turn the PWR ON switch off.
5. Turn the lights out in the room and make sure the door

is locked.

A. 1.9

e x p l / p h o t / l

photon/l - List Photon typesetter codes (TTS codes)

Syntax:
photon/l < input-fiLe> < o utput- fi le>

Description:
Photon/l is useful only for those people who understand

what TTS codes are. TTS codes are generated by PROFF and are
rather inscrutable. Documentation on TTS codes may be found
in the Photon manual "Phase 2 Software Application Handbook"
and are summarized in the PROFF manual.

(Copyright (c) 1979* University of Waterloo)

A . 1.10

e x p l / p h o t / s e n d

send - translate PHO output to be sent by the UNIX daemon
(30 lines follow)

S y n t a x :
/u sr/ src/troff/photon/send

E x a m p l e s :
/ u s r / s r c / troff/ph ot on/send <a.out I hsend

Description;
This is a UNIX program written in C that takes a UNIX

style object module generated by the Photon assembler PHO#
strips it of administrative and loader information# then
translates the remaining bytes so that they can be sent to
the Honeywell timesharing system TSS (via the UNIX daemon).
The mapping of the bytes can be described as follows. After
the input file is stripped (as above) we are left with a
stream of bytes which is the actual assembled code. Two
co nsecutive bytes form a Photon word# the first byte being
the low eight bits of the word. Each byte is now split into
two four bit sections each having a value in the range 0
15 (a hex digit). Now each of these new bytes has the value
'a' added to it. This process leaves a stream of bytes
twice as long as the original file. All the bytes in the
output file are in the range 'a' - 'p'. Newlines are in­
serted after every 100 bytes written out to keep the line
lengths reasonable.

At the completion of this program the standard output
can be sent via the UNIX daemon to Honeywell for use with
the pr ogram 'p h o t o n / p r e p a re '.

(Copyright (c) 1980# University of Waterloo)

A.1 .11

e x p l / p h o t / p r e p

ph oto n/prepare - prepare a program for the photon/boot command
(67 l ines fo l low)

Syntax:
ph ot on/prepare input-file CoptionsJ

Examples:
photon/p re pare pipe.end -u pc=0 pc=240 »/software
ph ot on/prepare /software oo=3 -p -nf -d >out

Options:
Defaults:

0ld0ffset=0 New0ffset=3
- U n i x

The input file is in UNIX format, (see below)
Ol dOffset=n

The input file's bytes have an offset of n. Unix
format files cannot have a non-zero offset.

-Patch
The input file has standard patches that should be
performed before the output stage is entered.

-No F i x
The program will not attempt to offset and patch the
input file when this option is given. It is useful
with the '-Diss' option.

NewO f f s e t = n
Add n to each byte of the code before deciding which
bytes to patch.

-Exec
Produce code so that after the patch code is executed
on the Microdata the program starts execution im­
mediately. (by a jump to location 0000)

PatchChar=n
Do not allow the byte with value n to occur in the
output file by 'patching' the code (if necessary).

- D i s s
Produce a dissasembled version of the output code.

Description:
Ph oto n/p re pare should only be used by those people who

appreci ate the problems of developing new software on UNIX
for the Microdata minicomputer in the Photon Econosetter.
Basica lly the code for such a program must be massaged into
a form that can be used with the command photon/boot. The
docu me ntati on for these procedures can be obtained from Rick
Beach (userid rjbeach).

This program takes two basic forms of input» UNIX for­
mat and Honeywell format. A program with UNIX format is as­
sumed to have each word of the Microdata program represented
by four consecutive bytes. These bytes each represent four

A.1 .12

e x p l / p h o t / p r e p

bits of a Microdata word. Each byte has a value in the
range 'a* to 'p' which maps in the obvoius manner (by sub­
tracting 'a') to a binary value between 0 and 15. If the
bytes are labelled 1/ 2* 3 and 4 with each containing a hex
digit* the resulting Microdata data word is given by 3412.

The Honeywell format (which is the default input for­
mat) has two consectutive bytes representing a Microdata
word. The resulting 16 bit word is just the first byte
shifted up 8 bits and or'ed with the second byte. These
bytes can also have an offset (OldOffset) which is sub­
tracted first before they are combined into words.

After the words are reconstructed and stored in core
the existing patches can be performed. The code is then
fixed (if desired) using the NewOffset any the PatchChar's
and finally output in Honeywell format. The option '-Oiss*
can be used to get a listing of the input program by
specifying the '-NoFix' option. The patches created by this
program normally end with a halt instruction but this can be
changed with the '-Exec* option.

A . 1.13

e x p l / t r o f / p r e v

troff/preview - display TROFF files on graphics terminal
- edit TROFF files destined for the Econosetter

(76 lines follow)

S y n t a x :
troff/preview Coptions]* filename

-TEKtronics - Hew l e11Packard
-Econo
-Whi te -Black
S t a r t s <nn> End=<nn>
BauDra te= <n nnn>

Examples:
troff/preview -tek bd=9600 t.out
troff/preview s = 5.2 e=11.6 filel -e >newfile
troff/preview myfile

Opt i o n s :
Oe f a u 11 s :

-HP B a u D r a t e = 1 200 -White Start=0 End=0 CE0F3
-TEKtronix

Output will be to a Tektronix 4010.
-HP

Output will be to a HP2648A terminal.
-Econo

Output will have the form of a TROFF output file.
This* in conjunction with the Start and End options
allow typesetting of sections of large documents.

-White
Output will be black print on white if on HP ter­
minal.

-Black
Output will be white characters on black background.

BauO ra te =<n nnn>
This allows the program to put out an appropriate
number of synchronization characters so that nothing
is lost during transmission of data to the terminal.
The default rate is 1200.

Start=<nn>
Allows viewing to start <nn> inches into the docu­
ment. The value <nn> may be integer or real.

End=<nn>
Allows viewing to end <nn> inches into the document.
The value <nn> may be integer or real.

Description:
This program allows the previewing of a TROFF

typese tti ng output file on a Tektronix 4010 or a HP2648A
graphics terminal/ before attempting to typeset it using the

A . 2.1

e x p l / t r o f / p r e v

Econosetter. It also allows elementary editting of the file
allowing portions to be typeset. To do this you must
specify the -Econo option and direct the output to a file.
If a HP terminal is used/ black print on a white screen is
the default/ overridable with the -Black option to give
standard white letters on a dark screen. If a Tektronix
4010 is selected/ this option has no effect.

After each terminal page is completed/ a prompt in the
form of a 'cntl-g* (bell) is issued and the user may hit
carriage return to view the next terminal page or type a
or a follwed by a integer to indicate skipping or
reviewing terminal pages. All numbers specified/ whether on
the command line or after a prompt indicate document inches.
(One terminal page = (approx.) 4 inches of a typeset page.)

See Also:
expl troff index - TROFF index
expl photon index - PHOTON Econosetter index

Bugs:
Due to rounding error and the resolution of the HP ter­

minal/ alternate lines may appear to change in point size
when/ in fact/ they are identical.

The character set displayed could be much better; large
point sizes look ugly.

The BauDrate code is not perfect. You may still get
frogged output at 9600 baud.

(Copyright (c) 1980/ University of Waterloo)

f

A . 2.2

Appendix B

Regenerating the Software System

I. You will need the following files.
UNIX: /usr/src/troff/photon/send .c

/usr/src/troff/photon/ntroff.p
/usr/src/troff/photon/hcldr.p

TSS: photon/src/b/boot.b
photon/src/b/pass.b
photon/src/b/prepare.b
photon/p/proff
photon/p/rstpt

These files can be restored as of January 10. 1980 if they are not online or
if you suspect they have been damaged.

2. On UNIX, type the following commands,
cc /usr/src/troff/photon/send.c
mv a.out /user/src/troff/photon/send
pho /usr/src/troff/photon/ntroff.p
/usr/src/troff/photon/send <a.out >troff
pho /usr/src/troff/photon/hcldr.p
/usr/src/troff/photon/send <a.out >hcldr
hsend troff hcldr

This command sequence is also in the file /usr/src/troff/photon/reg and
can be executed, using the command ‘sh’.

3. When the file transfer from UNIX is complete, execute the following
TSS commands.

b photon/src/b/boot.b -d h = photon/boot
b photon/src/b/pass.b -d h = photon/pass
b photon/src/b/prepare.b -d h = photon/prepare
photon/prepare hcldr -u no=0 >photon/p/hcldr
photon/prepare troff -u pc=0 pc=240 >photon/p/ntroff

This command sequence is also in the file photon/make/reg and can be
executed using the ‘ec’ command.

4. The system should now function as documented.

Appendix C

TROFF Output

This appendix explains the commands that TROFF outputs to drive
the Photon. There are two basic types, the commands that control
pointsize, font selection, the carriage and paper motion, and the commands
that select the character to be displayed. TROFF always outputs seven-bit
codes (octal 000 - 177). The first type of commands uses the codes 000 -
017, the codes 020 - 177 are reserved for character selection.

A code in the range 000 - 020 is always followed by some number of
eight-bit bytes that act as the argument to the command. For instance, the
change font command (001) is followed by one byte that must have a value
in the range 0 - 3 which selects one of the four available fonts. A complete
table of these commands, their arguments and functions is given below.
The arguments are represented by the notation /// in the table and each
represents eight bits. On the next page is a table of all the available
characters from TROFF. The blank spaces in the table have corresponding
characters on the character disc, but they are not available from TROFF at
this time.

Command Function

000 NOP — The Econosetter program for TROFF ignores NUL
bytes.

001 HI Set Font — The argument must be in the range 0 - 3 selecting one
of the four fonts (0 = Roman, 1 = Italic, 2 = Bold, 3 = Math).

