
Space Subdivision Algorithms for Ray Tracing

by

David MacDonald

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, 1988

®David MacDonald 1988

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions
or individuals for the purpose of scholarly research.

Signa,ure

I further authorize the University of Waterloo to reproduce this thesis by pho­
tocopying or by other means, in total or in part, at the request of other insti­
tutions or individuals for the purpose of scholarly research.

Signature

(Ü)

The University of Waterloo requires the signatures of all persons using or
photocopying this thesis. Please sign below, and give address and date.

(iii)

Abstract

Ray tracing provides computer rendering of synthetic images with many
realistic qualities, but is computationally expensive. Ray tracing requires test­
ing of rays against a scene to see which objects, if any, are intersected. The
high number of such tests required by typical ray tracers contributes signifi­
cantly to the computational expense of ray tracing.

An efficient method of reducing the computation involved in the intersec­
tion tests is to organize the objects composing the scene into one of several
types of hierarchical data structures.

This thesis describes algorithms for the construction, storage, and traver­
sal of the space subdivision hierarchy. Methods are suggested for decreasing
computational requirements of the data structure with respect to these three
areas.

One suggested strategy for improving performance in all three areas (con­
struction, storage, and traversal) is implemented for the bintree structure.
The performance of these simulations is compared with implementations of
contemporary methods and some efficiency gains are shown.

Further work is suggested, including adaptation of some of the ideas
presented within this thesis to more general types of hierarchical structures.

(iv)

I would like to thank Kellogg Booth for supervising me during the creation of
this thesis. I am very grateful for his suggestions and encouragements
throughout my stay at the University of Waterloo.

I am indebted to my two faculty readers, Charles Colbourn and Derick Wood,
and to my student reader, Stewart Kingdon. Their comments and criticisms
added greatly to the quality of this thesis.

I sincerely appreciate the financial assistance provided thoughout my graduate
studies by the Natural Sciences and Engineering Research Council.

This thesis is dedicated to my friends.

Acknowledgements

(v)

Table of Contents

1 Introduction .. 1
1.1 Introduction to Ray Tracing ... 2

2 Background .. 4
2.1 Rays and Planes ... 4
2.2 Bounding Volumes ... 6
2.3 Hierarchical Data Structures ... 7

2.3.1 Object Hierarchies ... 7
2.3.2 Volume Hierarchies (Space Subdivision) 11
2.3.3 Static Versus Dynamic Structures 16
2.3.4 Multiprocessor Algorithms ... 17

2.4 Previous Space Subdivision Algorithms 18
2.4.1 Glassner — 1984 .. 18

2.4.1.1 Glassner— Construction 19
2.4.1.2 Glassner— Storage .. 20
2.4.1.3 Glassner — Traversal.. 20

2.4.2 Kaplan — 1985 .. 23
2.4.2.1 Kaplan — Construction 23
2.4.2.2 Kaplan — Storage ... 24
2.4.2.3 Kaplan — Traversal ... 25

2.4.3 ARTS — 1986 .. 25
2.4.3.1 ARTS— Construction 25
2.4.3.2 ARTS— Storage ... 26
2.4.3.3 ARTS — Traversal .. 27

3 Improvements ... 28
3.1 Construction ... 28

3.1.1 The Surface Area Metric .. 28

(vi)

3.1.2 Objects Spanning the Slicing Plane 38
3.1.3 Optimal Trees ... 39

3.1.3.1 Spatial Median Subdivision of Point
Objects .. 40
3.1.3.2 Arbitrary Subdivision of Point Objects
 44

3.1.4 Evaluation of Glassner Octree Construction
Method .. 45
3.1.5 Arbitrarily Oriented Splitting Planes 46
3.1.6 Scene Complexity and Efficiency 47
3.1.7 Load Balancing in Multiprocessor Algorithms
 49

3.2 Storage ... 50
3.2.1 Multiprocessor Implementation 55
3.2.2 Storage of Voxel Dimensions ... 55
3.2.3 Storage of Object Lists .. 57

3.3 Traversal .. 59
3.3.1 Precomputation of Intersection Distances 60
3.3.2 Exit Point Computation ... 60
3.3.3 Multi—ray Traversal .. 65
3.3.4 Expanded Leaves.. 68

4 Implementation ... 72
4.1 Surface Area Metric Verification ... 72
4.2 Construction Algorithms ... 76
4.3 Scenes .. 78
4.4 Neighbour Links .. 80

5 Results .. 81
5.1 Construction Algorithms ... 81
5.2 Neighbour Links ... 89
5.3 Summary .. 90
5.4 Suggested Further Work .. 90

(vii)

References .. 93
Appendix A — Graphical Results of Construction Algorithms 99

Objects ... 99
Leaves ... 105
Nodes ... I l l
Large Scenes.. 117
O bjects.. 117
Leaves»... 123
Nodes ... 129

Appendix B .. 135
Varying the Number of Objects .. 135
Large Trees .. 141

(viii)

List of Tables

Table 5.1 .. 89

(ix)

List of Figures

Figure 2.1 .. 8
Figure 2.2 10
Figure 2.3 12
Figure 2.4 13
Figure 2.5 15
Figure 2.6 16
Figure 2.7 22
Figure 3.1 31
Figure 3.2 32
Figure 3.3 35
Figure 3.4 37
Figure 3.5 46
Figure 3.6 51
Figure 3.7 53
Figure 3.8 58
Figure 3.9 59
Figure 3.10 .. 61
Figure 3.11 .. 62
Figure 3.12 .. 64
Figure 3.13 .. 64
Figure 3.14 .. 66
Figure 3.15 .. 68
Figure 3.16 .. 70
Figure 3.17 .. 71
Figure 4.1 73
Figure 4.2 74
Figure 4.3 75
Figure 4.4 76

(x)

Chapter 1
Introduction

One popular algorithm for computer rendering of synthetic images is ray
tracing. The main reason that the use of ray tracing is so widespread is the
simplicity of coding and comparative ease with which ray tracing renders
many realistic effects, including shadows, penumbrae, reflection, refraction
(transparency), and motion blur.

The principal drawback of ray tracing is its comparatively high computa­
tional cost, which is due primarily to the high occurrence of one basic opera­
tion, the ray-scene intersection test. This computation can be expressed as
answering the query: given a scene comprising a set of objects and a ray
defined by an origin point and a direction vector, does the ray intersect some
object, and what is the first (closest) object intersected? Other information
may also be required if an object is intersected, such as the point of intersec­
tion and the normal to the object’s surface at the point of intersection.

The computing of ray-scene intersections has traditionally been speeded
up by many methods. Some hybrid algorithms reduce the number of intersec­
tion computations required by combining ray tracing with other types of
rendering, such as standard scan-conversion techniques. Others reduce the
number of such computations by more efficient ray tracing, minimizing the
number of rays traced. Still others use parallel processors to perform more
than one intersection computation at once.

While the methods mentioned above reduce the cost of ray tracing by
cutting down the number of intersection computations, none of them actually
speed up the basic ray-scene intersection test, which is the issue addressed by
this thesis. The simplest, brute force method of determining the ray-scene
intersection is to test the ray against each object, remembering which object,

1

2

if any, has the nearest point of intersection. This has been vastly improved
with the use of scene structuring [Rubi80], [Wegh84], [Glas84], [Kapl85],
[Kay86], [Fuji86], [Glas87c], [Gold87], [Glas88]. Scene structuring relies on
the fact that the intersection test is basically a multi-dimensional search. It
can be speeded up by use of a search tree, which imposes an ordering upon
the objects comprising the scene. This ordering reduces the number of ray-
object intersection tests required.

Before further discussion of search trees for ray tracing, an introduction
to the ray tracing algorithm is warranted. The next section provides a very
brief overview of ray tracing. A good in-depth introduction to ray tracing
may be found in [Glas87a].

1.1. Introduction to Ray Tracing

The images a person sees are created by energy emanating from light
sources, bouncing off objects in the environment, and hitting his or her eye.
A computer generated image of a given scene can be obtained by placing an
imaginary eyepoint and a viewing screen into the three dimensional scene of
objects. The scene is mapped onto the viewing screen by following rays of
light leaving the light sources, bouncing off objects, through the screen, and
into the imaginary eye.

However, it is much too expensive to trace rays in this way from the light
source following their paths as they bounce off and travel through objects,
because the small probability of a given ray eventually hitting the eye requires
such a large number of rays to be traced that infinite resources would be
required. Therefore standard ray tracing algorithms trace rays backward from
the eye, through the screen, to the scene. The colour of each pixel of the
image is determined independently from other pixels, by tracing a ray from
the eye through the corresponding virtual pixel on the viewing screen, and
computing what object, if any, it hits. Basic models of surface physics are

3

used to determine the colour and intensity of light travelling from the inter­
section point to the eye, and thereby colouring the pixel in question.

The computation of light colour and intensity typically involves the sur­
face normal at the intersection point, the eye vector (direction to the eye from
the point), the light vectors (the directions to the light sources from the
point), and the intensity of light hitting the point from the light sources, this
last term accounting for shadows. In most ray tracers, the intensity of light
hitting a point from any particular light source is set to zero if the point is
shadowed by an opaque object, and set to the intensity of the light source oth­
erwise. To check if an object is in shadow, a ray-scene intersection test is
performed to determine if there is any opaque object intersected by the ray
from the point of intersection to the light source.

More complex ray tracers model other effects such as reflection and
refraction by tracing additional rays which represent backward reflection and
transmission of the original ray. These rays may recursively spawn other
reflection and transmission rays in attempts to provide a more realistic model.
Many antialiasing techniques require sampling of extra rays. The general rule
in ray tracing is that increased realism and picture quality requires more ray-
scene intersection tests, indicating an obvious motivation for efforts to reduce
the cost of ray-scerie intersection computations.

This thesis examines methods to reduce the cost of ray-scene intersection
tests through the use of space subdivision hierarchies. Various algorithms to
improve performance are advanced.

Chapter 2
Background

This chapter provides some background necessary for the discussion of
space subdivision for ray tracing. It begins with the basic geometry and alge­
bra of rays and planes, and then introduces the idea of a bounding volume.
Next a description of the two major hierarchical data structures for ray tracing
is given, with emphasis on space subdivision hierarchies. Finally, a survey of
previous work on space subdivision is presented.

2.1. Rays and Planes

A ray is defined by a point origin and a direction vector, both of which
consist of three coordinates. A ray consists of all points which are the sum of
the origin and a non-negative multiple of the direction vector. A ray can be
expressed in the form:

R (t) = (Rx,Ry,R2) = O+t-D,

where

0 < t = the parametric distance along the ray

O = (0x,0 y,0 2) = Origin of ray R

D = (Dx,Dy,Dz) = Direction vector of ray R

4

5

A plane can be defined by a normal to the plane and a distance from the
origin. An equation defining a plane is:

N P - d = 0,

where

■ represents dot product

N = (Nx Ny Nz) = the unit normal vector to the plane

d = distance of plane from origin

P = (Px Py P2) = any point on the plane

The plane consists of all points P which satisfy this equation.

The intersection of a ray with a plane can be obtained by first determin­
ing the value of the parameter t of the ray where the ray intersects the plane,
then substituting this into the equation of the ray, to find the intersection
point. The value of t may be calculated with the following equation:

d - N O

1 ~ N D

If N D is zero, then the ray is parallel to the plane and either does not inter­
sect the plane or is embedded in it. In the case where the plane in question is
perpendicular to either the x, y, or z axis, the equation is simpler (no dot-
product), as in the following case, where we assume the normal is (1,0,0):

d -O x
t = — ----,

where

x = d is the simple form of the equation of the plane

Since we are dealing with these types of planes extensively, let us term a plane
that is perpendicular to a major axis (jc, y, or z) a major plane.

6

2.2. Bounding Volumes

Scenes are modelled with a variety of different implicitly and explicitly
defined objects and surfaces. They range from simple objects, such as
spheres, ellipses, triangles, polygons, and parallelpipeds, to more complex sur­
faces such as cubic patches, spline surfaces, and implicit functions. For all
but the simplest of these, an intersection test of a ray with the object is a non­
trivial computation.

To speed up the intersection test, a bounding volume is placed around the
object. The bounding volume is typically a very simple type of object with an
easy intersection test, such as a sphere or a parallelpiped which has sides per­
pendicular to a major axis (bounded by major planes). In order to determine
if a ray intersects a particular object, the ray is first tested against the object’s
bounding volume. If the ray does not intersect the bounding volume, it is
obvious that it does not intersect the object inside, and the intersection test is
finished. If the ray does intersect the bounding volume, the ray must be
tested against the object in the usual manner. In this way, the bounding
volume is used as a test for trivial rejection of a ray-object intersection.

The type of object chosen as bounding volume must have a sufficiently
simple ray intersection test, yet must also provide a tight fit around the
objects to be enclosed. The bounding volume must be tight enough around
the objects that enough rays are trivially rejected to provide savings at least as
great as the increased cost of computing the ray-bounding volume intersection
test.

A common type of object for bounding volumes is a rectangular parallel-
piped (each side is perpendicular to a major axis). The specification of this
type of bounding volume (hereafter referred to as a box) requires only six
values, a low and high value for each of the three coordinates. The intersec­
tion test of a ray with a box is quite simple, essentially clipping the ray against

7

the box. It involves finding the range of the parametric value t for which the
ray is within the box. If the range is empty, the ray does not intersect the
box. A non-empty range indicates intersection. A simple coding of this algo­
rithm is given in Figure 2.1.

Computation of a box bounding volume is usually a simple operation
also. The tightest fitting box for any object is defined by the maximum and
minimum coordinate values for each of the three coordinates. For most expli­
citly defined objects and surfaces, including polygons, spheroids, and parallel-
pipeds, this represents a very straightforward computation.

2.3. Hierarchical Data Structures

Scene structuring is usually accomplished with a hierarchical data struc­
ture. There are two main classes of hierarchy applicable to ordering the
scene, which are duals of each other. The object hierarchy subdivides the
objects composing the scene, recording the space that each object inhabits.
Space subdivision, or volume hierarchy, subdivides space, recording the
objects that inhabit each region of space.

2.3.1. Object Hierarchies

An improvement over the exhaustive search of the ray with a set of
objects is to compute a bounding volume enclosing all of the objects in the
set. Then, any rays which do not intersect the bounding volume can be
rejected, thereby introducing some savings. Additional savings can be
obtained by dividing the objects into two groups, and for each group, comput­
ing a bounding volume enclosing all of the objects in the group. A ray is
tested against each bounding volume and if it does not intersect, the enclosed
objects need not be tested. The improvement here is a result of sometimes
being able to quickly reject half the objects (or all of them, in some cases)
from the intersection tests.

FUNCTION RayBoxIntersect(RayOrigin, RayDirectlon, Box) : BOOLEAN;
CONST

Dimensions = 3;

VAR
tmln, tmax, tlow, thigh, tenter, texlt : REAL;

BEGIN

(* set the range o f t to [O..+00] *)

tmln := 0; tmax := +0 ;

FOR coord := 1 TO Dimensions DO
IF RayDirectlon[coord] <> 0.0 THEN

(* calculate the range o f t between the two parallel planes,
store in tlow, thigh *)

tl := (Box[1.coord] - RayOrigin[coord]) / RayDirectlon[coord]
t2 := (Box[2,coord] - RayOrigin[coord]) / RayDirectlon[coord]

tlow := MIN(tl, t2) ;
thigh := MAX(tl, t2);

(* get intersection o f range so far, and range [tlow..thigh] *)

tmln := MAX(tmln, tlow);
tmax := MIN(tmax, thigh);

ENDIF;
ENDFOR;

(* i f intersection occurs forward o f origin AND
the range is nonempty, then there is an intersection *)

IF tmln <= tmax THEN
RETURN TRUE;

ELSE
RETURN FALSE;

ENDIF;
END RayBoxIntersect;

Figure 2.1.

9

Given the speed gain in dividing a group of objects into two, it seems
reasonable that even more gains would result from subdividing each of the
two groups into smaller groups. A hierarchical extents tree (hereafter
referred to as an HE tree) effectively provides a recursive subdivision of
objects in this manner (“extent” is just another name for bounding volume).
This type of hierarchy is often termed an object hierarchy. The root of the
tree corresponds to a bounding volume containing all of the objects in the
scene. The children of a node correspond to a set of bounding volumes that
divide the objects contained in the node’s bounding volume. When the
number of objects in a node’s bounding volume is one, the node is given a
single child where the object is actually stored. Although reference is made to
objects enclosed by, or contained within, a node’s bounding volume, it should
be observed that objects are actually only stored in the leaves. An example of
a small scene and a simple HE tree is given in Figure 2.2.

Given a ray and an HE tree, the intersection algorithm is a simple recur­
sive process. The ray is tested against the root node’s bounding volume and,
if it intersects the bounding volume, the children are recorded as candidates
for testing. This test is recursively applied to all children of any node inter­
sected, thereby traversing the part of the tree where possible intersections with
an object might occur. When a leaf node is encountered, the ray is tested
with the object stored in the leaf, and the nearest intersection of a ray with an
object is recorded during the traversal. This algorithm can often be speeded
up by ordering the nodes to be tested according to the nearness of intersection
with the nodes’ bounding volumes.

