
Pascal DNI
A Program for Shading Molecular Models

By

Harry Yuen

pr
An essay

esented to the University of Wat
in partial fulfillment of the
requirements for the degree o

Masters of Mathematics
in

Computer Science

erloo
f

Waterloo, Ontario, 1980

The University of Waterloo requires the signatures of all
persons using or photocopying this essay. Please sign
below, and give address and date.

ACKNOWLEDGEMENTS

I wish to express my gratitude to my supervisor,
Professor Kellogg S. Booth, for suggesting the topic of this
essay and for providing guidance and constructive criticism
throughout its preparation.

I would also like to thank Alex White for his patience
and assistance afforded me with work done using the Unix
operating system.

Finally, I thank Martin Tuori of the Defense and
Civilian Institute for Environmental Medicine at Downsview,
Ontario for the use of the Dicomed D-48 color film recorder
and photographic processing facilities.

PASCAL DNI
A PROGRAM FOR SHADING MOLECULAR MODELS

Abstract - DNI is the post-processor for a system which
renders the visible parts of synthetic molecular models in
realistic color. The ATOMLLL program produces input to DNI
in the form of parts of atoms and bonds ready for color
shading and highlights. This essay describes the function
of DNI, the conversion of DNI from Fortran to Pascal, some
of the problems encountered during the conversion and some
suggestions for possible improvements to the DNI code.

1.0 INTRODUCTION

The ATOMS program, written by Ken Knowlton and Lorinda
Cherry of Bell Telephone Laboratory, produces a list of the
visible pieces of atoms (with or without joining bonds) from
a description of the X, Y and Z coordinates of the spheres
and the atom pairs joined by bonds. The Lawrence Livermore
Laboratory version of this program (ATOMLLL) was modified by
Steve Levine and Nelson Max. Max's version added the color
shading and highlights to the pictures, implemented in the
current DNI program. This essay describes DNI in detail and
outlines the conversion effort from Fortran into Pascal. A

1

2

brief discussion of the Lawrence Livermore system contrasted
with the new system then follows.

Input to ATOMLLL consists of center coordinates for
atoms, their radii, colors, and bond connections. The
output is a binary description of the atoms and bonds after
they have been decomposed into "trapezoids" which describe
only the visible parts of the picture.

At Lawrence Livermore, DNI reads the binary tape on a
Varian V-75 minicomputer and drives an attached Dicomed D-48
color film recorder to produce the molecular scenes. The
new version of DNI at Waterloo currently produces an ASCII
file of Dicomed codes which are then processed by a Unix
filter (written in C) to produce 16-bit binary codes. These
are fed offline to a Dicomed film recorder. This procedure
is somewhat awkward. However, the primary consideration was
portability instead of efficiency. DNI runs on Waterloo's
Honeywell 66/60 and the only accessible Dicomed is connected
to a PDP 11/34 running Unix; portability is a necessity.

It is expected that DNI will soon run on a PDP-11 to
produce the 16-bit binary codes directly.

3

2.0 THE REVISION OF DNI

2.1 Objectives of the Revision

The main reason for restructuring DNI was to make it
more understandable and thus easier to modify and maintain.
Changes that were made to the code include

1) removal of GOTO statements and replacement with more
disciplined constructs,
2) declaration of common blocks as record structures to
show the specific lexical scope of different variables,
3) renaming of most variables to give them mnemonic
significance,
4) splitting of large subprograms into smaller, more
manageable procedures,
5) replacing "magic numbers" with Pascal defined
constants to provide flexibility and increase
understandability,
6) the addition of a large number of comments to
explain what the code is doing, and
7) the introduction of two debugging levels which
produce program trace information on an internally
defined file.

2.2 Approach to the Revision
The conversion of DNI from Fortran to Pascal was done

in an orderly fashion. Initially, a data dictionary was
developed from the variables in the Fortran version of the

4

program. These were renamed where necessary to add meaning
to the values used. The next step involved reorganizing the
Fortran common blocks into Pascal record structures. At the
same time, variables which logically did not belong in their
group were reclassified. This lead to the analysis of the
Fortran GOTO structures and their dissolution, followed by
construction of more fluid Pascal code. From this point,
the Fortran code no longer contributed any significant
information and the general techniques of program debugging
were applied to produce a working version of DNI.

3.0 DOCUMENTATION FOR DNI

3.1 The ATOMLLL Interface
There are several restrictions which must be respected

in DNI because it is the post-processor for the ATOMLLL
program. The main problem is that ATOMLLL is written in
Fortran and thus the output it produces is tailored for
Fortran. Primarily, this means that instead of a
"trapezoid" description appearing as one contiguous 11
element record (which will be described more fully later) ,
the first elements for each of the first 200 records appear,
then, the second elements for the first 200 records appear,
and so on for each of the eleven sets of elements. The
number 200 is a buffer size chosen for the Lawrence
Livermore Laboratory environment. This presents a minor
problem in the Pascal program. Because a "trapezoid" is

5

described by 11 parameters, 11 is a logical record size to
select. Due to this decision, the routine READ_BUFFER must
cross record boundaries to obtain the required input. This
is clearly inefficient, but can only be resolved if the
output format of ATOMLLL is changed; the buffer size of 200
has been retained in the current Pascal program, although it
has been set up as a CONST value and is very easy to change.
The above concessions have been made for the data passed by
ATOMLLL, though this is not an elegant solution and should
eventually be changed, preferably by rewriting ATOMLLL in
Pascal.