002 HI Set Direction of Carriage Motor — The argument must be in the
range -1 to +1 (-1 = left motion, 0 = no motion, +1 = right
motion).

003 HI Set Pointsize — The argument must be in the range 0 - 3 selecting
one of the four pointsizes (0 = 8 points, 1 = 10 points, 2 = 14
points, 3 = 18 points).

004 HI Horizontal Motion — The carriage is moved //432 inches in the
current direction where i is the argument in the range -64 to +63.

005 HI Vertical Motion — The photographic material is moved //144
inches where / is the argument in the range -64 to +63.

006 Reset — A hardware RESET is simulated.
007 HI Set Colour - The argument selects the colour to draw the output

in. This is a NOP on the Photon, but the Tek 4027 previewer
uses it.

010 HI HI Page Mark - The argument forms a sixteen-bit integer that
indicates the page number relative to the beginning of the output.
This is a NOP on the Photon, but the previewer can use it.

Oil Halt — Causes the Photon to execute a HALT instruction.

Octal Font
Code Roman Italic Bold Math
020 1 / 1 -►
021 2 2 2 •*-
022 3 3 3
023 4 4 4 t
024 5 5 5 V
025 6 6 6
026 7 7 7 >
027 8 8 8 <
030 9 9 9 5
031 0 0 0 «
032 $ S S
033)))
034 - - - at
035 e e e y
036 t t t t
037 a a a K
040 i i V
041 n n n to
042 s s s X
043 0 o 0 e
044 r r r ò
045 h h h IT
046 d d d p
047 1 l 1 i
050 u u u f
051 c c c 4>
052 f f f V

053 m m m
054 y y y i
055 W W w ß
056 p p P l
057 g g g 0
060 b h b
061 V V V X
062 k k k a
063 q <7 q a
064 j j j P
065 X X X V

066 z 2 z T
067 • , 9 u
070 # c
071 ’ ; t
072 ? » ♦
073 # 4 » c
074
075

] 1])

076 / / /
077 — _ _ 1
100 >/4 1/4 V* Í

1101 '/: Vi
102 J/4 X V* \
103
104
105
106
107

% % % [
)
\
1
Í

Octal Font
Code Roman Italic Bold Math
110 & & & l
111 9 ? 7 1
112 ! ;
113 (((*
114 + + + J
115 E E E 0
116 T T T M

117 A A A n
120 I I I r
121 N N N
122 S S S V
123 0 O O $
124 R R R A
125 H H H E
126 D D D -
127 L L L
130 U U U 2
131 c c c
132 F F F f
133 M M M
134 Y Y Y n
135 W W W A
136 P P P *
137 G G G 0
140 B B B
141 V V V
142 K K K O
143 Q Q Q r
144 J J J
145 X X X >
146
147

z z Z <
n

150 1 1 t D
151 l
152 « * (

153 * * * Z)
154 [l [1
155 W H m

156 \ \ \
157 1 1 1
160 fi fi fi £
161 fl fi fl
162 ff f f ff
163
164
165

o O o O

X
166 - - -

167 11 11
170 § s §
171 o □ □
172 c t < GC
173 t t t
174 = = ±
175 £ TÖ »

176 ■fi o CO

177 C q (a. @ d

Appendix D

Source Code

The following pages contain listings of the source code for the
typesetting system developed in this essay. The listings are divided into
sections by programming language. The code can also be found on the
Honeywell system in the filename given at the top of the page that the
listing appears on.

B Source
Boot....
Pass.....
Prepare

D.I.l
D.1.7
D. 1.12

C Source
Send D.2.1

PHO Source
High-Core Loader.............................D.3.1
Troff..D.3.6

p h o t o n / s r c / b / b o o t o

%b/man i f / .b s e t
%b/manif/t . dr l s

NUL = oooo; /* Indicates an empty interface buffer. */
EOL = 0021 ; /* End of Line character sent by datanet. */
EOM = 03 31 ; /* Turns interface back to the terminal. */
SOM = 0352 ; /* Turns interface to the Photon. * /
E03 = 0360; /* Indicates end of boot. */

BUFFER = 2 5 5; /* Size of interface buffer (in bytes). */
SEND = 12 7; /* Number of bytes to send at a time. * /
STD = -4 ; /* Error messages go to the terminal. * /
TRM - -5; /* Force read from the terminal. * /

TRPATCH = 01441; /* Troff stops at 0321 (hex) after patches.
PRPATCH = U3350; /* Pr of f stops at 06E8 (hex) after patches.
RSPATC H s 0 3 3 2 3 ; /* Reset stops at 06D3 (hex) after patches.

HC LDR 5 "photon/p/hcldr";
TRSOFT = "photon/p/ntroff";
PRSOFT = "photon/p/ np roff";
R S S 0 F T = "photon/p/rstpt";
STATS S "photon/etc/noootersînnnn";

FILENAME s o;
COMMAND = 1 ;
TROF F = 2;
PROFF 3 ;
R S TP T = 4;

* /
* /
* /

file;
optableCD

/* nlhere the core image to be sooted is stored

"BOOT” f COMM.KWD,
"Troff” DASH.KWD/
"Proff " * DAS H_KWD,
"RST"
-1 ;

/ d a s h _k w d ,

* /

0 .1. 1

p h o t o n / s r c / b / b o o t . b

main(argc/ argv)

extrn prthe*/ drl.q;
auto C/ Lights/ buffer/ count;

lights = setup(argc/ argv);
buffer = getveci (BUFFER + 3) / A - 1) ;

drl.q = 0102000000,'
drl.drli T . S E T S _)/*

nob r k s (2) ;
printf(STD/ "Hit *"oreak*" to clear the interface.*n");
f l u s h o ;
wh i l e (!n o b r k s ());
n o b r k s (0) ;

trldrC buffer) ;

printfl STD/ "*nPress RESET and RESTART. The lights should"),'
printfl STD/ " now indicate 0069 (hex).*n" >;
printfl STD/ "If they are correct/ hit * " return*" to continue.*n")
c = getc(TRM);
printfC STD/ "*n Now press RESET and RESTART again.*n");
f l u s h O ;

count = trdrv(buffer);

printfl STD/ "*nThe lights should now read 0FC9 (hex).*n") i
printfl STD/ "Press RESTART. (Do not press RESET.)*n")/*
i f (lights)

C
printft STD/ "The lights should now read %y "/ prthex/ lights)
p r i n t f (STD/ "(hex) which indicates a successful bopt.*n");

>

drl.q = 0102000000;
drl.drl(T.RSTS.);

stats(count);

setup(argc/ argv)
i

extrn file;
auto i/ info/ out/ lights/ driver;

file = p r s o f t ;
out = 0 ;

D.1.2

p h o t o n / s r c / b / b o o t . b

Lights = PRPATCH;
driver = "Proff";

for(i = 1; (info = argvtiJ) != -1; ♦ * i)
suitch(info >> 18)

case COMMAND :
Drea k ;

case FILENAME:
i f (out)

error! "Only one file can be booted at a t i m e . * n ")
out = argvCij;
lights = 0;
driver = "user's";
b r e a k ;

case TROFF:
i f (out)

error! "Only one file can be booted at a time.*n")
out = t r s o f t ;
lignts = t r p a t c h ;
driver = "T rof f";
break;

case PROFF:
if! out)

error! "Only one file can be booted at a time.*n")
out = PR s o f t ;
lights = PRPATCH/’
driver = "Proff";
break ;

case RSTPT:
if! out)

error! "Only one file can be booted at a time.*n")
out = r s s o f t ;
lights = RSPATCH;
driver = "full Proff";
b r e a k ;

d e f a u l t :
printf! STD/ "Xs - unknown opt ion*n"/ info);
exit!);

>

if! out)
file = out;

printf! STO/ "Booting with %s d r i v e r . * n * n " / driver);

return! lights)/’
>

0.1.3

p h o t o n / s r c / b / b o o t . b

trldr(buffer)
C

auto i / c / n ;

open (HCLDR/ "r"),*
n = o;
whilei (c = getcharC)) != '*0')

i f (c == • *n •)
n e x t /

lchar(buffer# n + + / c);
>

c l o s e () /’
printf(STD/ " Press RESET and L 0 A D .* n
f L us h () ;
p u t c (SOM) ;
outline(buffer/ n);
n = o;
f o r (i = 1 ; i <= s e n d ; + ♦ i)

Lchar(buffer/ i/ '»O');
putline(buffer/ SEND) ;
p u t c (EOM);

errori arg)

printf(STD/ "%r"/ Sarg);
e x i t () ;

putlinei Line/ n)
{

auto tally/ tallyb;

tally = (¿tallyb << 18) I 1 << 6;
tallyb = < line << 18) I (n << 6) I
d r l . d r K T.OTIN / ¿tally << 18),*

>

pu t c (c)

auto tally/ tallyb/*

tally = < ¿tallyb << 18) I 1 << 6/*
tallyb = (Sc << 18) I 0143;
d r l . d r K T.KOUT./ (¿tally << 18))/*

0 4 0 ;

D . 1 .4

p h o t o n / s r c / b / b o o t . b

trdrví buffer)
í

extrn file;
auto c / n / count;

open(file/ " r ") ;
n = count = 0;
s u t e (S 0 M);
wnileC (c = g e t c h a r O) != '★O*)

i f(c == • *n •)
n e x 1 1

coun t + + ;
c &= 0377;
i f (n == SEND)

{
putlineC Duf fe r/ n);
n = o;