The efficiency of the tree depends highly on the choice of bounding
volumes during subdivision. In order to obtain an efficient HE tree, the sub­
division process should divide a group of objects such that the corresponding
bounding volumes are as small as possible and do not overlap. An indication
of the validity of the second constraint arises from looking at the extreme case

10

Figure 2.2
Letters a through g represent the objects.

Numbers 1 through 5 represent interior nodes.

of overlap where all of the children of a node have the same bounding
volume, which would have to be the same as that of the parent. In this case,
it can be seen that the subdivision into children has effectively not subdivided
the objects at all. If a ray intersects the parent node, it must intersect all of
the children, giving no savings. The validity of the first constraint, using
small bounding volumes, is more apparent. Smaller bounding volumes are
less likely to be intersected by a ray, and therefore result in trivial rejection

11

more often.

Based on these observations, any algorithm for constructing an HE tree
should be devised with a goal of minimizing the size and overlap of bounding
volumes. Because many systems define a scene in a hierarchical format, early
HE tree construction techniques simply chose the bounding volumes defined
by the groupings of the object hierarchy. This proved to result in quite ineffi­
cient trees, so other types of algorithms for generating efficient HE trees are
now being explored. Examples of these algorithms may be found in [King86]
and [Gold87].

2.3.2. Volume Hierarchies (Space Subdivision)

Object hierarchies recursively subdivide the objects into disjoint subsets,
recording the space inhabited by these subsets. The dual of this is space sub­
division, which subdivides the object space into disjoint subregions, recording
the objects which inhabit these subsets of space. To see how this is done, let
us examine the octree, a common type of space subdivision hierarchy, or
volume hierarchy. Initially, the tree consists of only one node, representing
the bounding volume containing all of the objects in the scene, exactly the
same as the root of an HE tree. Using three slicing planes (one perpendicular
to each of the three major axes), the bounding volume is divided into eight
smaller ones. Eight children of the root are created (hence octree), one for
each new bounding volume, and each object is placed in whichever child
encloses it. This space subdivision can be seen in Figure 2.3.

Each of the children may be recursively subdivided. If a node contains
no objects, then there is no advantage to subdividing it, and therefore, only
nodes containing objects are subdivided. The bounding volumes associated
with nodes are usually referred to as voxels, which is the three-dimensional
analog of a pixel. Sometimes an object belongs in more than one voxel. In
this case, one obvious technique is to split the object into new objects that do

12

not belong in more than one node’s voxel. However, this can be very costly
in terms of time and space requirements, so usually the object, or a pointer to
the object, is stored in both nodes [Glas84], [Kapl85], [Fuji86]. This tech­
nique introduces problems, which are discussed later.

As with the HE tree, when the octree subdivision process is complete, the
resulting structure has all of the objects stored in the leaves, and none in the
interior nodes. However, unlike the HE tree, a single leaf may contain more
than one object. Figure 2.4 illustrates a simple scene and an octree represen­
tation of it.

The ray intersection algorithm for an octree may be implemented as a
recursive process very similar to that of the HE tree. If a ray intersects the
root node, it is tested against each of the children. This is recursively applied
to the children of intersected nodes similar to the HE tree algorithm. When a
leaf node is encountered, all of the objects stored in it are tested for intersec­
tion, and the nearest, if any, is recorded. The octree allows testing nodes in
the order that the ray passes through them because it subdivides space into

13

disjoint regions. Therefore the algorithm halts as soon as it finds a leaf which
has an intersected object. This is an advantage over the HE tree. Although
the HE tree may be traversed in order of most likely intersection, the algo­
rithm cannot be halted as soon as a leaf with an intersected object is found,
because the objects contained in the nodes may overlap.

14

The choice of slicing planes for each axis of subdivision in an octree may
be any arbitrary plane within the current box, or may be the plane that is
halfway between the sides of the box (the spatial median), as is the case in
Figures 2.3 and 2.4. Choosing the spatial median means that the positions of
the planes need not be stored in each node, because they can be generated
from knowing the limits of the node. The tradeoff here is more compact
storage in return for a restriction on the subdivision process. Traversing a
spatial median octree is analogous to performing a binary search of space,
since the search range is sliced in half at each node.

There is an important clarification to be made concerning the determina­
tion of whether a certain object belongs in a given node of an octree. An
object belongs in a node only if the surface of the object intersects the node’s
box. The reason for this is that the point of intersection of a ray with an
object cannot occur within a box that does not contain some part of the sur­
face. Consider the object and box in Figure 2.5. The box is entirely within
the object. Rays can only intersect the object outside this box. Therefore the
object need not be stored in the node associated with the box, because the
intersection of the ray with the object will be correctly found in some other
node which contains part of the surface of the object.

Octrees have a problem during traversal peculiar to space subdivision
hierarchies. Depending on the implementation, an object may be stored in
more than one node, and may not necessarily be totally enclosed by any par­
ticular node. Therefore, an intersection test of a ray with an object may find
an intersection point outside the current node. The algorithm as described
would assume that this is the nearest point of intersection and halt. However,
because the intersection point is outside the node, we have no guarantee that
there is not a closer intersection point with some other object in the scene.

15

The solution is to always check a ray-object intersection point to see if it
is within the node currently being examined. If it is not, we ignore the inter­
section point. This solution raises another problem, that of testing a ray with
the same object more than one time. This inefficiency may be corrected by a
ray-object cache, indicating whether the intersection test has been previously
performed, and what the result was.

The two-way analog of the eight-way octree is the k-d tree or bintree
[Same84]. The only difference is that where the octree divides a node into
eight subnodes, using three splitting planes, a bintree divides a node into only
two subnodes, using just one splitting plane. Any octree can be represented
by a corresponding bintree. The subdivision of a node in an octree can be
represented by 3 levels of subdivision of a node in a bintree. This is demon­
strated in Figure 2.6.

There are a couple of advantages of bintrees over octrees. Although any
octree can be represented by a bintree, not all bintree subdivisions can be
represented exactly by an octree. Bintrees can therefore represent a larger

16

Figure 2.6
x, y, z represent splitting planes

1 through 8 denote corresponding children in octree

class of subdivisions than octrees. (It should be noted, however, that an arbi­
trary bintree subdivision can be accomplished with a degenerate octree, but
possibly with regions of zero volume so that it is not exactly the same decom­
position). Also, bintree algorithms tend to be simpler than those of octrees.
This stems from the complexity of dealing with three simultaneous slicing
planes per node, in the case of the octree, as compared to only one slicing
plane, in the case of the bintree. Therefore, it is often more convenient and
more efficient to use bintrees for space subdivision [Kapl85].

2.3.3. Static Versus Dynamic Structures

In computer animation, it is common for scenes to change from frame to
frame, as objects appear, disappear, and change position, shape, colour, and
other attributes. It is often desirable to allow the data structures ordering the
scene to be updated to reflect these changes, rather than to rebuild the entire
structure for each different frame of the image. An important issue when
choosing a data structure to represent scenes is whether the structure allows
dynamic modification as the scene changes, and whether the dynamic modifi­
cation is more efficient than rebuilding a static structure each time the scene
changes.

The issue of dynamic structures greatly adds to the complexity. The
remainder of this thesis deals only with static structures, leaving the extension
to dynamic structures an issue for later research. The restriction to static

17

structures is not unreasonable, as static structures are appropriate in cases
where the viewpoint changes often compared to the objects in the scene, or in
very complex scenes or complex ray tracing algorithms, where the hierarchy
construction time is insignificant compared to that consumed by the tracing of
rays. The discussion of static issues may provide a reasonable foundation on
which to base a treatment of dynamic structures.

One specific method of dealing with dynamic objects is to treat time as
simply another dimension, with the data structure subdividing the objects in
4-space. Issues of this nature are not included in the discussions of this
thesis, but extension to four or more dimensions is possible. A similar exten­
sion to 4 dimensions by Glassner [Glas88] was successful.

2.3.4. Multiprocessor Algorithms

There have been many designs for ray tracing on multiprocessor
machines, each splitting the load over multiple processors in a different way.
These methods can be partitioned into two main groups, based on how the
work is divided among the various processors. Image space algorithms assign
different subregions of the image space (groups of pixels) to different proces­
sors, requiring the entire scene description to be available to each processor,
which computes its part of the image independently from the other processors.
Object space algorithms assign different parts of the object space (the scene)
to different processors. Each processor effectively acts as a leaf in a space
subdivision strategy and only stores the objects within its particular subvolume
of space. The passage of rays through subvolumes of space requires addi­
tional communication overhead in the form of messages from the processor
that a ray is in to the next processor.

An important consideration in all multiprocessor algorithms is load
balancing, which is the process of maximizing throughput by ensuring that all
processors perform approximately equal amounts of work so that processor

18

idle time is minimal. Load balancing appears in a static form and a dynamic
form. Static load balancing attempts to divide the workload evenly among the
processors before ray processing starts. Dynamic load balancing monitors the
workload of the processors and changes the partitioning of the work if the
workload becomes too unbalanced. Again, treatment of multiprocessor issues
would greatly complicate the discussion, so extension of the ideas of this
thesis to multiprocessor algorithms is mentioned to a very limited extent.
[Dipp84] and [Nemo86] provide treatment of space subdivision issues on mul­
tiprocessors.

2.4. Previous Space Subdivision Algorithms

Octrees and bintrees have been used to speed up ray tracing with consid­
erable success. Several papers describing the techniques and results have
appeared in the literature. A survey of three papers relating to octrees and
bintrees is presented here, with concentration on three aspects of the algo­
rithms: construction, storage, and traversal of the structures. The remainder
of this thesis examines the issues of space subdivision hierarchies with respect
to these three areas.

2.4.1. G lassner— 1984

Andrew Glassner has published several papers dealing with space subdivi­
sion structures for ray tracing. His first paper [Glas84] represents one of the
earliest published applications of octrees to ray tracing. His two later papers
[Glas87c] and [Glas88] expand upon the ideas within this first paper but many
of the basic concepts remain the same. The following sections primarily
describe Glassner’s original octree.

19

2.4.1.1. Glassner— Construction

Glassner implemented an octree which selects the spatial median slicing
planes. This provides for a straightforward subdivision process, because no
algorithm is needed to determine which plane should be used to subdivide a
given node. His method of construction of the octree is a simple breadth first
technique. Nodes which have more than a certain number of objects are sub­
divided, until a certain size of tree is reached.

The tree building is governed by two parameters: the maximum number
of nodes and the threshold value used for determining whether to split. The
threshold value is some small number greater than or equal to 1. Using a
threshold value to govern subdivision is simple and straightforward, but does
not necessarily subdivide the nodes that need it most. For instance, imagine a
tree that has a few objects (less than or equal to the object threshold) in a
node with a large bounding volume, and many objects in a node with a small
bounding volume. Glassner’s algorithm subdivides the smaller volume, rather
than the large node. However, due to its relative size, it is likely that only a
few rays go through the small node, while many intersect the large node.
Therefore, subdividing the smaller gives very little performance gain. It is
better to subdivide the larger node.

Glassner’s algorithm fails to create a better tree because it does not expli­
citly take into account any measure of the chance of a ray intersecting a node.
Glassner seems to have recognized this, because, in a more recent paper, he
uses an improved algorithm [Glas87c]. He outlines a method whereby a node
is subdivided if it contains more than a threshold number of objects, or is
larger than a given volume. This method, although an improvement, is not
very satisfactory as it seems that the choice of threshold is very critical to the
performance of the tree. Selecting a threshold to obtain optimal performance
for a given scene is difficult. In Chapter 3, an algorithm which performs this
selection dynamically is proposed.

20

2.4.1.2. Glassner — Storage

Glassner assigns to each node in the octree a unique integer identifier
based on the position of the node in the tree. The root is assigned the value
1, and each node u , is assigned the identifier p i , where p is the identity of the
parent and i (1 < i <8) indicates which of the eight children u is. Therefore
the children of the root would have the identifiers 11 through 18. The nodes
are stored in a hash table, in blocks of eight siblings to conserve memory.
The identifier of the parent of a given node is hashed to give the position in
the table of the block of eight siblings. The desired node is found by using
the last digit of the node’s identifier as an index into the block. Collisions are
resolved by separate chaining.

The information that is actually stored for a node is the id number, a
subdivision flag indicating whether or not it is a leaf, the center (splitting
planes), dimensions of the node, and an object list pointer. The dimensions
of the node may be omitted and generated from the splitting planes as the
tree is traversed, trading speed for storage. Similarly, if a spatial median
scheme is used, the center field may also be omitted and generated as the tree
is traversed. The object list pointer points to a list of object indices which
constitute the list of all objects belonging to the node. In Glassner’s imple­
mentation, it is just an index into an array containing object index lists for all
nodes. Each list is terminated by a predefined nil value.

2.4.1.3. Glassner — Traversal

Glassner utilizes two basic procedures in the traversal of an octree. One
procedure is given a point (x,y,z) and returns the leaf node which contains
this point. The other procedure takes a leaf node, and returns a point (x,y,z)
just beyond the point of exit of the ray in question. The point returned is
computed so as to guarantee that it is within the next leaf node along the ray.
A traversal calls these two functions, alternately using the output of one as

21

the input of the other. This enumerates the leaf nodes intersected by the ray
in order of nearness to the ray origin. The objects within the enumerated
leaves are tested for intersection, and the algorithm halts at the first leaf with
an intersected object.

The first procedure starts at the root node, with node identifier set to 1.
By comparing the given point with the splitting planes stored at the node, it
determines the id of the child in which the point belongs. The child node is
found in the hash table, and if the subdivision flag is set, then the procedure
is repeated because the node has children. Eventually a leaf node is found,
which is returned as the leaf containing the point. This method of finding a
node requires integer multiplications and divisions, as well as a real com­
parison, for each node in the path to the leaf. Since two consecutive leaves
along the path of a ray generally share several nodes on their paths,
Glassner’s approach is inefficient, since it does not use this information to
find leaves. Because the ray exit point can be used to determine a unique
next leaf id, a simple optimization of Glassner’s traversal algorithm is to per­
form a binary search for the next leaf.

The other procedure, which finds a point in the next leaf, performs an
intersection test of the ray with the leaf voxel to find the t value of the ray at
the exit point. This value is used to get the coordinates of the point of exit.
Then a small offset is added to each coordinate whose corresponding side of
the voxel contains the point of exit. This small offset is simply half the
minimum length of the edges of all voxels in the tree, which is recorded dur­
ing construction. By adding this offset to the point of exit, Glassner creates a
new point which is within the boundary of the next leaf, but not on the boun­
dary, thereby avoiding reporting more than one leaf node. This procedure is
very similar to the ray-box intersection test, as is illustrated by the simple cod­
ing of the exit point algorithm given in Figure 2.7.

PROCEDURE RayBoxExit(RayOrigln, RayDirection, Box, VAR Exit : Point)
CONST

Dimensions = 3;
VAR

tmin, tmax, tlow, thigh, tenter, texlt : REAL;
BEGIN

(* set the range o f t to [0 to +©] *)
tmin := 0; tmax := +n>;

FOR coord := 1 TO Dimensions DO
IF RayDirection[coord] <> 0.0 THEN

(* calculate the range o f t between the two parallel planes,
store in tlow, thigh *)

tl[coord] := (Box[1.coord] - RayOrigln[coord]) /
RayDirection[coord];

t2[coord] := (Box[2,coord] - RayOrigln[coord]) /
RayDirection[coord];

tlow := MIN(tl[coord], t2[coord]);
thigh := MAX(tl [coord], t2 [coord]);

(* get intersection o f range so far, and range [tlow. .thigh] *)
tmin := MAX(tmin, tlow);
tmax := MIN(tmax, thigh);

ENDIF;
ENDFOR;

(* now we know the t value at point o f exit (tmax)
so determine the coordinates o f the exit point *)

FOR coord := 1 TO Dimensions DO
(* i f ray leaves box by the lower bound on this coordinate *)
IF (tl[coord] = tmax) THEN

Exit[coord] := tl [coord] - offset;
(* i f ray leaves box by the upper bound on this coordinate *)
ELSIF (t2 [coord] = tmax) THEN

Exit [coord] := t2 [coord] + offset;
ELSE (* interpolate this coord at point o f exit *)

Exit [coord] := RayOrigln[coord] + tmax * RayDirection [coord];
ENDIF;

ENDFOR;

END RayBoxExlt;
Figure 2.7.