>
lchar(buffer/ n**/ c

y
pu t li n e (b u f f er / n) ;
p u t e (EOS);
putei EOM);
c l o s e O ;

re tu r n (coun t) ;
}

p r t h e x (num)
i

auto c o n [3]/ i;

conCO] = c num i 017J000) >> 12 ;
c on C 1] = (num a U 7400 > >> a;
c on C 2J = (num & 0360) >> 4;
conC3: (num i 01 7) >> o;
f o r (i 5* o; i <= 3; *■ + i >

i f (conCi] > 9)
putcharC 'A' + conüij - 10);

e l s e
putehari '0* * con[i]);

>

0.1.5

p h o t o n / s r c / b / b o o t . b

s t a t s (cbunt)
<

extrn file/ . u i d;
auto d[33/ tC33/ useridC3]»

bcdascl userid/ R.uid/ 12);
o p e n (STATS/ "a" >;
printfC "%1 2 s %s %s X s ~ X10d*n"/

userid/ date(d)/ time(t)/ file/ count
c l o s e () /'

D. 1.6

p h o t o n / s r c / b / p a s s . b

Xb/man if/. bset
Xb/manif/t . d r l s

NU L = oooo; /* Indicates an empty interface buffer. * /
EOL 3 UÜ21 ; / * End of line character sent by datanet. */
EOM 3 03 31 ; /* Turns interface back to the terminal. * /
SOM 3 03 52; /* Turns interface to the Photon . * /

BUFFER = 2 5 5; /* Size of interface buffe r (in bytes). */
SEND 3 12 7; /* Number of bytes to send at a time. */
STD = - a ; /* Error messages go to the terminal. */

PS TART 3 0A2 7,' /* All Proff files start with this byte. * /
STOP 3 011 ; /* Causes troff driver to halt. */

STATS = "pnoton/etc/nusers$nnnn";

FALSE s o;
TRUE = 1 ;

FILENAME = o;
COMMAND = i ;

file; / * Where the output file i s stored . * /
t r o f f; / * Indi cates what kind of file is being typeset. * /
op tablet]

’•PASS" / C 0 M M _KWD,
-1 ;

D. 1.7

p h o t o n / s r c / b / p a s s . D

ma i n (argc/ argv)
C

extrn t r o f f / drl.q;
auto i/ buffer/ count/ start;

setup(argc/ argv);
buffer = getvec((BUFFER + 3) / 4 - 1);

drl.q = 0102000000;
d r l .dr l (T.SETS.);

nobrks (2) ;
printf(STD/ "Hit *"break*" to clear the interface.*n");
f l u s h () ;
wh ile (! nobr k s ()) ;
nobrks (0) ;

start = time();
printfi STD/ "*n Press RESET and RESTART.*n");
f l u s h () ;

count = trfilel buffer);

i f (t r o f f)
putc(STOP >;

f o r (i = 1 ; i <= s e n d ; + + i)
lchar(buffer/ i/ '*0');

putlinel buffer/ SEND);

putc(E0M);

printfC STD/ "*nYour file has been typeset. When the STOP ");
printfl STD/ "light comes*non press RESET and hold CONT LEAD") i
printf(STD/ " for about 10 seconds.*n");

drl.q = 0102000000;
drl.drlC T.RSTS.)/*

statsC start/ count);

D . 1.8

p h o t o n / s r c / b / p a s s . b

s e t u p (argc/ argv)

extrn file;
auto i/ info;

f i l e = o ;

for(i = 1; (info = argvCi]) != -1 ; + + i)
switchl info >> 18)

c a s e COMMAND:
b r e a k ;

case FILENAME:
i f (file)

error("Only one file can be typeset at a time
file = argvCiJ;
break;

d e f a u l t :
printf(STD/ "%s - unknown option*n"/ info);
e x i t () ;

>

i t < file == 0)
error("Usage: Pass <filename> C-Troff] C-Proff]*n");

>

*n ")

D . 1 .9

p h o t o n / s r c / b / p a s s . b

t r f i I e I buffer)
£

extrn file* troff;
auto c * n* count;

open< file* "r") ;
troff = t r u e ;
if((c = g e t c h a r O) == PSTART)

troff = f a l s e ;
IcharC buffer* 0 * c);
n = count = 1;

putec s o m);
whilel (c = getcharl)) != '*0')

£
i f (c = = ' * n ')

n e x t ;
count + + ;
c S = 0377;
i f 1 c = = NUL 1 1 c == EOL 1 1 c == EOM II c == SOM)

c “= 0 2 0 0 ;
i f l n == SEND)

<
putlinel buffer* n);
n = o;

>
lchar(buffer* n++* c);

>
putlinel buffer* n) !
close <) ;

returnl count) !
}

errorl arg)

printfl STD* "%r"* iarg);
e x i t () ;

>

putlinel line* n)

auto tally* t a 1 1 y b ;

tally = l Stallyb << 18) I 1 << 6;
tallyb = l line << 1 6) I l n << 6) I IKU;
drl.drll T.0TIN_* {¿tally << 18);

D. 1. 1 0

p h o t o n / s r c / b / p a s s . b

p u t c (c)
{

auto tally* tallyb;

tally = (St a l lyb << 18) I 1 << 6;
tallyb = (Ac << 18) I 0 U 3 ;
d r l . d r K T.KOUT_* (¡¿tally << 18));

>

stats(start* count)

extrn . u i d ;
auto d[3]* t C 3 3 * userid[3]* end;

end = t i m e O *'
bcdasc (userid* fi.uid* 12) ;
open(STATS* "a”);
printfl " % 1 2 s %s %s - %10d*n"*

userid* date(d)* t i m e (t* end-start)* count);
clos e () ;

>

0.1.11

phot on /sr c/b/pre par e. b

FALSE o;
TRUE s 1 ;

C URPAT CH = 3 ; /* Number of bytes special to interface. * /
MAXPATCH s 1 0 ; /* Maximum bytes special to all programs. */
EOL s ou 21 ; / * Oatanet sends this after every buffer. */
SOM = 0 3 5 2; / * Allows interface to start receiving. * /
EOM = 03 31 ; / * Tells interface transmission has ended . * /
OFFSET ? 3; / * Output bytes offset to reduce fixes. * /

EOF = -1 ; t * Value returned to main at end of input . */
STD = - a ; / * Assures error messages go to terminal. */

OPCODE = 0170000; / * Selects the opcode of an instruction. */
OPERND = 07777; / * Selects the operand of an instruction. */
ADDRESS = 07777; / * Selects the address of an instruction. */
LOBYTE = 0 3 7 7 ; / * Selects bottom 8 bits of an instruction. */
HIBYTE = 0177400; / * Selects top 8 bits of an instruction. * /
w/O R D s 01 7 7 7 7 7 ; / * Converts HW words to 16 bit words. */

LI 5 0030000; / * Load Immediate */
NOP S 0050000; /* No Operation (Add 0 to AC) */
AD D I = 0050000; /* ADD Immediate */
ST = 0070000; /* STore AC */
HALT = o i 14üoo; /* HALT */
BR s o i20000; /* BRanch */

CORESIZE = 4096; /* Physical size of Microdata core. */
LDRS I Z E = 12 3; /* Core used by the high-core loader. */
USEABLE CORESIZE - l d r s i z e ;

/ib/manif/. b s e t
FILENAME = o;
COMMAND = 1 ;
UNIX = 2;
OLDOFFSET = 3 ;
PATCH = 4;
N 0 F I X = 5;
NEWOFFSET = 6;
EXEC = 7;
PATCHCHAR = 8;
DI SS = 9 ;

‘.120 1

p h p t o n / s r c / b / p r e p a r e . b

/ * Externats. * /

f i l e ;
u n i x ;
o L do f;

/* Unit number of input file. */
/* Input was sent from UNIX. */
/* Input was written with this as offset. */

p a t c h ; / * Perform any patches in the input before fixing. */

no f i x;
newo f;
exec;

/ * Do not attempt to fix the code. */
/* Use this as offset when outputting code. */
/ * Jump back to location zero after fixes. */

baach; / * Pointer to list of bytes that can not be used. * /

diss; /* Code is to be dissambled. */

c o r e ;
l a s t ;

/* Pointer to contents of core. */
/* Last core address of current program. * /

optableCJ
"PREPARE"
"Uni x "
"OldOffset"
"Patch"
" N o F i x"
"NewOffset"
" E x e c "
"Pa tch Ch ar "
" D i s s "
-1 ;

, C 0 M M_KWD/
/ DASH.KWD/
, NVAL.KWD,
/ DAS H_K W D /
/ DA SH.KdD,
/ NVAL.KWD,
/ DASH.KWD/
» NVAL.KWD,
* DASH.KWD ,

0.1.13

p h o t o n / s r c / b / p r e p a r e . b

maini argc/ argv)
<

extrn patch/ nofix/ core/ tasti
auto i/ word;

s e t up i argc» argv) ;
core = getveci CORESIZE - 1);
fori i = Oi i word = getwordi)) != EOFi + +i)

ift i == CORESIZE)
errori "Program too big for core.*n");

e l s e
coreCiD = word»'

i f i patch)
dopa t c h i) ;

else
l a s t = i - 1 ;

i f i ! no f i x)
f i x l) ;

output i);

0 . 1.14

p h o t o n / s r c / b / p r e p a r e . b

setup(argc» argv)
(

extrn file* unix* oldof* patch* nofix* neuof* exec* badch* diss;
auto i* info* out;

badch = zero(getvec(MAXPATCH));
bade h CO] = CURPATCH;
b a d c h C 1] = S 0 M *
badchC^] = EOM;
badc h [3] = EOL;

file = out = oldof = 0;
unix = patch = nofix = exec = diss = FALSE;
newof = OFFSET,’

for(i = 1; (info = argvCi]) != -1; ++i)
switchl info >> 18)

C
case COMMAND:

break;
case FILENAME:

i f (out)
errort "Only one file at a time please.*n" >;

out = argvCi];
break;

case UNIX:
unix = TRUE;
break;

case OLDOFFSET:
oldof = *info;
break;

case PATCH:
patch = TRUE;
b r e a k ;

case NOFIX:
nofix = t r u e ;
break;

case NEWOFFSET:
newof = *info;
b r e a k ;

case EXEC:
exec = TRUE;
b r e a k ;

case PATCHCHAR:
b a dehC++badchCO]] = *info;
break;

case DISS:
diss = t r u e ;
b r e a k ;

default:

D.1.1 5

p h o t o n / s r c / b / p r e p a r e . b

p r i n t f ("% s - unknown option*n"/ info);
ex i t () ;

>

i f (out)
f i l e open (out/ " r ") i

/* Input routines. */

g e t wo r d ()
i

extrn unix/ o l do f ;
a u t o C / C 1 / c 2 ;

i f (u n i x)

C

i f ((c = g e t c 1 ()) - = ' * 0 *)

r e t u r n (E O F) , *

c 2 = (((c - ' a ') < < A) 1 (g e t c 1 () - ' a
c = g e t c 1 () ;

c 1 = (((c - ' a ') A A (g e t c 1 () - ' a

>

e l s e

<

i f ((c = g e t c h a r O) = = ' * n ')

r e t u r n l E O F) ;

c 1 = (c - o l d o f) & l o b y t e ;

c 2 = < g e t c h a r O - o l d o f) & l o b y t e ;

>

c = (c 1 < < 8) + c 2 ;
r e t u r n (c & W O R D) ;

ge t c 1 ()
<

auto c ;

whileC (c = g e t c h a r O) == '*n');
returni c) ;

& L03YTE

& L03YTE

D. 1 . 16

p h o t o n / s r c / b / p r e p a r e . o

dopa t c h ()
{

extrn core/ last/ prthex#*
auto1 word/ nxt/ a c / upd;

i f < coreCO] & OPCODE ! = BR)
errori "Instruction in location 0 is not a branch.*n") *

n x t = coreCOD & a d d r e s s ;
last = nxt - 1 ;
wh ile ((word = co re[nxt+ + J) != HALT)

i f (word == 8 R)
break;

i f (
r

word S OPCODE ! = LI)
\

p r i n t f (STD/ "Error perform ing patches in original code."
o r i n t f (STD/ "*nExpecting a Load Immediate.,.*n");
p r i n t f (STD/ "at address %y "/ prthex/ nxt-1);
p r i n t f (STD/ "read a %y*n"/ prthex/ word) ;

\
e x i t () ;

/
a c = word & o p e r n d ;

word = coreCnxt + t’];
i f (

r
word & OPCODE ! = ADDI)

\
p r i n t f (STD/ "Error perform ing patches in original code."
p r i n t f (STD/ "*nExpecting an ADD Immediate.,.*n") i
p r i n t f (STD/ "at address %y "/ prthex/ nxt-1);
o r i n t f (STD/ "read a %y*n"/ prthex/ word) ;

\
e x i t () ;

I
ac = ac + (word & OPERND);

while(coreLnxt] == NOP)
n x t + +;

if((word = c o r e C n x t]) & OPCODE != ST)

printf(STD/ "Error performing patches in original code.")
printfl STD/ "*nExpecting a STore...*n") ;
printfi STD/ "at address %y "/ prthex/ nxt-1);
printf(STD/ "read a %y*n"/ prthex/ word) !
e x i t () ;

>
upd = word & ADDRESS;
coreCupd] = (coreCupd] & OPCODE) + (ac & OPERND);

>
>

D.1.1 7

p h o t o n / s r c / b / p r e p a r e . b

/* Output routines. */

ou t pu t ()

extrn newof# diss# core# last# p r t h e x »'
auto i ;

i f (d i s s)
f o r i

oII i < = l a s t ; + + i

<

p r i n t f < H

p r i n t f i '* % y : % y * n " #

i f i i i

IIII<3#-N

p u t c h a r i ' * n ■) ;

>

f o r i i = o ; i < = l a s t ; + + i
<

p u t c h a r (i i i c o r e [i 3

p u t c h a r i i i c o r e C i 3
>

)

") ;
prthex# i# prthex# core[i3)
0)

)

>> 8) * newof) S LOBYTE)
+ newof > & LOBYTE)

prthex(num)
(

auto c on C 3 3 # i;

coni 03 = i num 4 0 1 7Ü0U0) > > 1 2
c on C13 = i num 4 07400) > > 8
conC23 = t num & 0360) > > 4
conC 3 3 = i num 4 017) > > 0

fori i II o

%
•

A II 3 ; *+i >

i f i c o n [i 3 > 9)

putchari ' A • + conC i 3 -

else
putchari 'O' + conC i 3) ;

errori arg)

printfi STD# " Z r " , i arg) ,*
ex i t <) ;

>

I 0400)
I 0400)

0.1.18

p h o t o n / s r c / b / p r e p a r e . b

/* Routines for fixing code. */

f i x ()
<

extrn exec, core# last/ prthex;
auto i/ n/ coreO/ ncoreO;

coreO = coretO];
i f ((coreO & OPCODE) != 3R)

errort "Cannot fix code. First instruction not a branch.*n") i

n = last/'
ncoreO = 8R I ((last
whileC badwordC ncoreO

C
i f (badwordC NOP)

errorC "Cannot
codeC NOP),'

>
ncoreO = BR I C C last

+ 1) & ADDRESS >;
))

)
code a NOP C5000).*n"),'

+ 1) & ADDRESS)/'

forC i = 0; i <= n; ++i)
ifC badwordC coreCi]))

stuffC coreCiJ/ i)/

stuffC coreO/ 0) l
i f C exec)

i f C badword C BR))
errorC "Cannot code a BRanch 000 CA000).*n");

codeC BR);
>

else
i

i f C badword C HALT))
errorC "Cannot code a HALT C9800).*n");

codeC HALT);
>

coreCQ] = ncoreO/’

codeC data)
{

extrn core/ last/’

ifC last == USEABLE)
errorC "Fixes cause program to overflow core.*n");

coreC + +lastO = data,'

D. 1. 19

p h o t o n / s r c / b / p r e p a r e . b

s t u f f i da t a # add r)

extrn core; last# prthex;
auto i/ count; ì X ; Ì1; Ì2# i3# j 1; j 2# j3;

count = 0;
i x = data & OPCODE,'
11 = LI I i i i data & OPERND) - 1) & OPERND) ;
i 2 = ADDI I 01 ;
i 3 = ST I (addr & ADDRESS);
i f t

(
badwordi i 1))

i 1 = LI I i i t data & OPERND) - 2) & OPERND

\
i 2 = ADDI 1 02;

J

i f (
r

badwordi i X) Il badword i i 1) II I badword i i 2)
V

p r i n t f i STD# "Cannot fix *y: % y * n " #
orthex; addr# prthex# data);

e x i t () ;

ifC badwordi i3))
<

i 3 = s t ;
i f (badword(i3))

errori "Cannot code an ST xxx i7xxx).*n") ;
j 1 = LI I i (< addr & ADDRESS) - 1) & ADDRESS) i
j 2 = ADDI I 01;
j 3 = ST I ((last + 6) & ADDRESS);
if(badwordi j1) Il baduordi j 2))

printfi STO# "Cannot fix %y: X y * n"#
prthex# addr# prthex# data

e x i t () ;
>

whilei badwordi j3))
l

coun t + + ;
j 3 = ST I ((last *■ 6 + count) S ADDRESS >;

>
code (j1);
code < j2);
c 0 d e (j 3) ;

c o d e (i 1);
c o d e (i 2) ;
fori i = 1; i <= count; ++i)

ifi badwordi NOP))

D.1.20

p h o t o n / s r c / b / p r e p a r e . b

errori "Cannot code a NOP (5 0 0 0) . *n");
else

c o d e (NOP >;
c o d e (i 3) ;
coreCaddr] = i x ;

>

oadword(word)

i f (badbyte((word A HIBYTE) >> 8) II badbyteC word
returnt TRUE) ;

else
return(FALSE);

badbyte(byte)
{

extrn newof/ badch;
auto i;

f o r (i = 1 ; i <= badchCO]; + + i)
if((byte + newof) A LOBYTE == badchCiJ)

returnt TRUE);

returnt FALSE) i
>

LOBYTE))

0 . 1 . 2 1

p h o t o n / s r c / c / s e n d . c

^include <stdio.h>

(¿define SIZE 4096 / * Number of words in Microdata core. */

/*
* The output of *pho* is a unix core image (a.out). This
* consists of 16 bytes of info followed by a stream of bytes
* which is the assembled code. The code is followed by some
* loader information which is ignored.
* /

struct header
t

int h_magic»‘ /* Magic number */
int h_tsize; /* Size of program text segment
int h_stuff[6]; /* Six more words */

> header;

int core [SIZE]; /* Core image for Photon */
char *coreb; / * To reference core by bytes * /
int f; / * Pointer to next unused word */

ma i n ()
<

coreb = core;
f = (cread() + 1) >> 1;
cwritei);

>

/ *
* Read the file into our core image.
*/

c r e a d ()

regi s t e r n ;
regi s t e r char * p ;

p = (¿header;
fori n = 0 ; n < sizeof header; ++n)

* p + + = g e t c h a r () ;
f o r (n = 0 ; n < h e ader.h _ tsize; n + +)

C
i f (n == i * SIZE)

errori "Program too large for core\n");
corebCn] = g e t c h a r O i

>
returnl n);