23

In performing the intersection test of the ray with the leaf’s voxel, Glass-
ner tests the ray against all six sides of the voxel. However any given ray
needs to be tested against only three sides of the voxel, one per coordinate.
By inspecting the signs of the components of the direction vector of the ray, it
can be determined, for each coordinate, by which one of the two sides of a
box the ray can possibly exit. This is independent of the size or position of
the box, and. is simply a function of the direction vector of the ray. This
observation may be used to improve the exit point computation. Although
reducing the computation by about half, the basic method would still require
three divisions, three subtractions, and three comparisons for this operation,
plus two multiplications and two additions for determining the point of inter­
section from the t value. These operations are performed quite frequently,
many times per ray, and therefore the hierarchy traversal can constitute a
major expense in Glassner’s algorithm.

2.4.2. Kaplan — 1985

In 1985, Michael Kaplan published an article describing an implemention
of a bintree which is very similar to Glassner’s octree [Kapl85]. The following
sections describe this bintree and how it differs from Glassner’s octree.

2.4.2.1. Kaplan — Construction

Kaplan uses a method very similar to Glassner’s, differing mainly in that
he uses a bintree to represent the subdivision rather than an octree. A node
is subdivided at the spatial median in each of the three coordinates and three
levels of subnodes are created to represent this subdivision. Kaplan does not
state why he chose the bintree representation of an octree. However, the
traversal algorithm for a bintree is simpler, and a bintree typically results in
fewer leaves than the corresponding octree.

24

Kaplan builds a bintree which he calls a BSP tree, a term which he bor­
rows from Fuchs [Fuch80]. Fuchs organized polygons for visibility processing
by creating a structure which he called a binary space partitioning tree. Each
interior node contained one polygon which was used to subdivide the polygons
in the corresponding region of space. Kaplan’s version of the BSP tree is
similar except that his slicing planes are determined by the position of the
node in the tree and are major planes, whereas Fuchs’ planes can have arbi­
trary normal vectors (and are usually planes chosen so as to be coplanar to the
faces of individual objects within the scene).

Kaplan calls interior nodes slicing nodes, and leaves, box nodes or termi­
nation nodes, depending on their function. A box node is a standard leaf, as
previously described, associated with a box in the object space and possibly
containing objects. A termination node is a node representing space outside
the object space. Reaching a termination node during traversal signals that
the ray has left the scene without hitting an object.

The construction of the tree is governed by the same criteria as Glassner’s
later method [Glas87c]. A node is subdivided if it contains more than a
threshold number of objects, or if it is larger than a threshold size. Kaplan
suggests using 1 as the threshold number of objects. The problems with this
approach are the same as those for Glassner’s method.

2.4,2.2. Kaplan — Storage

Kaplan does not give much detail in his description of how his algorithm
stores the bintree. However, it appears that he stores the data structure as an
explicit tree, with two pointers at each node indicating the children.

25

2.4.2.3. Kaplan — Traversal

Kaplan uses the same traversal algorithm as Glassner. He does not
specify how he finds a point in the next node, other than saying that the point
of the ray’s exit from the box is found and pushed far enough to place it in
the next node.

2.4.3. ARTS — 1986

Fujimoto, Tanaka, and Iwata describe what they considered a significant
speed breakthrough with regard to space subdivision structures for ray tracing
[Fuji86]. Although their octree approach is very similar to Glassner’s, their
paper includes several ideas worth mentioning.

2.4.3.1. ARTS — Construction

Fujimoto, Tanaka, and Iwata created ARTS, which stands for
Accelerated Ray Tracing System. The distinction of the ARTS method is the
speed of its traversal algorithm, as opposed to the uniqueness of its octree.
The traversal algorithm uses incremental integer arithmetic to enumerate the
space through which a ray travels. It is a three dimensional adaptation of the
standard two dimensional DDA (Digital Differential Analyzer) used to draw
lines on bitmaps. This traversal algorithm can be used to traverse an octree,
or a special structure the authors call SEADS, which stands for spatially
enumerated auxiliary data structure. SEADS represents a uniform space sub­
division, meaning that the object space is divided into equal sized boxes. The
authors claim that the ray-scene intersection algorithm runs faster with
SEADS than with the octree, but do not give details of the basis of com­
parison and provide little justification for this claim. The paper gives no
details on the construction of the octree, but there is reference to both
Glassner’s and Kaplan’s papers. Also, the traversal algorithm requires a sub­
division algorithm that picks the spatial median as the slicing plane for a

26

node. Therefore, it can be reasonably assumed that their construction of an
octree is quite similar to those of Glassner and Kaplan.

2.4.3.2. ARTS — Storage

The ARTS paper depicts explicit storage of the octree as a tree. Two
parallel arrays are used, where each set of eight entries corresponds to a single
interior node’s children. For instance, the first eight entries in the two arrays
correspond to the eight children of the root. One array simply indicates node
status, whether it is a subdivided node, empty leaf, or a leaf containing
objects. The other array contains an index which is a pointer to a list of
objects if the status indicates this is a leaf node containing objects, a pointer
to the block of eight children if the status indicates subdivision, or undefined
otherwise.

This linked list method of storage is superior to Glassner’s hash table
strategy. The ARTS method requires one byte for the status and four bytes
for the index, per node. Similarly Glassner requires one byte for the subdivi­
sion flag and four bytes for the object list pointer. However, Glassner
requires an additional four bytes (or more) for id and four bytes for a hash
table link, for each eight nodes, plus space for the hash table of pointers. In
terms of the number of nodes N in the tree, which is eight times the number
of interior nodes, the memory required is

HashTableSize* 4 + -^*(4+4+8* (1+4)) ~ 6*N.
8

The ARTS method requires 5 bytes per node:

5*N,

which is about 16 percent less space than Glassner’s. In addition to being
more compact, the ARTS method has faster access than Glassner’s, because
of the explicit links to the children stored in the ARTS structure. Indexing is

27

used to find the child of a node, rather than computing an index and search­
ing a hash table as in Glassner’s method.

2.4.3.3. ARTS — Traversal

The traversal of the octree is the key to the speed of the ARTS method.
Space is partitioned into small voxels of a fixed size. Using incremental
integer arithmetic, the algorithm determines which of these voxels that a ray
travels through and, using these, which leaves the ray intersects. The size of
the voxels is appropriately chosen so that the smallest leaf node in the octree
is a nonnegative power of two times the size of the small voxels. The splitting
planes of the octree coincide with faces of the small voxels, allowing a
straightforward mapping of a small voxel to a leaf node; determination of the
leaf node containing a given voxel can be performed by inspection of the bits
of the index of the enumerated voxel. When one of the small voxels is
enumerated, the leaf in which it resides is found and processed. More voxels
are enumerated until a voxel is found outside the leaf, and the next leaf is
found and processed. Rather than search from the root each time a leaf is to
be found, as Glassner does, the ARTS system traverses upwards from the
previous leaf only as far as required and then down to the leaf in question.
The authors claim this can be done quite efficiently using byproducts of the
incremental integer arithmetic algorithm, but do not elaborate on how this is
done. The traversal of an octree is therefore very efficient.

Chapter 3
Improvements

This chapter outlines a number of methods for improving the efficiency
of space subdivision data structures, with individual concentration on the con­
struction, storage, and traversal phases.

3.1. Construction

As seen in Chapter 2, current methods of construction for bintrees and
octrees are quite simple, providing fast generation of the data structure.
However, the construction of the bintree or octree is typically insignificant
compared to the computation spent in actually traversing the tree to deter­
mine ray-object intersections. Therefore it would be advantageous to devote
a greater amount of time to creating a more efficient tree, under the assump­
tion that the extra time would then be saved during the tree traversal.

3.1.1. The Surface Area Metric

To devise such an efficient construction algorithm requires some under­
standing of efficiency of bintrees and octrees. Currently the only reported
efficiency measures are from actual use [Glas88] or from simulations
[King86]. Such simulations trace a set of rays through a data structure
representing a scene of objects, recording the speed either in terms of actual
processing time or the number of basic operations required. The latter is less
implementation-dependent and, thus, is more reliable as a general measure.
The basic operations are usually the total number of nodes visited and the
number of objects tested for intersection. However, such simulations provide
no insight into why a particular tree is efficient; it only provides a numerical
measure of the efficiency.

28

29

A first insight into space-subdivision efficiency may be derived from
Stone’s [Ston75] observation that the number of rays likely to intersect a con­
vex object is roughly proportional to its surface area, assuming that the ray
origins and directions are uniformly distributed throughout object space, and
that all origins are sufficiently far from the object. This observation has been
used to provide a measure of the likelihood that a ray will intersect a bound­
ing volume in a HE tree [Gold87]. Similarly, we can derive a prediction of
the number of objects, interior nodes, and leaves intersected in a given scene
and space subdivision hierarchy, thereby doing away with the need for the
costly Monte Carlo simulations.

Let us assume that for a given scene and tree, we are dealing with exactly
those rays that intersect the bounding volume for the entire scene, the voxel
of the root node. Therefore every ray intersects the root voxel, and the pro­
bability of a ray intersecting the root node is 1. The probability of a ray
intersecting any interior or exterior node is equal to the surface area of the
node divided by the surface area of the root. This results in the following
intersection estimations:

Ni
E S A (i)

number of interior nodes hit per ray = -— ---- —SA (root)
Nl
E «(0

number of leaves hit per ray = —— ---- —SA (root)
Nl

number of objects tested for intersection per ray = ------- ------ -----
SA (root)

where

30

Ni denotes the number of interior nodes

Nl denotes the number of leaves

SA (/') denotes the surface area of interior node i

SA(l) denotes the surface area of leaf node l

N (l) denotes the number of objects stored in leaf l

Given these measures of the node, leaf, and object visits performed during
traversal of the tree, an estimate of the cost of the tree can be obtained. The
costs associated with these three components depend on the particular imple­
mentation of the traversal algorithm and may be determined theoretically or
experimentally. The total cost of a particular tree is determined from the
three sums above and the three related costs, which are assumed to be con­
stants for a given implementation. This is expressed as

Ni Nl Nl
Ci*E SA (0 + C /* £ SA (0+C o* £ 5A (l)*N(l)

cost of tree = i=l_________ /=1
SA (root)

where

C(= cost of traversing an interior node

C[= cost of traversing a leaf

Ca = cost of testing an object for intersection with a ray

This cost function assumes that rays do not intersect any objects, but also
represents an upper bound for rays that intersect objects. The cost function
implies that if an object occurs in two or more leaves, it is tested for intersec­
tion each time a ray intersects one of these leaves. Therefore a given object
may be tested against the same ray several times. As observed in Chapter 2,

31

this is usually unacceptable, and is avoided by caching objects intersected
against a ray, so that each object is tested at most once per ray. The cost
function given above must be modified to account for this caching.

To derive the correct cost function, we require a measure of the probabil­
ity that a ray intersects at least one leaf from the set of leaves within which a
particular object resides. This is equivalent to determining the probability
that a ray intersects the volume defined by the union of the set of leaves.
Because this union may be non-convex, the probability of ray intersection
must be estimated by finding a convex region to approximate the non-convex
region. Figure 3.1 depicts an object, the set of leaves containing it, and a
convex region approximating the non-convex region.

A simpler approximation is the sum of the areas of the projection of the set
onto the six faces of the root bounding volume divided by the root bounding
volume’s surface area. This is illustrated by Figure 3.2 which depicts the
same object as Figure 3.1 but includes the root bounding volume and the pro­
jection of the set of leaves onto this bounding volume. For a convex object,
this measure is exactly equal to its surface area divided by the root bounding
volume’s surface area, which is the correct measure. Therefore, we can use
this approximation for the set of leaves for all objects, whether the set of
leaves for each object is convex or not. This makes the object portion of the

32

Figure 3.2.

cost of a tree:

where

object cost per ray =
C0*ESAi«(S,(o))

0 = 1

SA (root)

N0 is the number o f objects

Si(o) is the set of leaves in which the object o resides

SAset(s) denotes the approximate surface area of the set s

If we assume that the above costs are accurate, we can use these equations to
govern the construction of the tree.

33

Consider the octree methods of Glassner or ARTS, which subdivide
nodes in a breadth-first fashion. As the tree is built up from a tree of just
one node, the above equations can be used to calculate the overall decrease in
cost created by subdividing a particular node. This calculation involves com­
putation of the surface area of the node, the surface areas of its children, and
the number of objects belonging in each child, if it were to be created. The
calculation is quite simple because each child of a node has exactly one quar­
ter of the surface area of its parent. A reasonable heuristic would be to sub­
divide whichever node would decrease the cost of the tree most, rather than
using a breadth-first selection mechanism. A bound on the size of the tree
would still be required to control the amount of space used. Such a heuristic
would perform the subdivision where it is needed most, that is, where the
most gain would be achieved, as opposed to a breadth-first method which is
somewhat more random in its choice of a node to split. This method effec­
tively performs a one-step lookahead to determine the cost of splitting a par­
ticular node. The expense of this step may be eliminated by using the current
cost of a particular node as its estimated gain and changing the subdivision
process to select the node which has the highest cost. The results of this
zero-step lookahead can be expected to be similar to the highest-gain method,
because in general, the higher the cost of a node, the higher the gain by sub­
dividing it. However, the zero-step lookahead is computationally cheaper.

The cost function can be used not only to select the node splitting as
described above, but also to select the position of the splitting plane within a
node. Traditionally, this has been the spatial median, with one exception
being Heckbert’s median split algorithm [Heck82]. Heckbert chooses the
object median in a k-d tree where the objects are colour triplets (points).
Unlike the other methods described, which are applied to ray tracing, Heck­
bert uses the space subdivision structure to select a set of colours to be used in
a lookup table to approximate a larger set of colours, which are the data being

34

organized. One obvious reason why the spatial median is usually chosen as
the splitting plane is that it does not require storage of the position of the
splitting plane. Another reason may be that no one has suggested a good
algorithm for selecting splitting planes.

The cost equation developed above can also be applied to selecting
“good” splitting planes, where the splitting planes are not restricted to being
the spatial median. The extra degree of freedom granted by allowing splitting
planes to be anywhere within a box may provide a more efficient tree and
may make up for the added memory requirements of this splitting plane selec­
tion.

In the following discussions of splitting planes, we will, for simplicity,
only consider the bintree, since it uses only one splitting plane per node.
Only major planes are used as splitting planes and we ignore, for now, the
possibility that an object may belong in more than one node. Let us look at
the subdivision along a particular axis c when we have to choose a value for
some parameter b , where b = 0 corresponds to the lower bound of the coordi­
nate c of the box and b = 1 is the upper bound. Choosing b = 0.5 is
equivalent to selecting the spatial median (Figure 3.3). Let us look at the cost
savings as a function of this parameter b. We observe that the internal node
and leaf node components of this cost savings function are constant with
respect to b. Therefore, for the purposes of minimizing cost, one can minim­
ize the following function:

f (b) = LSA (Jb)*L(b) + RSA(b)*(n-L(b)) - SA*n

where n is the number of objects in the node, L(b) is the number of objects to
the left of the plane at b, and n—L(b) is the number to the right. The surface
area of the left and right subnodes are LSA(b) and RSA(b), respectively, and
the surface area of the node itself is SA . The first term represents the proba­
bility that a ray intersects the left subnode multiplied by the number of

35

intersection tests performed in the left subnode. The second term is a similar
quantity for the right subnode. The "SA*n" term is the amount of work
required if the node were not subdivided and thus is an amount of work saved
by changing the original node from a leaf to an internal node, hence the
minus sign. This last quantity is a constant with respect to b, so it may be
removed from the function, resulting in:

f(b) = LSA (b)*L (b) + RSA (b)* (n —L (b))

To find a “good” splitting plane, one might evaluate this function at several
different positions, and choose the position with the minimum value. How­
ever, let us examine the behaviour of this function. The value of this func­
tion at the spatial median (¿7=0.5) is

n*LSA (0.5),

because LSA (0.5) = RSA (0.5). Curiously enough, the value of this equation
at the object median, where half of the objects are on each side of the slicing

36

plane, (L(b)=^~), is also £

(LSA (b)+RSA (b))*^- = n*LSA (0.5)

because LSA(b)+RSA(b) is a constant, LSA(0.5) = RSA(0.5), therefore
LSA(b)+RSA(b) may be substituted by 2*LSA(0.5). This shows that picking
the object median results in the same gain as picking the spatial median.
Intuitively, one might assume that picking the object median would be a rea­
sonable heuristic for choosing an arbitrary splitting plane, but the above
observation indicates that it is equivalent to the standard spatial median sub­
division.

The optimum heuristic is to pick the slicing plane which minimizes f(b) .
Differentiating with respect to b gives

f ' (b) = LSA’(b)*L(b) + LSA(b)*L'(b)+ n*RSA'(b) -

RSA '(b)*L(b) — RSA (b)*L'(b)

which can be simplified by substituting —LSA'(b) for RSA'(b) (because
LSA(b) + RSA(b) is a constant), giving,

f ' (b) = (2*L(b)-n)*LSA'(b) + (LSA(b) - RSA(b))*L'(b)

Since L(b) is a discontinuous function, L '(b) is not defined. However, for
the purposes of minimization of / (b) , we can assume that L '(b) is always
nonnegative (the number of objects stored in the left subnode cannot decrease
as b increases). Let us try to narrow down the range in which the minimum
might lie. Let us investigate the case where the object median lies at some
point ¿><0.5. To the left of the object median, / ' (b) is negative, because
L(b)< ^- and LSA(b)<RSA(b). To the right of the spatial median, / '(b) is

positive, because L(b)> y and LSA(b)>RSA(b). Therefore the minimum

must occur between the object median and the spatial median in the case

37

where the object median is to the left of the spatial median.