>

D.2.1

p h o t o n / s r c / c / s e n d . c

/ *
* Write the core image out.
* /

c w r i t e O
i

register i * r»;
register char c;

n = f < < 1 ;
for(i = 0; i < n; + H)

C
i f C C i % 50) == 49)

putcharC '\n');
c = corebC i J >

putchar(((c >> 4)
putcharC (c & U17) +

>
putcharC '\n') ;

>

& 017) + ' a ') ;
' a •) ;

0.2.2

p h o t o n / s r c / p / h c l d r . D

/ This program consists of two parts. The first part has two
/ manifests ‘L O W ’ and ’HIGH'. 'LOW' is the address where
/ the second part begins* ‘HIGH* is the address where the second
/ part is to be transferred to. It is assumed that the user cal-
/ culates this high address so that the last word of the second
/ part is moved to address FFF. After the second part has been
/ moved control is passed to the address given by the manifest
/ *HFIRST'. The second part is the high core loader. It sets
/ up its interrupt address (storing it at location 1) and begins
/ to read bytes from the interface* constructing words and stor-
/ ing them in successive locations starting at 0 (with care taken
/ not to destroy the interrupt address). When the "EOS' code is
/ encountered a HALT is executed to stop the interrupts. If the
/ user then hits RESTART (not RESET!) the words that should be in
/ locations 0 and 1 are loaded and control is tranferred to loc-
/ ation 0. The program now in core is guaranteed to be the image
/ of the file transferred because the loader knows which bytes
/ should be loaded. The user will have to ensure that these bytes
/ are never sent and that he does not try to load a program that
/ would overwrite the high core loader.
/ N.3. This loader assumes that the first instruction of the program
/ being loaded is a jump (Axxx) and the second instruction is
/ a jump to subroutine (2xxx).

LOW = 0x014 / Loader code starts at this address.
HIGH = Oxfaf / Loader code will start at this address, (after move)
HFIRST = 0xfe4 / Address of first instruction of transferred code.

HALT AO = 0xfc9 / where to go after boot is finished.
EOB = 240 / Indicates End Of Boot when read by the second part.
DOFF = 3 / All bytes read must have this subtracted.
INCR = EOB - DOFF

/ Since the second part is going to be relocated all the addresses
/ calculated by ‘pho' will be incorrect. This must be corrected
/ by the user in the following way. Each labelled address has a
/ manifest associated with it (the same name in upper case) which
/ has the value of the location which 'pho' should assign to the
/ symbol if relocation was possible. Thus the following manifests.

STINT = Gx faf
INTER = OxfbO
SAVEAC = Oxfbd
G E T 1 2 = Ox fbe
TEMP = Ox f c 5
WRAP = Ox f c 6
READ = 0 x f d4
AGAIN = 0 x f d 5
NEXT = Oxfef
STHGH = 0 x f f 6

D. 3. 1

p h o t o n / s r c / p / h c l a r . p

STLOW
I N T A 0 R
OAT AO
DATAI
ADDR
R E 0 T I M

Oxf f9
Ox f f b
Oxf f c
Ox f f d
Oxf fe
Ox f f f

/ This is the first part that transfers the loader code
/ into high core. It stops when it moves a word into
/ the location F F F

br start / First instruction must be a branch to allow

s t a r t :
Id l ow / Address of next word to be moved.
st 1 f / Save it away so we can toad Doth the high..
s t 3 f / and low bytes separately.
Id high / Where the word is to be moved to.
s t 2 f / Save it away so we can load both the high..
s t A f / and low bytes separately.

re fu / Allow referencing the high 8 bits.
1 : l db • • / Get the high part of the word.
2 : s t b • • / Store the high part.

refi / Allow referencing the low 8 bits.
3: 1 db • • / Get the low part of the word.
A : s t b • • / Store the low part.

i s k low / Address of next word to be moved.
nop / Drop t hro ugh. ..
i s k high / Where the next word is to be moved.
br start / If it is not 0 then move the next word.
b r HFIRST / Else start executing high core loader.

low: LOW
high; HIGH

/ This iS the second part which actually performs the loading

/ The Mi crodata is interrupted every millisecond. This interrupt
/ routine simply decrements a counter (if it is non-zero) and
/ returns control to the interrupted routine.

s t i n t :
0x9100 / Used for return address,

interrupt:
br
st SAVEAC / Save the routines accumulator.

Id $0x500 / ?
ioc 0x801 / ?

D.3.2

p h o t o n / s r c / p / h c l d r . p

add $-0x200 / 7
refi / 0
St STINT / Store address to return to.

Id
sbeq

REDT I M
/ If counter is not zero...

add $-1 / decrement it.
s t REDTIM

Id SAVE AC / Restore accumulator...
b r STINT / and return to interrupted routine.

s a v e a c :
U / Temporary storage for accumulator.

/ This routine reads two bytes from the interface and returns
/ in the AC a 12 bit quantity whose top A bits are the least
/ significant A bits of the first byte read and the bottom 8
/ bits are the 8 bits of the second byte.

ge 112 :
b r
j st

• •

READ / Read a byte.
a l s $8 / Shift top A bits out/ bottom A to
s t TEMP / Save this for a moment.
j s t READ / Read another byte.
add TEMP / Form the 12 bit quantity desired.
b r

temp:
0

GET1 2

/ Control is transferred here when the '* E 0 B ' code is encountered.
/ Location 0 is loaded with a tranfer back to the instruction
/ after the HALT just in case the user hits the switch RESET.
/ Note that we know that the high bits of location 0 are 1010 (A)
/ which indicates a branch. Thus we only need load the low bits.
/ A HALT is executed to turn off interrupts/ and when RESTART is
/ pressed locations 0 and 1 of the program loaded are fixed. This
/ could not be done witn interrupts on. Control is then passed to
/ location 0 and the loaded program starts executing (usually the
/ patches need to have it read by this loader.)

w r a p :
I d S H A L T A D /

s t 0 /

h a l t /
r e f u

l d b D A T A 0 /
s t b 0 /
l d b D A T A I /
s t b 1 /

Set up location 0 so that we return to...
tne right address even if RESET is hit.
Effectively: turn off interrupts.

Load high byte
and store it.
Load high byte
and store it.

of location 0.

of location 1.

.3.3D

p h o t o n / s r c / p / h c I d r P

r e f l
Idb DATAO /
stb 0 /
Idb DATAI /
stb 1 /
b r 0 /

Lpad low byte of
and store it.
Load low byte of
and store it.
Transfer control

location 0...

location 1 . . .

to loaded program.

/ This routine reads a byte from the interface/ checks to see
/ if it is the ’ E08' code and removes the offset given by
/ * 0 0 F F 1 . It returns an 8 bit quantity in the AC. If the
/ byte is *E0B' control is passed to the label 'wrap'.

r e a d :
b r

again:
l d REDTIM / Is there a read in progress?
bn e AGAIN / Ves. Wait until it is finished.

Id S3 / Three milliseconds for a read.
s t REDTIM

i o c 0x702 / Read next byte from interface.
bbeq AGAIN / Ignore nulls.
add Î-E0B / Is it the end of the boot?
sbne
b r WRAP / Yes. Transfer control to wrapup.
add SINCR / No. Remove offset.

a l s S4
a r s $4 / Make sure we just return 8 bits.

b r READ

/ This where control should be transferred when the move to high
/ core is complete. First the interrupt address is put into loc-
/ at ion 1 and interrupts are turned on. The first two words are
/ read and saved for storage by the wrapup. Then oytes are read
/ and stored in successive locations starting at address 2.

r e f u
Idb INTADR
s t b 1
r e f l
Idb INTADR
stb 1
0x9100

/ Store top 8 bits of interrupt address.

/ Store bottom 8 bits of interrupt address.
/ Turn on interrupts.

jst 6ET12
st DATAO / Get and save operand for instruction at location 0.

D.3.4

p h o t o n / s r c / p / h c l d r . p

jst GET12
st DATAI / Get and save operand for instruction at location 1.

next:
Id ADDR / Last word stored,
add $ 1
st ADDR / Word to be stored.
St STHGH
St STLOW

j s t READ
r e f u

s t h g h :
s t b . .
r e f l
jst READ

s t l o w :
s t b . .
br NEXT

i n t a d r :
0x2fbO

d a t a O :
OxaGOO

oa t a 1 :

Ox 200U
add r :

1
r e d t i m :

Ü

/ Read a b / t e .

/ Store in top part of word.

/ Read a byte.

/ Store in bottom part of word.
/ R e p e a t .

/ Address of interrupt routine.

/ Temporary storage for instruction at location 0.

/ Temporary storage for instruction at location 1.

/ Last address to be stored.

/ Time needed to finish current read.