A similar proof can be used for the other case where the object median is
to the right of the spatial median, thereby proving that for any node and set
of objects within it, the optimum slicing plane occurs between the object
median and the spatial median, reducing the required search range. Figure
3.4 represents a set of 10 objects within a single node in two dimensions, the
spatial and object medians, and the narrowed range of search for the
optimum splitting plane.

object spatial
median median

The optimum splitting plane occurs within the reduced range, and at the
upper or lower edge of one of the objects within this range, rather than in the
middle of “white space” . To take advantage of this reduced range, one must
first find the object median, which is easy if the objects are sorted, but other­
wise requires a binary or Fibonacci search of the space. If one does not want
to perform this search, one can determine how many objects are on each side
of the spatial median, thereby determining on which side of the spatial
median the object median occurs. This allows one to cut the search space in
half. In the cases of small numbers of objects, one can try splitting planes at

38

the limits of each object within the appropriate half and record the maximum.
For large numbers of objects, one might try a small set of splitting planes, at
equally spaced intervals, or even randomly selected, within the appropriate
half. Alternatively, a cheap heuristic is to select the splitting plane midway
between the object median and the spatial median.

3.1.2. Objects Spanning the Slicing Plane

If we relax our restriction about dealing only with cases where objects
belong in exactly one leaf, the equation gets slightly more complicated. The
increased cost function is now

f (b) = LSA (b)*L(b) + RSA(b)*R(b) + S A * (n -L (b)-R (b)) - n*SA

(which can be reduced to —b*R(b) — (l—b)*L(b)). L(b) represents the
number of objects that belong in the left subnode but not in the right, R{b)
represents the number of objects that belong in the right subnode but not the
left, and n —L(b)—R(b) is the number of objects that belong in both subnodes,
so called spanning objects.

The first two terms in the above equation represent an estimate of the
number of nonspanning objects tested for intersection due to the left and right
subnodes. The third term represents the number of spanning objects tested,
assuming that the algorithm uses an object cache to avoid multiple intersec­
tion tests with the same object. Note that we approximate the probability that
spanning objects are tested for intersection by the surface area of the original
node, because a ray that intersects this node causes ray-object tests with the
spanning objects independent of which subnodes are intersected. As before
the term —n*SA represents the cost of the undivided node.

The reduced search space may be used if there are no spanning objects at
the spatial median and an object median with no spanning objects can be
found. Otherwise, one may apply the simple method of sampling the function

39

value at various positions to determine a minimum. The minimum position
may not be easy to find using numerical techniques, because the second
derivative is not necessarily negative, causing the function to be nonmono­
tonic on either side of the minimum. This can happen when two objects over­
lap along the axis of the appropriate coordinate. However, if there is no such
overlap, then the set of planes at the upper and lower limits of each of the
objects contain the optimal plane, and the cost function is monotonic decreas­
ing before the optimal plane, and monotonic increasing after. A binary or
Fibonacci search can then be performed to determine the optimal splitting
plane.

In a bintree approach, it is necessary to determine the optimum axis of
subdivision as well as the optimum splitting plane for this axis. The above
algorithm can be used to select the optimum slicing plane and gain for each of
the axes. The axis with the maximum gain is chosen as the axis of subdivi­
sion for this node. For an octree, the problem of selecting the three optimum
slicing planes is more complicated, because of the need to deal with three axes
at once. One solution is to apply the above algorithm to each axis indepen­
dently to select a “good” slicing plane for each axis.

We have now seen how a “good” splitting plane may be selected, and
how to choose the next node for subdivision. This leads to an overall algo­
rithm for construction of a bintree or octree with arbitrary slicing planes.

3.1.3. Optimal Trees

It is worthwhile investigating optimal space subdivision trees, but it is first
necessary to define optimality. A tree may be optimal with respect to space
or time (search cost), or a combination of both. The tree that is optimal in
terms of space for a given scene is a tree of one leaf containing all the objects
in the scene, clearly an impractical criteria for optimality. Likewise, the tree
that is optimal with respect to time may require impractical amounts of

40

storage. Therefore the definition of optimality should combine the space and
time factors. One might define optimality as the most compact tree that pro­
vides the desired query time, or as the most efficient tree for a given amount
of space, which is the definition used in the following discussion.

3.1.3.1. Spatial Median Subdivision of Point Objects

Let us investigate the optimal spatial median subdivided octree, defined
as the most efficient tree for a given size. The size of an octree is defined as
the number of interior nodes. Let us restrict the objects to non-coincident
uniformly distributed random points. This choice of object type guarantees
that each object belongs in exactly one leaf. Subdividing a node results in a
predictable gain, assuming the relative costs of visiting leaves and internal
nodes, and of intersection tests are given. For instance, the decrease in the
number of intersection tests due to splitting a node into eight subnodes is
3
—*SA{node)* ^objects in node.

The algorithm for producing an optimal octree starts with a single leaf
enclosing the entire scene and repetitively splits whichever node results in the
highest gain until the number of interior nodes is equal to the desired
number. This algorithm relies on the observation that optimal trees are built
up from smaller optimal trees. More formally, for any optimal octree of size
n and for any m greater than n there must be an optimal octree of size m
which contains the smaller optimal octree as a subtree. This can be proved by
realizing from the previous formulas that the gain in subdividing a child of a
node must be less than or equal to the gain in subdividing the node itself.

This observation is used in an inductive proof. Clearly the optimal octree
of size 1 is the leaf tightly enclosing the scene, which must be a subtree of all
optimal octrees of size greater than 1. If an optimal octree of size n+ l does
not have a given optimal octree of size n as a subtree, there must be a

41

subdivided node in the size n optimal octree which is a leaf L in the size n+1
optimal octree. By virtue of the greatest-gain subdivision process, there must
be some node N in the size n+1 optimal octree whose children are leaves,
such that the gain due to the subdivision of N is less than or equal to the gain
which results from subdividing the leaf L .

Therefore, within the larger optimal octree, the node N can be replaced
by a leaf, and its former children used to split the leaf L , resulting in a nonne­
gative overall decrease in the cost of the octree. This rearrangement of the
nodes within the size n+1 optimal octree results in a new octree which is still
of size n+1, and is at most as costly as the original, and hence is still a size
n+1 optimal octree. This process of moving nodes can be repeated until we
have an optimal octree of size n+1 which has the given size n optimal octree
as a subtree.

As a larger optimal octree is built up from smaller ones, the algorithm
eventually separates all points such that every leaf has exactly one or zero
points within it. After this, the algorithm repetitively subdivides the largest
leaf which has an object in it, because the number of objects in all such leaves
is equal. Eventually all the non-empty leaves are on the same level, and the
algorithm effectively performs the same breadth first subdivision process that
results from Glassner’s or the ARTS method with the object threshold set to
zero (subdivide if greater than zero objects in the node).

For octrees that have reached this stage, the estimated

object intersection tests is equal to the number of objects *

number of ray- \i 3
1
4 where / is

the number of levels in the octree, with a size 1 octree corresponding to /=0.
Other characteristics of the octree can be estimated also. Let n be the
number of random point objects in the scene, and h be the height of an
optimal octree representing the scene (h= 0 corresponds to a 1-node octree).
We assume that the optimal octree is sufficiently large that each leaf has

42

exactly one or zero objects stored in it, and every leaf with an object within it
is at level h .

Before deriving estimates for optimal octrees, we first devise some meas­
ures for complete octrees of arbitrary height Z, also assuming spatial median
subdivision. At level /, the number of leaves is 8*. The number of occupied
leaves 0(1) is:

min(8l ,n) .
0(1) = £ i *P(i , s ' , n)

i= l

where P (i , p , n) is the probability that the n randomly distributed points
result in exactly i occupied leaves given that the total number of leaves is p .
This is computed as:

P (i t p , n) = P (i — 1, p , n — 1) * - —- —— + P (i , p , n — 1)* —
P P

where P(i , p, n) is 0 if n<i, and P(l , p, n) is
'in-l

We can now use the formula for the number of occupied leaves in a com­
plete octree to compute some statistics for the optimal octree of height h.
The number of empty leaves at level l in the optimal octree is equal to the
total number of leaves in the corresponding complete tree (8*) minus two
quantities. The first quantity is the number of leaves that are subdivided and
hence are not empty leaves at level /. This is the number of non-empty leaves
in the corresponding complete tree at level /, which is 0(1). The second
quantity represents the number of leaves at level l which are missinig because
one of their ancestors is a leaf. This is the sum of the number of empty
leaves at each level less than / weighted by the number of level / leaves these
larger leaves represent. The resulting formula for £ (/) , the number of empty
leaves at level / in the optimal octree is:

43

E(l) = 81 - 0 (1) - £ 8/- ,'*E(i)
/=/—l

The number of occupied leaves in the optimal octree is n, because all leaves
contain exactly zero or one objects. 1(1), the number of interior nodes at
level Z in the optimal octree, is the number of occupied leaves in the
corresponding complete octree.

Using these estimates the following statistics regarding the size and per­
formance of the optimal spatial median octree of height h can be estimated:

Size of Tree:
h-1

number of interior nodes in octree = X) 0(1)
/-0
/? —1 min(8l , n) .

= E E n)
1=0 1=1
h

number of empty leaves in octree = XI £ (0
/=0

h
- E

/=0
8/ - 0(1) -

/=/-!

number of non-empty leaves in octree = n

44

Performance of Tree:

estimated interior node visits

estimated occupied leaf visits

estimated empty leaf visits

estimated object tests

h- 1
= E

/-0

h-1
= s

1=0

\ /
\ l

*0(1) =

mini s1, n)
* £ > /> ((, 8 ', n)

1=14V /
(i_
4V /

h
= £

/=0 4V / £ (/)

= n* 4\ J

We now have an algorithm to produce the optimal spatial median octree
for a given size, and we also have an estimate of the number of fundamental
operations performed. Using these equations and estimated costs of visiting
interior nodes, leaf nodes, and objects, the size which results in the most effi­
cient octree can be determined.

3.1.3.2. Arbitrary Subdivision of Point Objects

If we assume that we have point objects and we remove the restriction of
spatial median subdivision, there is no similar algorithm for the construction
of an optimal octree. The problem is that the optimal slicing plane must be
found for each node. The algorithm given previously for selecting the slicing
plane position results in the optimal slicing plane assuming that the children
are not subdivided. There is no guarantee that this is the optimal slicing
plane if the node has grandchildren.

45

However, one can estimate the efficiency of the optimal octree without
knowing how to construct it. Because the slicing planes can be arbitrarily
positioned, the leaves can tightly enclose the objects, which are points.
Therefore the estimated number of objects tested for intersection is zero.
Since the positions of the slicing planes within a node do not affect the sum of
the eight new children’s surface areas, it can be estimated that the number of
interior nodes and leaves intersected is roughly equivalent to that of the
corresponding optimal spatial median octree. Even for non-point objects, the
number of objects tested for intersection can be expected to be significantly
less for the optimal arbitrary tree due to the ability to provide leaf nodes that
tightly enclose the objects. Because the ray-object intersection test is typically
the most expensive operation, the optimal arbitrary octree is probably signifi­
cantly faster than the corresponding spatial median octree. This provides a
motivation for arbitrary subdivision instead of spatial median subdivision,
even if an optimal algorithm cannot be devised.

3.1.4. Evaluation of Conventional Octree Construction Method

If we assume that objects do not intersect each other and that each leaf
has at most one object, the estimated cost of the optimal octree can be used
to measure the performance of Glassner’s or the ARTS algorithm. However,
these assumptions are not valid in practice, because objects often overlap and
are so close to other objects that leaves may have many objects stored within
them. Hence there is no obvious estimate of the efficiency of Glassner’s con­
struction method.

The surface area metrics can be used to illustrate a deficiency with
Glassner’s method. This deficiency arises from the use of a value greater
than zero as the object threshold. This means that only a node which has
more than the threshold number of objects is subdivided. A node which has
only one object in it, for example, is not subdivided further. Consider Figure

46

3.5. Every ray that intersects the left subnode is tested for intersection with
the object within it. Because the cost of a leaf visit is less than the cost of an
object test, it is more advantageous to subdivide this node, reducing the likeli­
hood that a ray is tested against this object. This deficiency can be remedied
somewhat by setting the object threshold to zero, which causes the algorithm
to subdivide every non-empty node. However, additional traversal cost is
introduced.

3.1.5. Arbitrarily Oriented Splitting Planes

In 1986, Kay and Kajiya [KayK86] showed how to use precomputation to
remove the dot product calculation from the intersection test of a ray with an
arbitrarily oriented plane. The computation of the parameter t of a ray was
given in Chapter 2 as:

_ —d —N O
l ~ N D

For a given ray, N O and N D can be precomputed for a set of plane nor­
mals. Then each intersection of the ray with a plane having one of these nor­
mals requires only one subtraction and one division, the same as the equation
for major planes. Because multiplication is faster than division on many

47

machines, divisions are often eliminated by precomputing a reciprocal to be
used in multiplication. For our discussion, we assume that division is
equivalent to multiplication, because it can be implemented as such.

Our discussion of slicing planes so far has been limited to major planes,
but Kay and Kajiya’s paper indicates that it is possible to use a set of arbi­
trarily oriented splitting planes at little extra cost. The surface area metrics
can be applied to arbitrary planes to determine the optimum orientation, as
well as position, of a splitting plane. The extra degree of freedom gained by
allowing arbitrary orientations may result in a more efficient tree, because the
surface areas of the voxels containing objects can be minimized further.

The conventional traversal algorithms used by Glassner and Kaplan
would not work without modification, because of the necessity of finding a
point strictly within the next leaf, as opposed to on or within the next leaf.
Because the sides of a voxel are no longer orthogonal to each other, one can­
not simply push the ray exit point perpendicular to the exit plane because
there is no guarantee that it is within the next leaf. The exact ray exit point
must be used, requiring a traversal algorithm which handles this ambiguous
point (belonging in two or more leaves) and avoids an infinite loop of process­
ing due to a cycle in the list of enumerated leaves. The algorithms of Glass­
ner, Kaplan, and Fujimoto et al. cannot be used without modification to
check for cycles. The basic recursive traversal algorithm given in Chapter 2
can be used without modification.

3.1.6. Scene Complexity and Efficiency

There are many references in the literature to scene complexity, which
usually take the form of qualitative statements about the amount of work
required to render a scene, or the amount of visual detail of the image. Typi­
cally, one talks about visual complexity and computational complexity.
Visual complexity typically deals with issues such as how many pixels compose

48

the image and how they vary in colour and position, while computational
complexity deals with how much work is required to render the image. The
surface area idea is now extended to provide measures of these two complexi­
ties.

We can define the visual complexity of a given scene as the probability
that a ray that strikes the bounding volume of the scene strikes an object
within the scene. The surface area of each object in the scene can be used as
estimate of the likelihood of it being intersected by a ray. Alternatively, one
might use the object bounding volumes’ surface areas instead of the objects
themselves, for simplicity. The numerical measure of the visual complexity is
the surface area measurement of the set of all bounding volumes, using the
SAset function defined previously, divided by the surface area of the scene
bounding volume. As described previously, this is calculated by projecting all
bounding volumes onto each of the six faces of the scene bounding volume,
and dividing the area of the union of these projections by the surface area of
the scene bounding volume. A value near 1 means that the majority of rays
entering the scene hit an object and almost all pixels in the image are hit. A
value near 0 indicates that few rays hit objects and thus that the image is
nearly empty. This measure is approximately equal to the fraction of pixels
that have colour in the final image, independent of the rendering algorithm,
which makes it useful as a general-purpose visual complexity measure.

One may also use this visual complexity measure as a basis of comparison
for a rendering efficiency measure. It is reasonable to expect that, ideally,
the amount of work performed in rendering should be proportional to the
visual complexity. In the case of ray tracing, optimal performance occurs
when the number of intersection tests for each ray is zero or one, depending
on whether it hits an object or not. By dividing the number of ray-object tests
per ray by the visual complexity, one may get a measure of efficiency, where
a value of one represents optimal efficiency.

49

The optimal case is usually not attainable, and it is more desirable to
have a general purpose computational complexity measure. Computational
complexity can be defined as the amount of work involved in rendering the
image and approximated as the average number of objects that map to a
pixel. A justification of this as a rendering algorithm-independent measure is
provided by the observation that the amount of work in ray tracing, for exam­
ple, is more related to the number of objects the average ray goes near than
to the number of rays that hit objects. In other rendering algorithms, such as
z-buffering, the work required is proportional to the average number of
objects that map to a pixel. One estimate of this computation might be the
sum of the object surface areas (or bounding volumes) divided by the scene
bounding volume surface area. The computational complexity, being a sum
of surface areas, is greater than or equal to the visual complexity, which is in
a sense a union of the same surface areas. Computational complexity pro­
vides a measure of the average amount of work required to render a scene, as
opposed to the minimum amount required, which is provided by the visual
complexity.