D.3.5

p h o t o n / s r c / D / n t r o f f . p

/ This is the source for the boot file in ' jhbuc c i n o / p h /o r i g .
/ It is also the same as *p h o t o n / p / t r o ff ' except that the latter
/ has 4 extra words/ all containing FFFF after the last halt
/ and before the trailing QAQO.
s k p = 0 “ ioc
A C 0 M = 0x10 /Number of available commands
NCOM = 10 /Number of valid commands
nop = 0x5000

/This program runs
/ Copyright (c)

LEO FWD = 0x106
DRPPWL = 0x140
FLASH = 0x201
CARFWD = 0x204
ROWS = 0x210
R0WÛ = 0x240
RE0LNS = 0x308
FLOP = 0x402
C ARHKD = 0x404
R0W1 = 0x440
READ = 0x702
PLSLED = 0x804
LEDBKD = 0x805
LFTPWL = 0x840

P T P R D Y = 0x082
FLSCMP = 0x130

br i n i t
j St interrupt

/Initial i z a t i on
/
i n i t :

Id $0
s t red t i m
s t c a r c h g

the Photon Econosetter.
1978/ Johann H. George

/Jump around interrupt
/Interrupt

s t l e d v a l
st ledchg
st ledtim
st dskoff
s t w i do f f
st carval
s t pn t o f f
st pnt s i z
st fntoff

Id $3 /RESET sets us to inner row

0.3.6

p h o t o n / s r c / p / n t r o f f . p

St row

Id $1 35 •/Software offset for a
s t carval
neg
s t carpos

Id $1
St d i r

Id $0 /Change typeface to Roman
j st movf a c

Id S1 /Change to pointsize 1 0
j st movpnt

0x9100 /Turn on interrupts

/Read characters and branch accordingly
/ The characters from 0x00 - 0 x 1 f are taken to be commands
/ Most of these are unused. The rest of the characters#
/
/

map onto a character which is flashed.

loop:
j s t read /Read a character
add S-AC0M /See if a flashable character
bge character /Character
add SAC0M-NC0M /Valid command?
skit
j st error /Illegal command
add $ j mpt ab /Form address for jump table
add SNC0M

0 •
s t Of /Stuff jump

'■J •
b r • • /And off we go

j mpt ab: /Jump table
b r loop /Ignore nulls
b r s e t f a c /Change typeface
b r s e t d i r /Change direction
b r se tpnt /Change pointsize
b r s e t c a r /Move carriage
br s e tled /Leadi ng
br reset /Set carriage position to zero
b r se t c o l /Change current colour
br pgmr k /Start new page
b r done /Finished typesetting

/
1: /Part of code for return from interrupt

0.3.7

p h o t o n / s r c / p / n t r o f f . p

0x9100
interrupt :

br
st 9 f
Id $0x500
i oc 0x801
add $-0x200
r e f t
s t 1b

/Enable interrupts after 3 instructions
/Routine really starts here

/ R e t u r n
/Save accumulator

/Set reference on return?
/ ?

jst movcar
Id le d t i m
sbeq
add $-1
st ledt i m
sbne
jst movled

/Move carriage if needed.
/See if previous leading has finished
/Decrement timer

/Lead if needed

Id redtim /Decrement reader timer
sbeq
add $-1
s t redtim

Id 9f /Restore accumulator
br 1b /Return

9:
0

/Move carriage
/
movcar:

b r • •

Id ca r c hg /In the middle of changing
bne movcar /Yes. What a pity

Id c a r v a l /Want to move carriage?
bit 3 f /Move backwards
bne 2 f /Move forwards
br movcar /No move

2:
add $-1 /Update carval as we move
st carval

i o c CARFWD /Move carriage forward
b r movcar /At limit switch

Id $32 /Wait for move to complete

c a r v a l ?

D.3.8

p h o t o n / s r c / p / n t r o f f . p

1 :
add $- 1
one 1 b

i oc CARFWD
b r m o v c a r

Id c a rpo s
add $1
s t carpos
b r mo v c a r

3 :
add SI
s t c a r v a l

i 0 c CARBKD
Id $32

1 :
add $- 1
one lb
i o c CARBK D

Id carpos
add $- 1
s t carpos
b r m o v c a r

/Lead
/
m o v l e d :

b r • •

Id l e d c h g
bne movled

Id ledval
bit 2 f
bne 1 f
b r movled

1 :
add $- 1
s t ledva l
i 0 c LEDFWD
br 3 f

2 :
add $1
s t ledval
i oc LEDBKD

3:

/Move aga in
/At limit switch

/Update carriage position

/Update distance to move

/Move carriage backwards
/Wait to complete

/.Move again

/Update carriage position

/In the middle of changing
/Bad time to catch us

/Distance to move
/Move backwards
/Move forwards

/No move

/Update ledval as we move

/Set lead switch forward

/Update ledval

/Set lead switch backward

ledval?

D.3.9

p h o t o n / s r c / p / n t r o f f . p

ioc PLSLED /Pulse forward
Id $11 /Takes 11 miliseconds to pulse
st l ed t i m
br mov led

/Flash a character.
/ If dir is positive* we first move the width of the
/ character. If dir is negative* we flash the character
/ and then move its width backwards. If dir is zero* we
/ don't move at alt.
/ I should worry about multiflash.
/
character:

st 9 f
I d d i r
obit 2 f
bbeq 1 f
Id 9 f
j s t loo k wd
jst addcar

1 :
Id 9 f
j s t f l a s h
b r 3 f

2 :
Id 9 f
jst flash
Id 9 f
jst lookwd
neg
jst addcar

3:
br loop

9:
0

/Change typeface
/
s e t f a c :

jst read /Get new typeface
jst movfac
b r loop

/Change typeface
/ The following must be accomplished.
/ 1) The offset into the width table must be changed to
/ correspond to the new typeface.
/ 2) The offset used when flashing a character must be
/ changed as odd typefaces are on the same row as

/Save char away
/direc t i on

/Lookup width
/Move width of char

/Get char and flash

/Done

/Get char and flash

/Lookup width
/We want to move backwards

/Temp storage for char

0.3.10

p h o t o n / s r c / p / n t r o f f . p

/ the previous even typeface* except 112 characters
/ a h e a d .
/
/

3) We have to select which row of typefaces we want.

movfac:
b r • •

s t 9f /And save

ro r $ 1
bit 1 f
Id $0 /Even typeface
b r 2 f

1 :
Id $112 /Odd typeface

2:
s t w i do f f
s t d s k o f f

Id row /Reset cur rent row
s t 8 f
Id 9 f
a r s $1
s t row

be q 1 f
i oc R0W1 /Move shutter to position?
Id w i d o f f
add $2*1 1 2
s t w i do f f
b r 2 f

1 :
i 0 c R0W0 /Move shutter to position?

2:
Id row /Calculate distance to move carriage
n e g
add 8 f
a l s $6 / 64 per font
s t 7 1
j st addc a r /Move carriage

Id f n t o f f
add 7 f
s t f n t o f f

Id $16 /Delay for a while
j st delay
b r movfac

6 :

0.3.11

p h o t o n / s r c / p / n t r o f f . p

Ü /Old row
9 :

0 /Storage for typeface

/Change pointsize
/
s e t pn t :

j st read /Get new pointsize
j st movpnt /Change poi nt s i ze
b r loop

/Change pointsize
/ We are passed an offset into the table pstab
/
/

which contains a list of pointsizes.

movont :
b r • •

s t 6 f /Index for new pointsize

Id pn t s i z /Old pointsize
s t 8 f
Id pn t o f f /Old carriage offset for pointsize
s t 7 f

Id 6 f /Find new pointsize from index
add îpsztab /Pointsize table
s t 1 f

1 :
Id • •

s t pn t s i z

Id 6 f /Get new lense code and save complement
add $ l ne t ab
st 1 f

1 :
Id • •

neg
s t 9 f

Id 6 f /Find new carriage offset
add S p o f t ab /Offset table
s t 1 f

1 :
Id • •

st pnt o f f

i s k c a r c h g /About to change carval
nop

Id 8 f /pos =+ (p o s * o l d)/new - pos

0.3.12

p h o t o n / s r c / p / n t r o f f . p

s t mult /Multiplicand

Id 7f /Position carriage should be before change
add f n t o f f /Subtract offset for font as it is constant
neg
add carpos
add c a r v a l
s t 6 1 /Save pos for subtracting later
jst multiply

Id pn t s i z
j s t divide

neg
add 6 1 /Subtract pos
add 7 1 /Subtract old offset
neg

add carva l /Hadn't moved this yet
add pn t o f f /New offset

s t carva l
Id $0
s t carchg

i 0 c REDLNS /Are we already where we want to be?
add 9 1
beq movpn t

i o c LFTPWL /Initiate lense motion

i oc REDLNS /Read lense code
s t 6 f

Id $1 /Delay for a while
jst de lay

i 0 c REDLNS /We don't believe last result/ so repeat
neg
add 6 f
bn e 1 b /They weren't the same. Try again

Id 6 f /Are we now where we want t 0 be ?
add 9 f
bne 1 b /No. Keep trying

i o c DRPPWL /Drop pawl
Id $0x80 /Delay for a while
j st delay
i 0 c REDLNS /See if we settled in the right place

0.3.13

p h o t o n / s r c / p / n t r o f f . p

add 9 f
bn e 1b /We missed

br movpnt

6:
0 /Temporary

7 :
0 /Old carriage offset for pointsize

8:
0

j •
/Old point size

T •

0 /Lense code for new poi nt s i ze

lnc t a b :
uxooo; 0x200; 0x300; 0x100

ps z t a b :
8; 1 o ; cx

po f t a b :
1 ; 2 0 5 ; 438; 559

/Change direction
/ Change the direction we are moving. Look under the
/ code for char.
/
s e t a i r :

j st read /Get new direction
j st sgnext /Extend sign from 7 bits to 12
st d i r /And save
b r loop

/Move the carriage.
/
s e t c a r :

j st read /Amount to move carriage
i st sgnext /Sign extend
j st addcar /Move carriage
b r loop

/The given value is added to the current distance the
/carriage has to be moved (carval).
/
a d d c a r :

br
isk carchg /Let int handler know carval is being changed
nop
add carval
st carval
Id $0 /Finished changing carval
st carchg

D. 3. 14

p h o t o n / s r c / p / n t r o f f . p

br addc a r

/Leading
/
s e t Led :

j s t read /Amount to lead
j St sgne x t /Sign extend
i s k L edc hg /We are changing ledchg
nop
add l edva l
St L edva l
Id SO / 0 one changing ledval
St ledc hg
b r loop