3.1.7. Load Balancing in Multiprocessor Algorithms

Another application of the surface area metric is in load balancing of
multiprocessor algorithms. Static load balancing of an object space algorithm
attempts to subdivide space so that each processor performs an equal amount
of work. The surface area of a bounding volume times the number of objects
within it provides a good estimate of workload for static load balancing. A
similar idea may be used for dynamic load balancing of object space multipro­
cessor algorithms.

50

3.2. Storage

The simplest and most obvious method of storing the bintree (octree) is
as an explicit tree with two (eight) pointers per node. This has a large space
requirement, motivating the more compact octree schemes of Glassner
[Glas84] and Fujimoto et al. [Fuji86]. It was demonstrated in Chapter 2 that
Fujimoto’s linked list method was superior to Glassner’s hash table method.
One deficiency with Glassner’s method is the need to perform multiplications
and divisions to construct a node identifier, due to the base 10 nature of the
identifier. A better encoding of leaf identifiers is to use three bits per level to
indicate the position of the leaf, plus four bits to store the level of the leaf.
Thus a 32-bit identifier can represent leaves in a tree which has up to nine
levels of subdivision. This type of identifier can be manipulated with fast bit
operations, an improvement over Glassner’s method.

The particular storage method for a tree has a marked effect on the speed
of traversing the tree. Traversal of the tree is mainly movement from one
leaf to another. The tree should be stored in such a manner as to minimize
the computation involved in determining the next leaf intersected. This
traversal cost can be decreased by storing links to neighbours on each of the
six faces of each leaf. Samet [Same84] describes similar links in region quad­
trees, which are termed ropes. For the purposes of the following discussion,
let each face of each leaf have exactly one neighbour, defined as the smallest
node (interior or leaf) whose voxel’s surface totally encloses the face of the
leaf in question. By this definition, the neighbours of a leaf are not neces­
sarily leaves. However, this definition guarantees that each leaf has exactly
one neighbour per face (except leaves on the boundary of the scene, which
have none). Figure 3.6 illustrates the neighbours of four leaves.

During traversal of the structure it is now necessary to determine the face
exited. The neighbour link of this face is followed and if the neighbour of the
face is a leaf, processing of the objects within the leaf is performed. If the

51

current same
leaf size

leaf

Figure 3.6
The node to the right of the leaf is the
leafs neighbour for the righthand face.

neighbour is an interior node, then the exit point of the current leaf must be
computed and used to descend the neighbour’s subtree to find the appropriate
leaf. This strategy eliminates all upward traversal of the tree and some down­
ward traversal. In general, when a ray travels from one area to an area of
equal or less fine subdivision, then the neighbour is a leaf and the hierarchy
traversal cost is zero. It is only when travelling to an area of higher subdivi­
sion that there is any hierarchy cost. In this case the cost is less than the
corresponding cost of conventional methods, because the upward traversal to

52

the common ancestor is eliminated, and some of the downward traversal may
be avoided (about equal to the upward traversal eliminated). Therefore, the
neighbour links reduce the hierarchy cost significantly, at the added expense
of six pointers per leaf.

A further modification of the neighbour links is to redefine the neigh­
bours of a face as all leaves adjacent to that face. Now, all neighbours are
leaves, but any given face may have more than one neighbour, which requires
more memory per leaf than the previous link strategy. However, in the case
of spatial median subdivision, the amount of memory required is now less
than 12 pointers per leaf, only twice that of the former links method. The
upper bound of 12 pointers per leaf stems from the observation that, although
some faces have a large number of neighbours, others have only one neigh­
bour, with the average being two pointers per face. This is illustrated in Fig-

2* n
ure 3.7, which shows n + l faces, and 2*n links, and hence ---- - links per

n+1
leaf, which is less than two pointers per face. With arbitrary subdivision, the
number of pointers per face may be higher, because Figure 3.7 no longer cov­
ers all possible subdivision cases.

The storage of the neighbours for a leaf consists of six integers represent­
ing the number of neighbours of each face, plus a list of pointers to the neigh­
bours of each face. Alternatively, the neighbours could be stored in a two
dimensional bintree to quickly determine the appropriate neighbour for a
given exit point.

This complete neighbour links scheme eliminates the hierarchical traver­
sal altogether, because finding the next node only requires following the links.
It introduces the additional cost of determining which link to follow, if a leaf
has more than one neighbour on a given face. If a face has n neighbours, on
average y of them have to be tested (four real comparisons per test) to find

the one intersected by the ray, assuming a linear search. If we assume that

53

1 leaf —

2n links

— n leaves

Figure 3.7
n + 1 leaves, 2n links.

the number of neighbours of a leaf is proportional to its surface area (because
neighbours share a common surface), then the estimated number of such tests
per ray is proportional to

Nl Nl
E sa(l)*sa(l) ~ ¿ s a i l) 2.
1=1 1=1

With a roughly uniform subdivision, the volume of each leaf is —-,Nl
is the number of leaves. The surface area of a leaf is proportional

where Nl
2to the — 3

power of the volume, so the number of tests per ray is proportional to

54

Nl
E
i“ l

' f \ 2 '3
N l

K

Nl
~ S m

1-1
1

3V)v7

This provides the indication that increased subdivision leads to a decreased
amount of work per ray for determining which neighbours to follow. In
rough terms, each additional complete level added to an octree results in eight
times as many leaves but half as much work for determining neighbours.

Better search performance may result by using a two dimensional bintree
to search for the neighbours, or by performing a binary search on the sorted
neighbour lists. Either of these two methods reduces the expected number of
tests per face to logn complexity. Also, the form of the tests is single com­
parisons in the case of the two dimensional bintree, rather than four com­
parisons. The expected number of comparisons is therefore proportional to

Nl
f]sa(l)\ogsa(l)
/= 1
Nl i

~ £ ----- *-r-*logNl
/- l 2 4

N l3

~ 3\ v̂7*iog/w

Although it appears that the neighbour links approach may have large
space requirements, there is a memory-speed tradeoff. Instead of defining
links to occur at all leaves, one can define the links to occur at all interior
nodes that only have leaves for children. This decreases the extra space to
approximately one eighth of the original space requirements in the octree

55

case, or one half in the case of a bintree. This method incurs the same
traversal cost as the original neighbour links plus one additional upward
traversal per leaf and possibly some extra downward traversal. Alternatively,
the linking is defined to link the set of nodes at a particular height above the
leaves. For example, links may be stored in all nodes which are a fixed dis­
tance n above the deepest leaf in their subtree. The case n = 1 corresponds
to the above method of storing at all nodes that only have leaves for children.

1 "The amount of memory required is proportional to (—) in the case of an8
octree, yet the extra traversal cost is only proportional to n. A suitable value
of n results in an appropriate tradeoff between space and the additional up
and down traversals. For practical cases n can be quite small.

3.2.1. Multiprocessor Implementation

The complete neighbour links strategy is well suited to implementation on
a multiprocessor system. Each processor can represent leaves, performing the
ray-object intersection tests, and alerting the appropriate neighbour if the ray
passes through without intersecting an object. Alternatively, a separate set of
processors may be used to perform the neighbour computations.

3.2.2. Storage of Voxel Dimensions

Another issue is whether the voxel dimensions are stored in each leaf
node. In order to enumerate the next leaf intersected by a ray, the limits of
the current leaf voxel are usually required. The storage required for each
voxel is six floating point numbers, which may be a significant cost. Glass-
ner, Kaplan, and Fujimoto et al. have similar suggestions for avoiding this
cost. The limits of each encountered voxel are computed by maintaining the
limits of each interior node encountered, using the splitting planes of the
parent to determine the limits of the children. In addition, with spatial
median subdivision, the value of the splitting plane does not need to be stored

56

in each interior node, as it may be computed as the midpoint of the limits of
the node’s box. The computational implications of these schemes are that a
stack of voxel limits must be recursively maintained and updated for each
movement from parent to child.

Another possible solution that avoids storing voxel limits performs some
vertical traversal to compute the voxel for a given leaf. By following the path
back through ancestors and examining splitting planes, the limits of a leaf
voxel may be reconstructed. In two-thirds of the cases, it takes at most three
upward traversals. With conventional traversal algorithms, the additional
computation involved in these space-time tradeoffs may be acceptable,
because they do not introduce additional traversals through the tree. How­
ever, the neighbour links traversal algorithm attempts to speed up leaf
enumeration by eliminating traversal of the interior nodes of the tree, so
introducing the additional cost of maintaining the voxel limits in the conven­
tional recursive way would defeat the purpose of the links.

One obvious solution is to store the limits in each leaf. The additional
space is six reals per leaf, which seems a significant amount. However, with
the complete neighbour links strategy, the internal nodes are only required for
finding the initial leaf for each ray. This means that the internal nodes can be
eliminated and alternative strategies used to find the initial leaf.

For example, for rays that originate outside the scene, the first leaf can
be found by using quadtrees on each of the six faces of the root bounding
volume. For rays that originate within the scene, the ray can be extended to
the edge of the root bounding volume, and leaves enumerated until the leaf
containing the origin is found. This operation need only be performed for a
small number of points, i. e., the eye point in most ray tracers, if the leaf
containing the point of intersection is recorded when tracing a ray. The ori­
gin of all rays in a ray tracer is almost invariably either the eye or a point of
intersection of a previous ray with the scene, for which the corresponding

57

leaves is recorded from the previous search.

In a bintree representation, the number of internal nodes is equal to the
number of leaves minus one. Depending on the implementation, each inter­
nal node may require up to two pointers for children, possibly a parent
pointer, one entry for each splitting plane and/or splitting coordinate. The
extra memory required by storing the voxel limits in leaves are therefore in
the order of that saved by the elimination of interior nodes.

If we are using a spatial median strategy with an octree, a storage scheme
which capitalizes on the fact that the sizes of the voxels are powers of two is
available. One may use the identifier encoding scheme previously mentioned,
which stores a node identifier in 32 bits. The limits of the voxel can be impli­
citly generated from this 32 bit identifier, because the level indicates the size,
and the position information can be used to determine one corner of the
voxel. The additional storage of this method is four bytes per leaf, unless we
are using a hashing scheme, in which case the identifier is already required
for the hashing and the additional cost is zero. This strategy can be used with
either the conventional traversal algorithm or the neighbour links method.

3.2.3. Storage of Object Lists

Storage of the lists of objects that belong in each leaf have large space
requirements. Glassner stores all the object lists in a single array of object
indices, where each list ends with a NIL index (Figure 3.8).

Glassner’s scheme provides a separate object list for each leaf. A more
compact scheme would allow more than one leaf to point to the same object
list. In cases where there are many duplicate leaf lists, this scheme would
result in significant memory savings. There would be an additional cost dur­
ing the traversal phase in order to identify duplicate lists. Additional savings
may result if lists which are subsets of other lists are identified, and a pointer

58

Figure 3.8
Glassner Object List Storage.

to the beginning of a sublist within a larger list used to avoid explicit storage
of the sublist. The larger list would have to be organized so that the sublist is
at the end.

Another compact scheme is to partition the set of objects into equivalence
classes, where each equivalence class is a set of objects which belong in the
same set of leaves. In the worse case, each equivalence class consists of one
object, in which case this scheme is equivalent to the above many-to-one link­
ing. The object list for a leaf is now a list of equivalence classes, rather than
a list of object indices. Figure 3.9 depicts this data structure, which not only

59

allows a many-to-one mapping of leaves to an intermediate level of object list,
but also a many-to-one mapping of this intermediate object list to the
equivalence classes.

Figure 3.9
E quivalence G a ss Object L ist Storage.

3.3. Traversal

Now let us examine some methods of increasing the efficiency of the
traversal phase of bintrees and octrees.

60

3.3.1. Precomputation of Intersection Distances

Traversal of a spatial median subdivided tree can be speeded up by
precomputing information for each possible sized voxel in the tree. In a spa­
tial median subdivided octree of height h there are at most h different voxel
sizes. This is also true of a bintree where the axis of subdivision cycles
through the coordinates as the level increases. For a given ray, we can com­
pute and store the parametric distance along the ray for each of the three
pairs of faces for each possible voxel size. The traversal algorithm would then
be recursive, examining the intersection of the ray with interior nodes to
determine which children to descend. In order to do this, the intersection of
the ray with the voxel edges would have to be recursively maintained.

Figure 3.10 depicts an interior node in a bintree, for which we know
these intersection points in terms of the parametric value t. Adding the
precomputed value for the distance to the splitting plane for this node size to
the value of the left edge, the value of t at the intersection with the splitting
plane can be determined. Determinating which child to examine or the order
of examination can now be accomplished with two comparisons.

3.3.2. Exit Point Computation

One major cost of traversal of a bintree or octree is the computation of
the exit point of the ray from the current leaf. A simple coding of this com­
putation was provided in Figure 2.6. As mentioned previously, the speed of
this computation can be enhanced by realizing that for a given ray, the ray
never exits the box by the lower bound of a coordinate if the direction vector
of the ray is positive in that coordinate, and similarly for the upper bound, if
the ray direction is negative in that coordinate. This means we need to test
the ray against only three of the six sides of a box, which can be determined
from examining the direction vector of the ray. Even more savings results if
we eliminate the intermediate calculation of the parameter t. With

61

i ..•* i ii ..••• i i
...-r ! i

• t = 3.4 + lookup \
t =' 3.4 ''

t = 5.6
Figure 3.10

Precom putation for Fast Traversal

precomputation, it is possible to compute the value of any coordinate of the
ray at a given value of another coordinate with one multiplication and one
addition. This means, for instance, that we can compute the y value of the
ray where it intersects the x face of the box (the edge perpendicular to the x
axis where the ray could possibly exit the box) with one multiplication and
one addition. By comparing this value of y with the y limits of the box and
repeating this for other coordinates, it can be determined from which face the
ray exits. Let us assume that the components of the ray direction are positive
and that we have precomputed the values,

^ x ,y > B x ,y > ^ x , z * B x ,z f iy jX > ^y^c » ^ y,z > ^y,z,^z^c’ ^ z ,y > ^ z ,y

where, for example, the x-value of the intersection of the ray with the plane
y=Y 1 is computed as

x = Y 1 + BXty

The pseudocode for determining which face is exited and the x,y ,z value of
the point of exit is given in Figure 3.11. Note that this procedure assumes
that the coordinates of the ray direction are all positive. Similar code is

required for the other cases of ray directions.
PROCEDURE RayBoxExitPoint(RayOrigin, RayDlrectlon. Box,

VAR Exit : Point; VAR leavesBy : FaceName)
CONST

Dimensions = 3;

VAR
tmin, tmax, tlow, thigh, tenter, texit : REAL;

BEGIN

Yx := Ay<x *BoxHighj + B y j ;
IF Yx < B o x Wgh y THEN (* does n o t leave by y face *)
Z z ,= Axz *BoxHigh z + Bxz,
IF Xz > BoxHighj T H E N (* leaves by x face *)

leavesBy := xFace ;
z i ■= Az<x *BoxHighyX + BZwX;

ELSE (* leaves by z face *)
leavesBy := zFace ;
Z z -= A y ,z * B 0 X High z + B y t I ',

ENDIF;
ELSE

Zz ,= AyiZ *BoxHjgh z + By j ;
IF Yz < BoxHigh>y THEN (* leaves by z face *)

leavesBy := zFace ;
,= Ax,* *BoxHigh z + Bx z ;

ELSE (* leaves by y face *)
leavesBy := yFace ;
Xy .= AZ y ^BOX/Jjgh y + Bx y

• AZ,y BOXffjĝ y + BZty ,
ENDIF;

ENDIF;

END RayBoxExit;
Figure 3.11.

63

This procedure takes on average two comparisons and 3— multiplications

and additions to determine the point of exit of the ray from the box and one
of the faces on which this point exists. This procedure does not add an offset
to the point to guarantee that it is within the next leaf, because the neighbour
links method does not require it. It could be added to the procedure at a cost
of two additional comparisons and one addition, which could then be used
with Glassner’s algorithm to speed it up.

A further improvement to the traversal algorithm is to reduce the number
of floating point operations even further. Consider Figure 3.12, which depicts
a set of two dimensional leaves and a ray passing through it. The ray is
tested against the indicated plane four times, once for each leaf with that
plane as a limit. These redundant computations can be reduced by keeping
track of flags to indicate whether the limit planes are the same as for the pre­
vious leaf, in conjunction with a recursive traversal like that of the ARTS
method. One flag per coordinate is required to indicate whether the intersec­
tion test of the corresponding bounding plane with the ray should be per­
formed. Each flag should be set after performing the intersection test and
reset whenever traversal from one leaf to the next leaf changes the
corresponding bounding plane.

The detection of this bounding plane change is simple. Assuming that
the ray has positive x direction, the flag for the x coordinate should be reset
whenever a downward traversal meets the left subnode of a node that is
divided along the x axis, and whenever later upward traversal reaches this
node again. This results in at most one ray-plane test per slicing plane, rather
than three per leaf. Experimental results indicate that this can reduce the
average number of ray-plane tests to two per leaf.

64

Figure 3.12.

Another method of speeding up the determination of the face exited also
requires some precomputation. By inspecting the entrance point of the ray
with a voxel, it is sometimes trivial to determine which face is exited. Con­
sider Figure 3.13. If the ray enters within the square region A, then it must
exit through the x face. If it enters below the dotted line, then it cannot exit
via the y face. Similarly for the dashed line and the z face. The values of
these cutoffs depend on the ray direction and the size of the voxels, and must
be precomputed for three sides of each different size voxel, for each ray.

Figure 3.13.

65

3.3.3. Multi-ray Traversal

A common method of improving the speed of highly repetitive operations
such as the traversal of the bintree or octree is to capitalize on coherence,
which is the similarity of an operation with previous operations. Ray-to-ray
coherence refers to the likelihood that the current ray being traced is similar
to the previous ray traced [Spee85]. Taking advantage of such coherence
requires us to be able to reuse some of the computation performed for the
previous ray so as to save computation time for the current ray. All the space
subdivision algorithms described so far do not exploit ray-to-ray coherence in
any way. Each ray is dealt with separately, generating a unique tree traver­
sal. It may be advantageous to deal with several rays during one tree traver­
sal, thereby dividing the traversal overhead over several rays.

One way to exploit ray-to-ray coherence is to trace several rays having a
common origin in one tree traversal. Consider Figure 3.14, which depicts
rays and bintree nodes in two dimensions for simplicity. The rays displayed
have the same origin, and intersect the large displayed box. The splitting
plane for this box is also shown. If the rays are organized by direction, it is
simple to determine the subsets A and B, which are the rays that intersect the
left subnode and the right subnode, respectively. For example, the subset A
is the set of rays which have slopes that are on the counterclockwise side of
point 1, which can be determined by inspecting the vector from the origin to
point 1. This process can be applied recursively to the left subnode, then the
right subnode, thereby traversing the tree with many rays. As the nodes
visited get smaller (deeper in the tree), the number of rays from the original
group intersecting the nodes decreases. When this number drops below some
threshold value, the rays are traced singly, in the conventional manner,
through the small nodes.

66

This method requires extra space for the rays being traced. However, if
a sufficient number of rays are used per tree traversal, the average overhead
per ray can be reduced. This method can be applied to all ray tracing algo­
rithms, because even the simplest of ray tracers has of the order of 100,000
rays originating from a single point, the eye. Additionally, distributed ray
tracing and other types of antialiasing often trace over 10 rays per pixel.

For this traversal algorithm to be faster than a conventional method,
there must be many sets of rays with identical origins; in ray tracing situa­
tions this condition is often satisfied. Even more improvement can be
achieved by modifying this multi-ray traversal algorithm to work with groups
of rays with origins that are not necessarily coincident, but close to each
other. This can be accomplished by first finding the bounding volume con­
taining the origins of the set of rays. The rays are still organized with respect
to slope, the only difference being the computation of the range of slopes

67

which intersect a given subnode.

In the previous method the slope of the lines from the subnode’s corners
to the common point of origin are found and used to determine the range of
valid slopes. In the revised method, the minimum and maximum slopes of
the lines from the subnode’s corners to each corner of the origin bounding
volume is found and used to determine the range of valid slopes. The previ­
ous method is equivalent to this revised method where the origin bounding
volume happens to be a point. Figure 3.15 depicts the two slopes defining the
range of rays which could possibly intersect the left subnode. Note that in the
revised algorithm, it is now possible that some rays are within the valid range
of slopes, yet do not intersect the box in question. The probability of these
false hits increases as the size of the origin bounding volume increases. So for
optimum efficiency, rays must be grouped so that there are enough rays to
realize a gain during traversal, but the origins must be close enough to con­
strain the number of false hits to a minimum.

Both of these traversal algorithms effectively provide parallel traversal of
rays through the tree at a cost of the order of a single ray traversal. A similar
parallel computation can be used to compute ray-bounding volume and ray-
polygon intersections, and perhaps ray intersections with other types of
objects.

There are other methods of image rendering similar to ray tracing, which
effectively trace volumes rather than rays. Amanatides [Aman84] traces
cones which approximately cover the area of the individual pixels, thus pro­
viding an antialiased image. Heckbert and Hanrahan [Heck84] sweep rec­
tangular beams through the scene to get a resolution-independent tiling of the
image. These techniques involve testing the scene for intersection with cones
and pyramids, respectively. Algorithms for ray-tracing bintrees and octrees
are easily extendible to handling cones or pyramids in place of rays, while still
allowing traversal in order of nearness to ray origin. In fact, the multi-ray

68

Figure 3.15

traversal algorithm mentioned above is very similar to sweeping a rectangular
beam through a scene, which is performed in Heckbert’s and Hanrahan’s
beam tracing.

3.3.4. Expanded Leaves

As a ray travels through leaves, it incurs a cost due to the ray exit point
computation and the determination of the next leaf. A very simple way of
speeding up this propagation of the ray through space is to expand the voxel
dimensions of leaves as much as possible. The path of slicing planes which
lead to a particular leaf strictly determines the space that the leaf represents.
However, if the voxel limits are explicitly stored within the leaf, they do not
necessarily have to correspond to the voxel limits implied by the slicing
planes. Under certain circumstances, the stored voxel limits can be expanded
to be larger than, yet still enclose, the implicit voxel. It will be demonstrated

69

that this can reduce the computation involved in the traversal, by enumerating
fewer leaves. As long as the expanded voxel totally encloses the original one,
and the extra volume added to the voxel encloses no objects, a traversal algo­
rithm such as that of Fujimoto et al. or Glassner can be used with almost no
modification.

As before, a given point maps, via the slicing planes, into one leaf. The
advantage of this approach arises from the fact that computing the ray exit
point from an expanded voxel may possibly give a point within a leaf that is a
few leaves farther along the ray, so it may take just one ray exit point compu­
tation and one traversal to the next leaf where previously it would have taken
several. Figure 3.16 illustrates this graphically, where Figure 3.16a represents
the standard voxel dimensions in a very simple scene subdivision. Figure
3.16b represents the same subdivision, but the voxel stored in the leaf node
containing the objects is expanded as shown. The implication in Figure 3.16b
is that if the ray intersects the original voxel and does not intersect the
objects, then the exit point of the expanded voxel is computed, traversing the
scene with two less leaf visits.

There is more than one possible expansion for a given leaf. The best one
should be selected, according to some criteria, such as largest surface area of
the expanded leaf, or largest sum of surface areas of leaves enclosed by the
added volume. The expanded leaf idea may be applied to empty leaves also,
assuming that empty leaves are explicitly stored. The notion of expanded
leaves may be used not only with the conventional algorithms, but also with
the neighbour links method, and any traversal algorithm which uses an exit
point computation.

Figure 3.17 depicts a part of the scene containing one object which
belongs in many leaves. With traditional methods the gain in tightly enclos­
ing the object (fewer intersection tests) is offset somewhat by the additional
leaves required (more leaves to traverse). However, by expanding the leaves

70

ray

Figure 3.16

containing the object to the leaf shown, the traversal cost is reduced signifi
cantly, while retaining the tight enclosure around the object.

71

Figure 3.17

Chapter 4
Im plem entation

4.1. Surface Area Metric Verification

As a preliminary implementation, the validity of the predictions of the
surface area metrics given in the previous chapter were tested. A set of 100
boxes with random sizes and positions were created, where each box was a
standard rectangular parallelpiped. 100,000 random rays were traced through
the bounding volume enclosing the boxes. These rays had origins outside the
bounding volume, and were directed towards the bounding volume. The
statistics recorded are presented in graphical form in Figure 4.1, where each
point represents the surface area of a box and the number of rays which inter­
sected the box. The number of rays intersecting a box is thus shown to be
directly proportional to its surface area,

number of rays intersecting box = surface area * 27.5,

std. dev. = 5.2 % correlation coef. = .995

This graph illustrates that the number of rays intersecting a box is propor­
tional to its surface area, assuming random rays. However, this does not
prove that the estimates of interior and leaf nodes intersected are correct,
because the search is truncated as soon as an intersection is found. The
number of object tests also cannot be assumed to be proven, because the esti­
mate is derived from an approximation of a possibly concave set of leaves by
a convex volume. To test the validity of these estimates, a further simulation
was performed. Random scenes of objects, and random bintrees were
created, and used to trace random rays as in the previous simulation. The
estimated numbers of interior nodes, leaves, and objects visited were

72

73

N
u
m

Figure 4.1

compared with the actual numbers from the ray tracing. Each scene con­
tained a random number of objects between 10 and 500, with random distri­
bution in size (described in a later section) from .01 to 1. The bintree created
for the scene contained a random number of nodes between 10 and 1000,
where nodes were subdivided in random order along a random axis at a ran­
dom position within the corresponding voxels. 529 random scenes were
created and 10000 rays were traced for each scene. Figures 4.2, 4.3, and 4.4
graphically depict the actual statistics versus the estimates, indicating the
accuracy of the estimates. The following are the resulting equations:

q.
«

74

number of interior nodes intersected: actual = estimated * .752

std. dev. = 12.7 % correlation coef. = .945

number of leaves intersected: actual = estimated * .831

std. dev. = 14.1 % correlation coef. = .900

number of object tests: actual = estimated * 1.03

std. dev. = 9.5 % correlation coef. = .985

A
c
t
u
a
1
I
n
t
e
r
i
o
r

N
0
d
e
s

1
n
t
e
r
s
e
c
t

Figure 4.2

75

Figure 4.3

The graphs show that in all cases the actual number is proportional to the
estimated number. In the case of the number of interior nodes and leaves
intersected, the estimate actually provides an upper bound rather than an
average case estimate. This is understandable, as the derivation of the esti­
mate assumes that the rays hit no objects. The constants of proportionality
may therefore be used in conjunction with the surface area metrics to give a
more accurate estimate of the average number of interior nodes and leaves
intersected. The estimate of the number of objects intersected was shown to
be quite accurate, with a constant of proportionality close to 1. One reason
that this estimate provided an average case estimate, rather than an upper
bound, is that there are too few objects in the scene. Truncating the search as
soon as an intersection was found probably did not save many intersection
tests because each ray may have intersected only zero or one objects. There­
fore the estimate provided an average-case estimate. With denser scenes, the

76

A
c
t
u
a
1

O
b
j
e
c
t
T
e
s
t
s

Figure 4.4

object intersection estimate should probably be scaled down in the same way
as the interior and leaf node estimates.

4.2. Construction Algorithms

Having verified the surface area metric as reasonably accurate, construc­
tion of space subdivision trees was investigated. Four new construction algo­
rithms, as well as Kaplan’s algorithm, were implemented for purposes of com­
parison and evaluation. All algorithms were implemented on bintrees for
simplicity and generality, but can easily be extended to octrees. The construc­
tion algorithms consist of two algorithms where the spatial median is chosen
as the slicing plane, two algorithms where the slicing plane can be in an arbi­
trary position, and Kaplan’s algorithm as a standard of comparison. These
algorithms are:

77

K Kaplan’s Algorithm — (zero degrees of freedom in the slicing plane
selection) — this is simply Kaplan’s algorithm with a threshold value of
one. Nodes are subdivided until they contain zero or one objects, in a
breadth-first order. The maximum height of the tree was set to 30, which
was felt to be large enough not to restrict the growth, yet provide a prac­
tical bound. This is roughly equivalent to the value of 10 used by King-
don [King86] as the maximum height of his octrees, because three levels
of a bintree correspond to one level of an octree.

AA Arbitrary Acyclic — (two degrees of freedom) — slicing planes can be
anywhere within the node, and a node may be divided along any of the
three axes. The optimal slicing plane is determined by sampling at nine
equally spaced intervals within the node, recording the maximum value of
the function given in the previous chapter. Nine is an arbitrary parame­
ter chosen so as to attempt to focus on the optimal plane, yet not incur
unreasonable amounts of computation. A node is subdivided along
whichever axis provides the greatest gain, and nodes are subdivided
according to highest gain.

AC Arbitrary Cyclic — (one degree of freedom) — same as Arbitrary Acy­
clic, except that the first level of subdivision always occurs along the x
axis, the second along the y axis, the third along the z axis, cycling
through the three axes.

SA Spatial Median Acyclic — (one degree of freedom) — same as Arbitrary
Acyclic, except that the spatial median is always chosen as slicing plane.

SC Spatial Median Cyclic — (zero degrees of freedom) — same as Arbitrary
Cyclic, except that the spatial median is always chosen as slicing plane.

These algorithms were encoded as simply as possible without any
attempts to optimize the code. It was felt that it was more important that the
code be correct, and our emphasis was verification, rather than efficiency.

78

Statistics on the trees were recorded at every 50 nodes during the construction
of the tree. The statistics include the number of interior nodes, the number
of empty leaves, the number of non-empty leaves (containing one or more
objects), the estimated number of leaves visited, estimated number of interior
nodes visited, and the estimated number of objects tested for intersection.

4.3. Scenes

The ultimate goal of the strategies for building the space subdivision
structures is to improve performance in actual ray tracing systems. The per­
formance should therefore be evaluated with scenes that represent a reason­
able sample of all scenes subjected to ray tracing. Kingdon [King86] uses a
set of seven general scene types for a similar data structure evaluation. These
scene types have associated parameters to control the number of objects and
distribution of object sizes and positions. One can vary the parameters in an
attempt to represent the range of typical object distributions within average
scenes. For the purposes of comparison and evaluation of bintree construc­
tion algorithms, Kingdon’s scene types are used, as well as similar selections
for the scene parameters. In order to reduce the amount of computation for
these tests, only five of Kingdon’s seven scene types were used. The two
types not used were less general, hierarchical object scenes.

The object distributions are based on three simple random number gen­
erators: i /3, which selects a random point within a unit sphere; U°, which
selects a random point on the unit sphere; and Ue, which returns the output
of U° scaled by a Gaussian distributed random number with a mean of 0 and
variance of 1. The five scene types are:

small spherical
a set of triangles whose first vertices are i /3 distributed in space and
whose other two vertices are .01*C/° distributed offsets from the first
point,

79

large spherical
a set of triangles whose first vertices are t/3 distributed in space and
whose other two vertices are .333*UQ distributed offsets from the first
point,

small Gaussian
a set of triangles whose first vertices are .333*Ue distributed in space and
whose other two vertices are .01*1/° distributed offsets from the first
point,

large Gaussian
a set of triangles whose first vertices are .333*Ue distributed in space and
whose other two vertices are .333*i/° distributed offsets from the first
point,

three random vertices
a set of triangles whose vertices are t/3 distributed in space, creating a set
of dense, interpenetrating triangles.

The small spherical and small Gaussian scenes contain triangles that are
roughly times the width of the scene, while the large spherical and large

Gaussian scenes contain triangles approximately -j- times the width of the
6

scene, attempting to simulate the limits of object sizes in typical scenes. The
Gaussian distribution provides a cluster of objects while the normal distribu­
tion provides more spread out objects. Six instances of each scene were used,
varying only in the number of objects comprising the scene. The numbers
used were 256, 512, 1024, 2048, 4096, 8192. Kingdon uses these numbers
plus two other smaller scene sizes (64 and 128). It was felt that the six
numbers used were sufficient to measure performance without requiring an
impractical amount of computer resources. The maximum number of nodes
was set according to the amount of time and memory required and range
from 2000 to 8000 nodes, depending on the scene type. Also, for some scene

80

types, only the first five scene sizes were used, to limit computer usage.

4.4. Neighbour Links

A neighbour links strategy was implemented, using the simple definition
of neighbours which gives exactly one neighbour per face, as opposed to the
complete neighbour links strategy. One instance of each of the five scene
types was used to build an arbitrary acyclic type bintree, with the neighbour
links for each leaf computed. All scenes had 1000 objects and the bintrees
constructed contained 1000 nodes. After building the bintrees, 10000 random
rays were traced and the number of parent-to-child and child-to-parent move­
ments were recorded, for each of the conventional traversal algorithms and
the neighbour links method. These numbers indicate the savings in traversal
cost by using the neighbour links strategy.

Chapter 5
Results

5.1. Construction Algorithms

Data from the construction simulations is included in graphical form in
the appendix. In summary, the estimated number of nodes and leaves visited
for a given scene were very similar over all five algorithms, as is evident from
examining the graphs. Overall, the arbitrary acyclic algorithm performed
slightly better than the rest, in terms of number of nodes and leaves visited.
However, the number of objects intersected varied widely over the different
construction algorithms. For this reason and because the object cost is typi­
cally higher than the other two costs, let us concentrate on the number of
objects intersected in order to evaluate the algorithms’ performance.