/Set the carriage position to zero
/
reset:

i s k c a r c h g /Let int handler know carval is being changed
nop

Id c a r po s /Get current carriage position
n e g /We want to go back to zero
add pn t o f f /Add offset for pointsize
add f n t o f f /Carriage offset
s t c a r v a l /Store for carriage position

Id SO /Done changing carval
s t c a r c h g
b r loop

/Flash the given char
/ The carriage might have to move one more step?
/ I should worry about multiflash.
/
flash:

b r • •

St 9 f /Save character

1 :
Id l e d t i m /Wait for leading to complete
bne 1 b

1 :
Id carval /Wait for carriage to finish moving
bne 1 b

i oc ROWS /I don't know what this does
Id 9 f /Get char

D . 3 . 1 5

p h o t o n / s r c / p / n t r o f f . p

add dskof f
add $ 1
ioc FLASH

/Its origin is one
/Flash

skp FLSCMP /Wait for flash to complete
b r 1b
b r flash

9:
0 /For character

/Read a character
/ We
/

only want the bottom seven bits.
r
read:

b r • •

1 :
Id r e d t i m /See if we can read a character
bne 1 b

Id $5 /Three miliseconds for read to complete
s t r e d t i m

i o c READ /Read a char via the interface
bbeq 1b /Skip nulls

a l s $5 /Get rid of top bit
a r s S 5
b r read /Return

/Multiply the value passed in the accumulator by that in
/ The accumulator is a 12 bit value# and mult is an 11
/ value. The bottom 11 bits of the result is stored in
/ The
/

high order bits are stored in dl.
t
8:
multiply:

b r • •

St 9 f

Id SO /Initialize result
s t d 1
s t d2

Id 9 f
bge 1 f /Multiply by the 12th bit and truncate to
add S0x800 /Get rid of top bit
s t 9 f
Id mult
s t d1

0.3.16

p h o t o n / s r c / p / n t r o f f . p

Id mult /See if done
beq 3 f

Id d2 /Add with carry
add 9 f
s t d2
bge 2 f

add $ 0 x 8 00 /Get rid of top bit
s t d2
Id d 1 /And increment upper half
add $1
s t d 1

2 :
Id
add
s t
b r

3:
Id

/ br
b r

9:
0

mult:
0

d1 :
0

d 2 z
0

/Divide the 22 bit integer d 1 / d2 (the bottom 11 bits are used)
/by the 11 bit value passed in the accumulator. d1 and d2 are
/destroyed.
/
d i v i d e :

b r • •

neg
s t 9 f /Save negative of divisor

Id $0 /Result
s t 8 f

Id $0x800 /Bit position in result
St 7 f

Id d 1 /See if result contains this

mult /Decrement and see if done
$ - 1
mult
1 b

d2 /Lower half of result
multiply
8b /Previous statement gives error

/Storage for other multiplier

/First multiplier

/Result for multiply or dividend for divide

D . 3. 1 7

o h o t o n / s r c / p / n t r o f f . D

add 9 f
bit 1 f

St d1 /Save new value
Id 7 f /Add bit to result
add 8 f
s t 3 f

1 :
Id 7 f /Shift bit right one position
a r s $1
s t 7 f
bea 3 f /Done

Id d 1 /Shift d1/d2 left one position
a l s $1
s t d 1

Id d 2
a l s $1
s t d2

a r s S1 1
add d 1
s t d 1

b r 2b

3 :
Id 8 f
br divide

7:
Ü /Current bit position in result

8:
0 /Result

9:
0 /Negative of divisor

/E x t en d sign from an seven bit number to a twelve
/
s gne x t :

b r • •

a l s $5 /Get sign bit to top of register
bge 1 f /Positive
add $0x1 f /Extend sign bit

1 :
ror $5 /Move back
br sgne x t

i t numbe r .

0.3.18

p h o t o n / s r c / p / n t r o f f . p

/Look up width of character passed
/
look w d :

br
add wi dof f
r o r $ 1
r e f u
s kge
r e f i
a l s $ 1
a r s $ 1
add Swidtab
st 1 f

1 :
ldb ..
r e f i
br lookwd

/Add offset (depending of typeface)
/See if width is in lower or upper

/Assume width is in upper half

/ Gu i 11 y
/Word offset into width table

/Form address for lookup

/Finally look up width
/Set to lower before we forget
/ R e t u r n

/Delay for quite a while
/
delay:

b r • •
s t 9 f

2:
Id $0x100

1 :
add $-1
bne 1 b

Id 9 f
add $-1
s t 9 f
bne 2b

j mp delay

9:
0

/Short delay

/See if done

/Countdown timer for delay

/Error routine
/ Halt
/
error:

br • • /Will contain return address
s t 9 f /Save ac
Id error /We load return address int
halt /And die

0 /Save for a c

D. 3.19

p h o t o n / s r c / p / n t r o f f . p

/ Flushes the change colour command along with the following
/ byte that selects the colour.

s e t c o l :
j s t read /Read colour number
br loop

/ Flushes the page mark command as well as the following
/ two bytes whicn contain the page number.

p g m r k :
j s t read
j s t read
br loop

/ We have received the end of document character from Honeywell.
/ We have to make sure that all carriage movement and leading
/ have completed. We then halt the Microdata.

d o n e :
1:

Id ledval

1 :
bn e 1b /Make sure all leading is completed

Id carval

1 :
bne 1 b /Make sure carriage has finished moving

halt
o r 1 b /Make sure user hits RESET

r ed t i m :
0 /Timer for read to complete

carval :
0 /Distance carriage should move

carchg:
0 /Carval is being changed

c a r po s :
0 /Current position of carriage

l e d v a l :
0 /Amount left to lead

l e d c h g ;
0 /Ledval is being changed

l e d t i m :
0 /Countdown timer while waiting for lead

d i r :
1 /Current direction we are moving

d s k o f f :
0 /Offset on disk when flashing

w i do f f :
0 /Offset into width table

D. 3.20

p h o t o n / s r c / p / n t r o f f . p

pn t s i z
10

pn t o f f
0

f n t o f f
0

row :
0

/Current pointsize

/Offset from margin for pointsize

/Offset carriage moves for a font

/Current row on disk

/Width table
/ Character A07 used to have a width of 21
/
w i dt ab :

byte 1 8 * 13/ 18/ 18/ 1 8/ 1 8/ 18/ 18
byte 18/ 18/ 18/ 12/ 1 2/ 16/ 12/ 18
byte 10/ 19/ 1 A/ 19/ 1 A/ 19/ 19/ 10
byte 19/ 16/ 12/ 30/ 18/ 25/ 19/ 18
byte 1 9/ 17/ 20/ 19/ 1 0/ 18/ 16/ 10
byte 10/ 1 0/ 10/ 18/ 1 2/ 10/ 18/ 36
byte 28/ 28/ 28/ 28/ 22/ 36/ 18/ 36
byte 30/ 1 A/ 12/ 12/ 30/ 2 A / 2 A / 28
byte 15/ 30/ 22/ 28/ 28/ 30/ 28/ 2 A
byte 30/ 26/ 23/ 36/ 28/ 36/ 23/ 28
byte 2 A / 26/ 28/ 28/ 1 7/ 28/ 25/ 10
byte 1 0/ 10/ 10/ 18/ 1 2/ 1 A/ 18/ 10
byte 20/ 20/ 22/ 13/ 30/ 30/ 30/ 2 A
byte 1 A/ 30/ 18/ 18/ 30/ 18/ 18/ 30
byte 18/ 18/ 18/ 18/ 18/ 1 8/ 18/ 18
byte 18/ 18/ 18/ 12/ 1 2/ 16/ 12/ 18
byte 1 0/ 19/ 1 A/ 19/ 1 A/ 19/ 19/ 10
byte 19/ 16/ 12/ 30/ 18/ 25/ 19/ 1 8
byte 19/ 17/ 20/ 19/ 10/ 18/ 16/ 10
byte 10/ 10/ 10/ 18/ 12/ 10/ 18/ 36
byte 28/ 28/ 23/ 28/ 22/ 36/ 18/ 36
byte 30/ 1 A/ 12/ 12/ 30/ 2 A / 2 A / 28
byte 15/ 30/ 22/ 28/ 28/ 30/ 28/ 2 A
byte 30/ 26/ 23/ 36/ 28/ 36/ 23/ 28
byte 2 A / 26/ 28/ 28/ 1 7/ 28/ 25/ 10
byte 10/ 10/ 10/ 18/ 12/ 1 A/ 18/ 10
byte 20/ 20/ 22/ 18/ 30/ 30/ 30/ 2 A
byte 20/ 28/ 18/ 18/ 30/ 18/ 18/ 30
byte 18/ 1 8/ 18/ 18/ 1 8/ 1 8/ 18/ 18
byte 18/ 18/ 18/ 12/ 12/ 16/ 12/ 1 8
byte 10/ 18/ 1 A/ 18/ 1 A/ 18/ 18/ 10
byte 18/ 16/ 12/ 28/ 18/ 2 A / 18/ 1 8
byte 18/ 1 A/ 20/ 18/ 10/ 20/ 16/ 10
byte 10/ 12/ 10/ 18/ 12/ 10/ 18/ 36
byte 28/ 28/ 28/ 28/ 22/ 36/ 18/ 36
byte 30/ 1 A/ 12/ 12/ 30/ 2 A / 2 A / 26
byte 1 A/ 28/ 22/ 28/ 26/ 30/ 28/ 2 A

D . 3.21

p h o t o n / s r c / p / n t r o f f .