For the small spherical and small Gaussian scene types, the arbitrary acy­
clic algorithm performed the best, providing up to three orders of magnitude
reduction in the number of objects tested for intersection. For the large
spherical and large Gaussian scene types, the arbitrary acyclic algorithm was
also the best, but only up to one order of magnitude better. However, for the
scenes consisting of three random vertices, the Kaplan method performed
best. The general rule seems to be that the arbitrary acyclic algorithm per­
forms best for scenes with non-overlapping small objects, while Kaplan’s per­
forms best for denser scenes with interconnected objects.

The explanation for this behavior is that the arbitrary acyclic algorithm is
a greedy algorithm, governing the subdivision by only looking one step in
advance. If subdividing a node is not immediately advantageous, then it is
not subdivided, even if subjecting the node to two levels of subdivision would
be advantageous. Kaplan’s algorithm, by virtue of its breadth-first nature and

81

82

an inability to evaluate the benefit of subdividing a node, may subdivide a
node many times, resulting in a gain where the arbitrary acyclic algorithm
would not.

These observations indicate that a hybrid of the arbitrary acyclic and
Kaplan’s algorithms might provide optimum performance in all scene types.
A hybrid implementation was performed where the arbitrary acyclic algorithm
was applied to a node first to determine an optimum splitting plane. If it
does not find a speed gain above a certain threshold dependent upon the sur­
face area of the node, then the spatial median is chosen. The coordinate is
dependent on the level of the node, similar to Kaplan’s method except that
nodes are only subdivided with one level of subdivision at once (rather than
three levels). This forces the algorithm to assume that subdividing a node
results in a decrease in cost, even if the one-step lookahead indicates an
increase. Thus, a node which the original algorithm does not find advanta­
geous to subdivide may be subdivided by the hybrid algorithm, resulting in a
tree with a higher cost than if the node remained a leaf. The children of this
node may then be subdivided, possibly resulting in an overall decrease in the
cost of the tree. The above process is used, as in the other algorithms, only
to determine the splitting plane, splitting coordinate, and estimated gain, if it
were to be subdivided. The selection of the next node to subdivide is, as in
the arbitrary acyclic algorithm, the node which has the highest estimated gain.
However, when the hybrid algorithm resorts to selecting the spatial median,
the gain associated with this split is set at the threshold, rather than the actual
value, which would be lower. This hybrid algorithm was run on each of the
five scene types containing 1024 objects, except for the scene type containing
three random vertices, which had only 64 objects for efficiency. As the fol­
lowing graphs indicate, it performs better overall than any of the other algo­
rithms (it was outperformed slightly by the arbitrary acyclic algorithm in the
case of a large Gaussian scene). It is interesting to note that the portions of

83

the graphs pertaining to Kaplan’s algorithms often contain line segments and
abrubt changes of slope. These are due to the fact that after some point in
the construction of the tree, Kaplan’s algorithm essentially builds the tree
level by level. The line segment portions correspond to individual levels, and
the abrupt changes in slope correspond to the filling of a level.

/

'•0
*0

O

1
A

O'
B

84

N
u

J
e
c
t

T
e
s
t
s

p
e
r

R
a
y

io 1024 Small Spherical Objects

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Number of Leaves

Legend:
• • Arbitrary Acyclico o Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)
X X Hybrid Kaplan/Arbitrary Acyclic

85

N
u
m
b
e
r

o
£
O
b
j
e
c
t

T
e
s
t
s

p
e
r

R
a
y

Number of Leaves
Legend:

• • Arbitrary Acyclico o Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)
X X Hybrid Kaplan/Arbitrary Acyclic

• <
y O

86

N
u
m
b
e
r

o
f

J
e
c
t

T
e
s
t
s

p
e
r

R
a
y

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Number of Leaves

Legend:
• • Arbitrary Acyclico o Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)
X X Hybrid Kaplan/Arbitrary Acyclic

•
o

'
O

»■

>
o

»

t
o

a

*

B

87

N

u

J

e

c

t

T

e

s

t

s

p

e

r

R

a

y

• • A r b i t r a r y A c y c l i c

O O A r b i t r a r y C y c l i c

□ □ S p a t i a l M e d i a n A c y c l i c

■ ■ S p a t i a l M e d i a n C y c l i c

V V K a p l a n (S p a t i a l M e d i a n)

X X H y b r i d K a p l a n / A r b i t r a r y A c y c l i c

88

N

u

m

b

e

r

o
f
O
b

j

e

c

t

T

e

s

t

s

p
e

r

R

a

y

70

65 <>

60 -

55 -

50 -

45 -

40

35 -

30 -
(

25-i7

64 Three Random Vertices Objects

1000 1500 2000 2500 3000 3500 4000 4500
N u m b e r o f L e a v e s

• • A r b i t r a r y A c y c l i c

O O A r b i t r a r y C y c l i c

□ □ S p a t i a l M e d i a n A c y c l i c

■ ■ S p a t i a l M e d i a n C y c l i c

V V K a p l a n (S p a t i a l M e d i a n)

X X H y b r i d K a p l a n / A r b i t r a r y A c y c l i c

5000

89

At the end of each simulation, the total number of object instances
(number of objects stored at the leaves) were recorded. The arbitrary algo­
rithms produced near optimum numbers, that is, only 1 0 or 2 0 percent more
object instances than objects, while Kaplan’s and the other two spatial median
algorithms produced trees with up to ten times as many object instances as
objects. The reason for this is the implicit motivation to keep objects in as
few leaves as possible, provided by the cost function used in selecting the
splitting plane for arbitrary subdivision.

5.2. Neighbour Links

The following table summarizes the number of parent-to-child and child-
to-parent traversals recorded from the neighbour link simulation.

Up / Down Traversals, 1000 nodes

Scene Type Up Down Neighbours Down

1000 Small Spherical 36.35589981 36.38169861 9.951199532

1000 Large Spherical 15.85369968 20.09070015 8.987500191

1000 Small Gaussian 33.94269943 33.94810104 10.09840012

1000 Large Gaussian 24.50469971 25.91119957 8.954000473

64 3-Random Verts 15.17660046 19.25169945 9.043399811

Table 5.1.

If it is assumed that the cost of a single upward traversal is equivalent to
a single downward traversal, then these numbers show that the neighbour link
scheme decreases the traversal cost to between -7 - and -7 - of the cost of an7 4
ARTS-type traversal method.

90

5.3. Summary

It has been demonstrated that the cost of ray tracing space subdivision
trees can be represented by the number of interior nodes, leaves, and objects
visited per ray, and the respective costs of these visits. This thesis reports
new construction algorithms which represent considerable improvement over
conventional methods, in terms of reducing the number of nodes, leaves, and
objects visited by a ray. Similar improvements may be provided by using
arbitrarily oriented slicing planes (not just major planes) to add more freedom
to the subdivision process. The efficiency of traversal has been improved by
attacking its two main costs, the processing of interior nodes in bintrees and
octrees and the computation of the ray exit point. The neighbour link stra­
tegy introduced in this thesis significantly reduces the number of interior
nodes visited, while a new coding of the ray exit point computation that is
arithmetically less complex is provided. The efficiency of traversal may also
be improved by the multiple ray traversal scheme. Finally, the number of
leaves traversed is decreased further by allowing expanded leaves, which can
be employed in conjunction with any of the traversal schemes.

5.4. Suggested Further Work

Some of the ideas in this thesis have been implemented only to a limited
extent, while others have not been implemented at all. Further implementa­
tion is definitely required in order to evaluate and refine the suggestions. As
stated earlier there are some issues not dealt with in this thesis. The ideas
herein should be examined with respect to other areas such as higher-
dimensional data structures and/or dynamic data structures, and multi­
processor algorithms.

The construction algorithms advanced in this thesis, while providing
improvements, are very primitive. The basic problem with them is that they
choose the optimal slicing plane for each stage of subdivision, which is not

91

necessarily the optimal overall subdivision. In effect, the algorithms choose
local maxima, without using global information. Research should be applied
to improving the subdivision process by making the process less localized. A
simple way is to perform lookahead of several levels of subdivision per node,
as opposed to one. Other methods should also be investigated.

The new construction algorithms, as well as the conventional Kaplan
algorithm, perform badly as the objects become more densely distributed and
interpenetrating. Methods of selecting splitting planes for such situations
should be investigated. A lookahead of several levels of subdivision and vary­
ing the different slicing planes involved would, perhaps, be applicable to these
types of situations, although probably computationally expensive.

Since the concept of a hierarchical extents tree is simply the dual of space
subdivision, many of the ideas within this thesis can be applied to HE trees.
The multiple ray traversal scheme can be applied easily to HE trees. In fact,
tracing multiple rays through an HE tree would be less complex than for
space subdivision trees. There are also many possibilities for defining con­
struction algorithms based on the surface area metric. One heuristic for
selecting two bounding volumes to partition a set of objects would be to first
find the two objects of the set which imply a bounding volume with the largest
surface area. These two objects should not, therefore, belong to the same
bounding volume. They can be used as the starting point for the algorithm.
One by one, each of the remaining objects are added to one of the two sets.
The choice depends on which one results in the minimum sum of the surface
areas of the two bounding volumes surrounding the two sets. This can be
extended to any number of partitions. A partitioning algorithm of this sort
may be a useful basis for a construction algorithm for HE trees. In general,
the surface area metric is useful for constructing any sort of structure that is
to be used for ray tracing or for answering queries involving object-object
intersection tests.

92

Although this thesis has concentrated heavily on using octrees and bin-
trees for ray tracing, the space subdivision trees described may be useful for
other image rendering algorithms. As mentioned in Chapter 3, octrees and
bintrees may be used for cone tracing and beam tracing rendering algorithms.
As general structures for organizing multidimensional data, space subdivision
trees may be applied to many problems which involve searching in multidi­
mensional space.

93

References

[Ahuj84] Ahuja, N. and Nash, C., Octree Representations of Moving
Objects. Computer Vision, Graphics, and Image Processing, 26, 1984, pp.
207-216.

[Anam84] Anamatides, J., Ray Tracing with Cones, Computer Graphics,
18(3), July, 1984, pp. 129-135.

[Carl85] Carlbom, I., and Chakravarty, I., A Hierarchical Data Structure for
Representing the Spatial Decomposition of 3-D Objects, IEEE Computer
Graphics and Applications, 5(4), April, 1985, pp. 24-31..

[Cook84] Cook, R. L., Porter, T ., and Carpenter, L., Distributed Ray Trac­
ing, Proceedings of SIGGRAPH ’84, July, 1984, pp. 137-145.

[Dipp84] Dipp6 , M .A.Z., and Swensen, J., An Adaptive Subdivision Algo­
rithm and Parallel Architecture for Realistic Image Synthesis, Proceedings
of SIGGRAPH ’84, July, 1984, pp. 149-158.

[Dipp85] Dipp6 , M .A.Z., and Wold, E .H ., Antialiasing Through Stochastic
Sampling, Computer Graphics, 19(3), July, 1985, pp. 69-78.

[Doct81] Doctor, L., and Torborg, J., Display Techniques for Octree-
Encoded Objects, IEEE Computer Graphics and Applications, 1(3) July,
1981, pp. 29-38.

94

[Dyer82] Dyer, C.R., The Space Efficiency of Quadtrees, Computer Graphics
and Image Processing, 19(4), August, 1982, p. 335-348.

[Dube8 6] Dubetz, M.H., Ray Tracing Algorithms for Computer Graphics,
Ph.D. Thesis, University of Alberta, 1985.

[Fiel85] Field, D.E., Fast Hit Detection for Disjoint Rectangles, University of
Waterloo Research Report, December, 1985.

[Four82] Fournier, A ., Fussel, D., and Carpenter, L., Computer Rendering
of Stochastic Models, Communications of the ACM, 25(6), June, 1982, pp.
371-384.

[Fuch80] Fuchs, H ., Kedem, Z.M., and Naylor, B.F., On Visible Surface
Generation By A Priori Tree Structures, Proceedings of SIGGRAPH ’80,
July 14-18, 1980.

[Fuji8 6] Fujimoto, A ., Tanaka, T., and Iwata, K., ARTS: Accelerated
Ray-Tracing System, IEEE Computer Graphics and Applications, 4(10),
October, 1984, pp. 15-22.

[Glas84] Glassner, A.S., Space Subdivision for Fast Ray Tracing, IEEE Com­
puter Graphics and Applications, 4(10), October, 1984, pp. 15-22.

[Glas87a] Glassner, A.S., An Overview of Ray Tracing, SIGGRAPH 1987
Introduction to Ray Tracing Course Notes, July, 1987, pp. 1-20.

95

[Glas87b] Glassner, A.S., Surface Physics for Ray Tracing, SIGGRAPH 1987
Introduction to Ray Tracing Course Notes, July, 1987, pp. 1-26.

[Glas87c] Glassner, A.S., Spacetime Ray Tracing for Animation, SIGGRAPH
1987 Introduction to Ray Tracing Course Notes, July, 1987, pp. 1-17.

[Glas8 8] Glassner, A.S., Spacetime Ray Tracing for Animation, IEEE Com­
puter Graphics and Applications, March, 1988, pp. 60-70.

[Gold87] Goldsmith, J. and Salmon, J., Automatic Creation of Object
Hierarchies for Ray Tracing, IEEE Computer Graphics and Applications,
May, 1987, pp. 14-20.

[Hain87] Haines, E., Essential Ray Tracing Algorithms, SIGGRAPH 1987
Introduction to Ray Tracing Course Notes, July, 1987, 1-41.

[Hall83] Hall, R. A ., and Greenberg, D. P., A Testbed for Realistic Image
Synthesis, IEEE Computer Graphics and Applications, 3(8), November,
1983, pp. 10-20.

[Hanr87] Hanrahan, P., A Survey of Ray-Surface Intersection Algorithms,
SIGGRAPH 1987 Introduction to Ray Tracing Course Notes, July, 1987, pp.
1-29.

[Heck82] Heckbert, P.S., Color Image Quantization for Frame Buffer
Display, Proceedings of SIGGRAPH '82, July 26-30, 1982, pp. 297-307.

[Heck84] Heckbert, P.S., and Hanrahan, P., Beam Tracing Polygonal
Objects, Computer Graphics, 18(3), July, 1984, pp. 119-127.

96

[Jack80] Jackins, C. L., and Tanimoto, S. L., Oct-Trees and Their Use in
Representing Three-Dimensional Objects, Computer Graphics and Image
Processing, 14, 1980, pp. 249-270.

[Kapl85] Kaplan, M. R., The Uses of Spatial Coherence in Ray Tracing,
SIGGRAPH ’85 Course Notes 11, July 22-26, 1985.

[Kaji83] Kajiya, J. T., New Techniques for Ray Tracing Procedurally
Defined Objects, Computer Graphics, 17(3), July, 1983, pp. 91-102.

[Karl84] Karlsson, R. G., Algorithms in a Restricted Universe, University of
Waterloo Research Report, November, 1984.

[Kay8 6] Kay, T. L., and Kajiya, J. T., Ray Tracing Complex Scenes, Com­
puter Graphics, 20(4), August, 1986, pp. 269-277.

[King8 6] Kingdon, S. J., Speeding Up Ray-Scene Intersections, Master Thesis,
University of Waterloo, 1986.

[Lee85] Lee, M. E., Redner, R. A ., and Uselton, S. P., Statistically Optim­
ized Sampling for Distributed Ray Tracing, Computer Graphics, 19(3),
July, 1985, pp. 61-65.

[MacD8 6] MacDonald, J. D., Quadtrees in Computer Graphics, Bachelor
Thesis, St. Francis Xavier University, March, 1986.

[Nemo8 6] Nemoto, K., and Takao, O., An Adaptive Subdivision by Sliding
Boundary Surfaces for Fast Ray Tracing, Proceedings of Graphics Interface
’86, 1986, pp. 43-48.

97

[Rubi80] Rubin, S. M., and Whitted, T., A Three-Dimensional Representa­
tion for Fast Rendering of Complex Scenes, Computer Graphics, 14(3),
July, 1980, pp. 110-116.

[Same84] Samet, H., The Quadtree and Related Hierarchical Data Struc­
tures, Computing Surveys, 16(2), June, 1984, pp. 187-260.

[Spee85] Speer, L. R ., DeRose, T. D., and Barsky, B. A ., A Theoretical
and Empirical Analysis of Coherent Raytracing, Proceedings of Graphics
Interface '85, Montreal, Quebec, 1985, pp. 1-8.

[Spee87] Speer, L.R., A Survey of Algorithms for Fast Raytracing, SIG-
GRAPH 1987 Introduction to Ray Tracing Course Notes, July, 1987, 1-18.

[Ston75] Stone, L., Theory of Optimal Search, Academic Press, New York,
1975, pp. 27-28.

[Swee8 6] Sweeney, M .A.J., and Bartels, R .H ., Ray-Tracing Free-Form
B-Spline Surfaces, IEEE Computer Graphics and Applications, 6(2), Febru­
ary, 1986, pp. 41-49.

[Wegh84] Weghorst, H., Hooper, G., and Greenberg, D. P., Improved
Computational Methods for Ray Tracing, ACM Transactions on Graphics,
3(1), January, 1984, pp. 52-69.

[Wyvi8 6] Wyvill, G., Kunii, T.L., and Shirai, Y., Space Division for Ray
Tracing in CSG, IEEE Computer Graphics and Applications, 6(4), April,
1986, pp. 28-34.

98

[Whit80] Whitted, T., An Improved Illumination Model for Shaded Display,
Communications of the ACMy 23(6), June, 1980, 343-349.

Appendix A
Graphical Results of Construction Algorithms

Objects

The following are graphs of estimated number of object intersection tests
per ray traversal versus the number of leaves (empty plus non-empty). Only
the data for 2 sizes of each scene are presented, due to space considerations.
These scene sizes are 1024 objects and the largest number of objects run,
except in the TRV case where data for 64 and 1024 objects are presented.
The graphs of these scene sizes are representative of the other sizes as well.
The following are for scene size 1024.

99

• <
rO

**'

o
-i

«
o*

B

100

N

u

J

e

c

t

T

e

s

t

s

p
e

r

R
a
y

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
N u m b e r o f L e a v e s

Legend:

• • A r b i t r a r y A c y c l i c

O O A r b i t r a r y C y c l i c

□ □ S p a t i a l M e d i a n A c y c l i c

■ ■ S p a t i a l M e d i a n C y c l i c

V V K a p l a n (S p a t i a l M e d i a n)

101

N

u

m

b

e

r

o

f

O
b

j

e

c
t

T

e

s

t
s

P

e

r

R

a

y

1024 Large Spherical Objects

500

L e g e n d :

1000 1500 2000 2500 3000 3500
N u m b e r o f L e a v e s

4000 4500

• • A r b i t r a r y A c y c l i c

O O A r b i t r a r y C y c l i c

□ □ S p a t i a l M e d i a n A c y c l i c

■ ■ S p a t i a l M e d i a n C y c l i c

V V K a p l a n (S p a t i a l M e d i a n)

5000

• e
r o

102

N

u
m
b

e

r

o

f

J

e

c

t

T

e

s

t

s

p
e

r

R

a
y

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
N u m b e r o f L e a v e s •

Legend:

• • A r b i t r a r y A c y c l i c

O O A r b i t r a r y C y c l i c

□ □ S p a t i a l M e d i a n A c y c l i c

■ ■ S p a t i a l M e d i a n C y c l i c

V V K a p l a n (S p a t i a l M e d i a n)

<T
B

103

N

u

e

r

o
f

O
b

j

e

c

t

T

e

s

t

s

p

e

r

R

a

y

• • A r b i t r a r y A c y c l i c

O O A r b i t r a r y C y c l i c

□ □ S p a t i a l M e d i a n A c y c l i c

■ ■ S p a t i a l M e d i a n C y c l i c

V V K a p l a n (S p a t i a l M e d i a n)

•
(T

 O

►»
>

O

>1

«

IT
 3

104

N

u

J

e

c

t

T

e

s

t

s

p
e

r

R

a

y

1100

1000

900 -

800

700

600 -

500 -

400 -

300 -

200 -

100 -

1024 Three Random Vertices Objects

vvwwvww w w v WWW WW
W W v w V W W V

0

L e g e n d :

— i--- 1—

500 1000
N u m b e r o f L e a v e s

1500

• • A r b i t r a r y A c y c l i c

O O A r b i t r a r y C y c l i c

□ □ S p a t i a l M e d i a n A c y c l i c

■ ■ S p a t i a l M e d i a n C y c l i c

V V K a p l a n (S p a t i a l M e d i a n)

105

Leaves
The following are the analogous graphs for number of leaves intersected

per ray.

a
m

106

N

u

m
b

e

r

0
f

L

e

a

v

e

s

1
n

t

e

r

s

e

c

t

P

e

r

R
a
y

1 i)

0 T-------- 1-------- 1-------- 1-------- 1-------- 1-------- 1-------- 1-------- 1-------- 1-------- 1---------1-------- 1-------- 1-------- 1-------- 1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
N u m b e r o f L e a v e s

L e g e n d :

• • A r b i t r a r y A c y c l i co O A r b i t r a r y C y c l i c

□ □ S p a t i a l M e d i a n A c y c l i c

■ ■ S p a t i a l M e d i a n C y c l i c

V V K a p l a n (S p a t i a l M e d i a n)

CL
 »

107

N
u
m
b
e
r

0
f
L
e
a
v
e
s

1
n
t
e
r
s
e
c
t

P
e
r

R
a
y

1 5 1

14 -

13 -

12 -

11 -

10 -

9 -

8 -

7 -

6 -

5 -

4 -
9

3
7

2 -

1 a

o - -

1024 Large Spherical Objects

T T

500

Legend:

1000 1500 2000 2500 3000 3500 4000 4500
Number of Leaves

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

—I
5000

Q.
a

108

N
u
m
b
e
r

0
f

L
e
a
v
e
s

1
n
t
e
r
s
e
c
t

P
e
r

R
a
y

10 1024 Small Gaussian Objects

9

8

7

6

5

4 I

3

2 -

1

0 1----- 1----- 1----- 1-----1----- 1----- 1----- 1----- 1----- 1----- 1----- 1----- 1----- 1----- 1----- 1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Number of Leaves

Legend:
• • Arbitrary Acyclic
o O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

tt
ft

«
-»

ft
ft

w
>

>
if

t*
-*

3
i-

*

«>

ft

<

OJ

ft

t-
*

►«
>

O

«i

ft

O
' B

109

N
u

P
e
r

R
a
y

Legend:
Number of Leaves

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

2500

o
.<

t'
-»

n
n

w
>

"
n

n
r-

»
3

i—
i

w

a

<

p>

n

f
1

m
o

^

 o

cr
 0

110

10 1024 Three Random Vertices Objects

N
u 9 -

8 -

,xPxP
xPxPxP*,XPS

xPs

7^ 7V̂ XPXp'C7VV

7 -

6 -

5 -
<3 - •

9

v o0 q 0 OOOOOOOOOOOOOOOD

g030 C 0

4 -

• •

3 -

©•

<5
X7

P 2 -
e
r

R h i

0

Legend:

500 1000
Number of Leaves

• • Arbitrary Acyclico o Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

— i—

1500

I l l

Nodes

The following are the analogous graphs for number of interior nodes
intersected.

1 12

N
u
m
b
e
r

0
f

1
n
t
e
r
i
o
r

N
0
d
e
s

1
n
t
e
r
s
e
c
t
e
d

P
e
r

R
a
y

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Number of Leaves •

Legend:

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

113

1024 Large Spherical Objects

500 1000 1500

Legend:

2000 2500 3000
Number of Leaves

3500 4000 4500
—I
5000

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

Q.
<*

114

a
y 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Number of Leaves
Legend:

• • Arbitrary Acyclic
o O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

V)
A

(1
0

115

N
u
m
b
e
r

0
f

1
n
t
e
r
i
o
r

N

P
e
r

R
a
y

32 -,
31 -
30 -
29 -
28 -
27 -
26 -
25 -
24 -
23 -
22 -
21 -
20 -
19 -
18 -
17 -
16 -
15 -
14 -
13 -
12 -
11 -
10 -
9 -
8 -
7
6 -
5 -
4 -
3 -
2 -
1 -
0

1024 Large Gaussian Objects

<2
□

-5

«-
500 1000 1500

Number of Leaves
2000

Legend:
• • Arbitrary Acyclico O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

—i
2500

116

N
u
m
b
e
r

0
f

1
n
t
e
r
i
o
r

N
0
d
e
s

1
n
t
e
r
s
e
c
t
e
d

P
e
r

R
a
y

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4 -
3 -
2 -

1 -

1024 Three Random Vertices Objects

7^ ^7&&
7 ^ '

7 ^

7^&
7 ^

vV ^ S & 'o o o o o o o o o o o ®
1̂^

• •'

G5
P 7V

9

%

—I—
5000

Legend:

1000
Number of Leave*

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ o Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

-v

— i—

1500

117

Large Scenes

The following are for the largest scene size used for each scene, except
for the TRY case, for which the graph is for 64 objects.

Objects

• <
r O

118

N
u
m
b
e
r

o
f

J
e
c
t

T
e
s
t
s

p
e
r

R
a
y

8192 Small Spherical Objects

500

Legend:

1000 1500 2000 2500 3000
Number of Leaves

3500 4000 4500

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

—i
5000

'• <
? o

119

N
u
m
b
e
r

o
f

J
e
c
t

T
e
s
t
s

p
e
r

R
a
y

• • Arbitrary Acyclic
O O Arbitrary Cyclic
o □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

• <
r O

120

N
u
m
b
e
r

o
f

J
e
c
t

T
e
s
t
s

p
e
r

R
a
y

Number of Leaves
Legend:

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
y v Kaplan (Spatial Median)

• o
*0

o

-I
«

o*
B

121

N
u

J
e
c
t

T
e
s
t
s

p
e
r

R
a
y

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

• o
* O

«•

o
-i

n
o'

 B

122

N
u

J
e
c
t

T
e
s
t
s

p
e
r

R
a
y

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

123

Leaves

The following are the analogous graphs for number of leaves intersected
per ray.

»
#<

 »
 (i

 r

i-h
o

►
irt

o‘
0

124

N
u

P
e
r

R
a
y

8192 Small Spherical Objects

Legend:

T------ 1-------1-------1-------1-------1-------1------ r
500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Leaves

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

5000

o.
o

125

N
u
m
b
e
r

0
f

L
e
a
v
e
s

1
n
t
e
r
s
e
c
t

P
e
r

R
a
y

3 -9

2 -

1

0 T
500

Legend:

1000 1500 2000
Number of Leaves

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

2500

Q.
A

126

N
u
m
b
e
r

0
f

L
e
a
v
e
s

1
n
t
e
r
s
e
c
t

P
e
r

R
a
y

8192 Small Gaussian Objects

l i >

Legend:

—i------ 1------- 1------ 1-------1-------1-------1-------1-------1------ 1—
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Leaves

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

—i
5500

a
n

127

N
u
m
b
e
r

0
f

L
e
a
v
e
s

1
n
t
e
r
s
e
c
t

P
e
r

R
a
y

10 -, 8192 Large Gaussian Objects

9 -

8 -

7 -

6 -

5 -

4 -

2 -

1 i)

— i--------------------------------- 1—

1000 1500
Number of Leaves

I
500 2000

Legend:

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

2500

a
 a

128

13 64 Three Random Vertices Objects

R
a
y

i a

0 500

Legend:

—i------- 1------- 1------- 1------- 1------- 1------- 1------- 1—
1000 1500 2000 2500 3000 3500 4000 4500

Number of Leaves

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

5000

129

Nodes

The following are the analogous graphs for number of interior nodes
intersected.

«>
a

a
 o

 Z

-i
O

"“
-i-

tf
t'

»D
i-

H

i-»
 o

•i

ft
o'

B

8192 Small Spherical Objects

130

N
u 60

55

50

45

40

35

30

25

20

15

P
e
r

R
a
y

10 - 1

5 -

0 # -------1------- 1------- 1------- 1------- 1------- 1------- 1------- i-------1—
500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Leaves
Legend: •

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

—i
5000

Q
.

n
'*

n
n

<
n

>
i

O
«

-
»

9
M

v>

n
o.

 o
 Z

,

131

p
e
r

R
a
y

5
5 -

0 ■ » T
500

Legend:

1000 1500 2000
Number of Leaves

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

2500

Q
. A

132

N
u
m
b
e
r

0
f

1
n
t
e
r
i
o
r

N
0
d
e
s

1
n
t
e
r
s
e
c
t

P
e
r

R
a
y

0 « ------- r-
500

Legend:

—i-------1-------1-------1-------1-------1-------1-------1-------1—
1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Leaves

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

5500

CL (ft
133

N
u
m
b
e
r

0
f

1
n
t
e
r
i
o
r

N
0
d
e
s

1
n
t
e
r
s
e
c
t

P
e
r

R
a
y

5 -

500

Legend:

1000 1500
Number of Leaves

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

— i—

2000
—i
2500

a
.
A
«
r
>
A
<
/
>
«
l
A
-
»
3
»
N

ifl
 (
l
Q.
 O

 ^

134

p
e
r

R
a
y

3
5 -

0 w ------1----------- 1---------1---------1---------1---------1---------1---------1---------1—
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Leaves
Legend: •

• • Arbitrary Acyclic
O O Arbitrary Cyclic
□ □ Spatial Median Acyclic
■ ■ Spatial Median Cyclic
V V Kaplan (Spatial Median)

—i
5000

Appendix B
Varying the Num ber of Objects

In order to get a grasp of how the number of objects affects performance,
the following plots depict the number of object tests per ray, as a function of
the number of objects comprising the scene. All graphs are for trees with
1 0 0 0 leaves (empty plus non-empty), except for the three random vertices
scene type, which is graphed at 500 leaves.

135

• e
r O

136

N
u
m
b
e
r

o
f

J
e
c
t

I
n
t
e
r
s
e
c
t
i
o
n

T
e
s
t
s

p
e
r

R
a
y 0 500 10001500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Legend:
Number of Objects

•—
o

— •
o

n n
■ ■

—

Arbitrary Acyclic
Arbitrary Cyclic
Spatial Median Acyclic
Spatial Median Cyclic
Kaplan (Spatial Median)

Q
,c « h

o •*«
0-0"

137

N
u

J
e
c
t

I
n
t
e
r
s
e
c
t
i
o
n

T
e
s
t
s

p
e
r

R
a
y

• -------• Arbitrary Acyclic
Q----- © Arbitrary Cyclic
□-------□ Spatial Median Acyclic
■-------■ Spatial Median Cyclic

------v Kaplan (Spatial Median)

'• O
' O

138

N
u
m
b
e
r

o
f

J
e
c
t

I
n
t
e
r
s
e
c
t
i
o
n

T
e
s
t
s

p
e
r

R
a
y

• ------- • Arbitrary Acyclic
G----- © Arbitrary Cyclic
□------- □ Spatial Median Acyclic
■------- ■ Spatial Median Cyclic

------v Kaplan (Spatial Median)

• o
-O

139

N
u
m
b
e
r

o
f

J
e
c
t

I
n
t
e
r
s
e
c
t
i
o
n

T
e
s
t
s

p
e
r

R
a
y

•—--- • Arbitrary Acyclic
G——G Arbitrary Cyclic
□—— □ Spatial Median Acyclic
■---__■ Spatial Median Cyclic

—^ Kaplan (Spatial Median)

• 0
*0

”*

o
-i

»
o*

B
e

140

N

J
e
c
t

I
n
t
e
r
s
e
c
t
i
o
n

T
e
s
t
s

p
e
r

R
a
y

• -------• Arbitrary Acyclic
Q----- 0 Arbitrary Cyclic
□-------□ Spatial Median Acyclic
■-------■ Spatial Median Cyclic
V—— V Kaplan (Spatial Median)

141

Large Trees

The following are graphs of 4000 leaves (empty plus non-empty). The
three random vertices scene type does not have any data for 4000 leaves, and
hence has no graph.

•
CT

 O

142

N
u
m
b
e
r

o
f

J
e
c
t

I
n
t
e
r
s
e
c
t
i
o
n

T
e
s
t
s

p
e
r

R
a
y 0 500 100015002000 25003000 35004000 4500 50005500 6000 6500 70007500 8000

Legend:
Number of Objects

•—

D
— •

r\
D n
■ ■
v — — V

Arbitrary Acyclic
Arbitrary Cyclic
Spatial Median Acyclic
Spatial Median Cyclic
Kaplan (Spatial Median)

■(
TO

143

N
u
m
b
e
r

o
f

J
e
c
t

I
n
t
e
r
s
e
c
t
i
o
n

T
e
s
t
s

p
e
r

R
a
y

•——• Arbitrary Acyclic
G——© Arbitrary Cyclic
□——□ Spatial Median Acyclic
■——■ Spatial Median Cyclic
v — —V Kaplan (Spatial Median)

o
■

144

N
u
m
b
e
r

o
f

J
e
c
t

I
n
t
e
r
s
e
c
t
i
o
n

T
e
s
t
s

p
e
r

R
a
y 0 500 1000150020002500300035004000450050005500600065007000750080008500

Legend:
Number of Objects

•— — m

p KJ
n

■ ■
V — — v

Arbitrary Acyclic
Arbitrary Cyclic
Spatial Median Acyclic
Spatial Median Cyclic
Kaplan (Spatial Median)

O X» •

145

N
u
m
b
e
r

o
f

i
e
c
t

I
n
t
e
r
s
e
c
t
i
o
n

T
e
s
t
s

p
e
r

R
a
y

• —— • Arbitrary Acyclic
G——0 Arbitrary Cyclic
□——□ Spatial Median Acyclic
■——■ Spatial Median Cyclic
v ——V Kaplan (Spatial Median)