byte 28/ 26/
byte 24/ 26/
byte 10/ 12/
byte 20/ 20/
byte 20/ 22/
byte 36/ 36/
byte 30/ 30/
byte 18/ 22/
byte 16/ 22/
byte 22/ 22/
byte 30/ 1 8/
byte 1 8/ 18/
byte 18/ 18/
byte 24/ 36/
byte 26/ 18/
byte 26/ 36/
byte 30/ 1 8/
byte 18/ 36/
byte 16/ 1 6/

0 36/ 26/ 36/ 24/ 26
/ 28/ 18/ 26/ 26/ 1 0
/ 18/ 1 2/ 14/ 18/ 10
/ 16/ 30/ 30/ 30/ 24
/ 18/ 30/ 1 8/ 18/ 30
/ 14/ 30/ 18/ 30/ 30
0 30/ 30/ 22/ 14/ 1 6
0 16/ 1 6/ 22/ 20/ 1 4
0 16/ 1 8/ 20/ 12/ 1 6
0 22/ 1 8/ 16/ 18/ 30
0 30/ 1 2/ 36/ 18/ 10
0 18/ 1 8/ 18/ 18/ 18
0 30/ 1 8* 26/ 26/ 24
0 26/ 26/ 30/ 18/ 34
0 16/ 30/ 26/ 30/ 36
0 24/ 30/ 30/ 30/ 30
0 30/ 12/ 18/ 22/ 10
0 18/ 30/ 30/ 14/ 16
0 16/ 30/ 30/ 30/ 18

P

22
26
1 0
22
18
1 4
30
20
16
20
1 8
1 8
30
30
1 4
36
30
36
30

D.3.22

Appendix E

The Microdata

This appendix contains useful information on programming the
Microdata. The instruction set is given, then the use of the front panel
switches is explained. Finally, the use of the assembly language PHO is
described.

Instruction S et..E.1.1
Front Panel... E.1.3
Fetch & Store...E.1.4
The PHO Language

Instruction set

HEX Mnem . Description

0000 NOP - Six microsecond delay
0001 S K P - Skip when EOL flip-flop is not set
0002 S K P - Skip if keyboard is on line
0004 S K P - Skip if MAN/AUTO LINE switch is in MAN
0008 SLZ - Skip if accumulator bits 1-8 equal zero
0010 SLP - Skip if accumulator bit 8 is zero
0020 SLM - Skip if accumulator bit 8 is a one
0038 JMP - Unconditional skip
0070 SLNZ • Skip if accumulator bits 1-8 do not equal

zero
0130 S K P FL - Skip when flash complete
0208 S K Z - Skip if accumulator bits 1-12 equal zero
0230 S H Z - Skip if accumulator bits 9-12 equal zero
0430 S K P - Skip if accumulator bit 12 is a zero
0830 SKM - Skip if accumulator bit 12 is a one
1 401 CLONE - Invert data in accumulator
1 500 INCA - Add one to the accumulator
1 501 C TWO - Invert data in accumulator and add one
1 505 DEÇA - Subtract one from accumulator
1 8 X X ALS - Shift accumulator left XX times
1 A X X ROL - Rotate accumulator left XX times
1 CXX S R T - Shift accumulator right XX times
1 EXX ROR Rotate accumulator right XX times (number of

rotations or shifts equals amount of ones in
low eight bits* for example 07 equals 3
shifts)

2 NNN J ST • Store program counter in address NNN and
change program counter to NNN + 1

3 X X X L I - Clear accumulator with XXX
4NNN I SK Increment bits 1-8 (9200) or (9-16) of a d ­

dress NNN and skip next instruction if all
bits are zero after the increment

5 X X X A 0 0 I - Add XXX to the accumulator
6NNN LOAD Clear accumulator and load accumulator with

oits 1-8 (9200) or 9-16 (9400) from location
NNN

7NNN STA - Store accumulator bits 1-12 in address NNN
8NNN ADD Add bits 1-8 (9200) or 9-16 (9400) from a d ­

dress NNN to accumulator
9100 HEX • Allow interrupts after three more instruc­

tions
9200 RE FL • Enable circuits for an eight bit addition or

storage instruction into address bits 1-8
9400 R E FU Enable circuits for an eight bit addition or

storage instruction into address bits 9-16
9800 HALT - Stop the master clock
A N N N JMP - Change program counter to NNN

E. 1 . 1

B 00 0 NOP - Six microsecond delay
CNNN STO • Store accumulator bits 1-8 (9200) or 9-16

(9400) in address NNN
ONNN A D D 1 2 - Add bits 1-12 in address NNN to accumulator
EOOO IOC • Skip when OSL lamp on keyboard is il­

luminated
E 1 0 1 IOC - Turn on Min Space lamp on keyboard
E1 06 IOC - Pulse leading motor forward
E1 40 IOC - Stop lens motion
E 20 1 IOC - Flash character
E204 IOC - Carriage forward
E2U8 IOC - Input lens encoder
E 21 0 IOC - Select row 1 (typefaces 1 and 2)
E 22 0 IOC - Input leading switches
E 2 4 0 IOC - Enable lens relay for reverse operation
E28Ü IOC - Skip if MAN/AUTO LEAD switch is in AUTO
E 30 2 IOC Clear accumulator* input reader frame* but

do not step reader
E308 IOC - Clear accumulator and input lens encoder
E 32 U IOC - Clear accumulator and input leading switches
E 401 IOC - Set EOL flip-flop
E 40 4 IOC - Carriage reverse
E 4 0 8 IOC - Skip if MAN/AUTO LENS switch is in AUTO
E 4 2 0 IOC Input lens position switch and add to ac­

cumulator
E 4 4 0 IOC - Enable lens relay for forward operation
E480 IOC - Skip if LOAD/NORM switch is in LOAD positin
E 5 2 0 IOC • Input lens position switch and clear ac­

cumulator
E602 IOC - Input reader and step one frame
E 61 0 IOC - Select row 2 (typefaces 3 and 4)
E 70 2 IOC Clear accumulator* input reader frame and

step reader
E 80 1 IOC - Skip if bits 9-16 are high
E802 IOC - Skip if HYPH/NORM is in HYPH position
E8Ü4 IOC - Step leading motor
E805 IOC - Pulse leading motor reverse
E 84 0 IOC - Initiate lens motion
E880 IOC - Turn on OSL on keyboard
E 90 8 IOC - Input right side line length switches
E920 IOC - Input left side line length switches
E A 1 0 IOC - Select row 3 (typefaces 5 and 6)
E A 4 0 IOC Enable lens relay for reverse and initiate

lens motion
E C 1 0 IOC - Select row 4 (typefaces 7 and 8)
E C 4 0 IOC * Enable lens relay for forward and initiate

lens motion
FNNN LDD Clear accumulator and load accumulator with

bits 1-12 from address NNN

E.1.2

Front Panel

Figure E.2.1 shows the different controls located on the
front panel of the Microdata. An desc ription for the use of
these switches is given below.

t '

!© —JÿitdaH.
t.
i

2EN2E 1 - Allows the machine to be stpped on selected a d ­
dresses prior to the execution of instructi ons which modify
memory.

SENSE 2 “ Allows the machine to be stpooed when processing
data from selected addresses

S E N S E 2 - Enables front panel indicators to illuminate when
ma chi ne is operating

SENSE k “ Used to select an address from the panel switches

Snii£hes 1-16 - Used for selecting memory addresses and
chang ing data in memory

fi^SEI “ Resets or initializes all logical functions and
clears all registers

BESIABI - Starts or initiates system clock

S I Q B E “ Allows data selected by switches 1 - 1 6 to be entered
into memory

BUN/SIQE - Performs a machine HALT operati on in the HALT
p o s ition

LQAfi " Performs a hardware fill memory opera tion

d £ £ / S I B B - Allows accumulator to be displayed on indicators
1 — 1 6

ôfiCB/£ÛIâ - Selects memory address in A DDR position or
memo ry contents in DATA position for display on the front
panel indicator lights

E. 1 . 3

F e t c h P r o c e d u r e

1. Set all toggles on the Microdata panel to their 'up*
position* except for the SENSE 3 switch which must be
in the down position.

2. Press and release the RESET switch.
3. Set the RUN/STOP switch to the STOP position.
4. Set the sixteen data switches to the hexadecimal ad­

dress of tne desired location. (up=0* down=1)
5. Set the SENSE 4 switch to its down position.
6 . Press and release the RESTART switch twice.
7. To display data set the ADDR/OATA switch to the DATA

position and observe the indicators. To display the
address set the switch to the ADDR position.

8 . To display the contents of the accumulator press the
ACC/STR8 switch ana observe the indicators.

9. The memory address is incrememted by 1 every time the
RESTART switch is depressed after step 7. In this way
successive locations can be examined. To continue*
return to step 6.

E.1 .4

S t o r e P r o c e d u r e

1. Set all toggles on the Microdata panel to their 'up'
position/ except for the SENSE 3 switch which must be
in the down position.

2. Press and release the RESET switch.
3. Set the RUN/STOP switch to the STOP position.
4. Set the sixteen data switches to the hexadecimal a d ­

dress of the desired location. (up=0/ down=1)
5. Set the SENSE 4 switch to its down position.
6 . Press and release the RESTART switch twice.
7. To display data set the ADDR/DATA switch to the DATA

position and observe the indicators. To display the
address set the switch to the ADDR position.

8 . To display the contents of the accumulator press the
ACC/STRB switch and observe the indicators.

9. Enter the data to be stored using the data switches.
10. Press and release the STORE switch. Data is now

stored in the current location and the current loca­
tion is incremented by 1. Successive locations can be
stored by repeated pressing of the STORE switch. To
continue/ return to step 7.

E 1 5