Another important consequence of the input restriction
pertains to the order in which the data is processed. At
present, the first pass of DNI renders in color all of the
200 records (or a complete frame, whichever comes first)
then recomputes the exposure codes for the highlights. In
the current implementation the computation time is not a
bottleneck because it is done offline, but if DNI is to be
run on a minicomputer coupled directly to the film recorder,
this could become critical. A proposed solution for this
problem would be to maintain a vector buffer which holds all
the exposure codes for the vector being processed. Thus,
the algorithm would be modified to perform the color shading
and store copies of the computed exposure codes after
sending them to the film recorder. Next, the neutral filter
would be selected and then the stored group of exposure

6

codes would be sent to the film recorder. Clearly, the most
important point to consider before introducing this change
is the question of how large is the delay time changing the
color filter as opposed to the recomputation of exposure
codes for a vector.

A secondary consideration is the delay in recomputing
the exposure codes, which can cause phosphor burns unless
some form of buffering is done to maintain a smooth flow of
data to the film recorder. Alternatively, if the cost of
changing the filter is too high for a vector, it could be
done for a "trapezoid". This may create a problem with
respect to the number of exposure codes which must be
stored. In any case, since the timing information is not
available, implementation and comparison of these various
methods are required to make a valid decision which may
result in a hybrid of the two solutions suggested above.

ATOMLLL decomposes the atoms and bonds into visible
regions called "trapezoids". In general, a trapezoid
consists of two vertical sides and two circular arcs, as in
Figure 1. The two arcs may be either convex up (e.g. top
arc of Figure 1), convex down, or the degenerate case of a
straight line. Each sphere representing an atom is
initially decomposed into two trapezoids, as in Figure 2.
This is done to satisfy the restriction placed on arcs that
they must be either non-increasing or non-decreasing in the
Y direction. Note that initially one of the vertical sides

7

is always degenerate for a trapezoid of a full sphere. The
addition of other spheres or bonds will cause more
trapezoids to be produced. For more details on trapezoids
and the hidden surface algorithm which computes them, see
references (2) and (3).

YTleft

YBleft

Figure 1 Figure 2

There are five different types of input records. These
are the sphere, cylinder, trapezoid, end of frame, and end
of job records. Each of these is introduced by a negative
value in the ATOM_BOND_N0 field. A complete description of
individual records follows below.

The sphere record contains four pieces of information
which describe a sphere and are used for shading purposes.
In the PROCESS_SPHERE procedure, NEW_COLOR receives the
color of the sphere from the input record and SPHERE_XCENT,
SPHERE_YCENT, and SPHERE_RADIUS are loaded with their
respective values.

* Figures 1 and 2 appear originally in reference (3)

8

The next record type is a bond. When a bond goes
through the perspective transformation, it becomes a
truncated cone. Information about this "cone" can be
derived by describing the top and bottom edges and the
center line which bisects them. The data given in the
record consists of three groups of 3 numbers which come
after the ATOM_BOND_N0. For each group, if the first number
is a 1, the next number is (2 to the power 15) - 1 times the
slope, and the third number is the normalized Y intercept.
If the first number is a 2, the reciprocal slope has been
supplied, and the X intercept follows. The last entry in
the 11 element record contains the highlight intensity of
the bond, which is dependent on the angle between the axis
of the cylinder and the light source.

There are eleven numbers which are required to describe
a trapezoid. The names of these elements are given as they
appear in the DNI program. The first parameter is the
ATOM_BOND_N0. This integer describes the sphere or bond to
which the trapezoid belongs. The next two parameters are
TYPE_TOP_ARC and TYPE_BOT_ARC. Both of these integers
describe the type of the top and bottom arcs. The arcs can
be one of the following:

1) convex downward,'
2) convex upward,
3) straight, or

9

4) a special value to keep some of the other numbers in
range after real values have been normalized into
integers.

The values for XLEFT and XRIGHT are shown in Figure 1. They
are the extreme values in the X direction. The next three
values are TOP_ARC_XCENT, TOP_ARC_YCENT, and TOP_ARC_RADIUS.
These numbers represent a center and radius which sweep out
the top arc between the values of YTleft and YTright (as in
Figure 1). Similarly, the last three numbers BOT_ARC_XCENT,
BOT_ARC_YCENT, and BOT_ARC_RADIUS perform identically for
the bottom arc.

The last two types of records are the end of frame and
end of job indicators. The only relevant data on these
records is the ATOM_BOND_N0 which describes the record type.

The normalization process mentioned above applies to
the last eight elements of each record which are actually
real values in ATOMLLL, but have been converted to integers
for compatibility with 16-bit minicomputers such as the
PDP-11 and Varian V-75. If the real values are forced into
the range -2 to 2, we can multiple by a factor of 16384 (2
to the power 14) and make them directly compatible as
Dicomed vector screen coordinates. The original reason for
this conversion was that at Lawrence Livermore, the Varian
V-75 minicomputer does not have floating point hardware and
converting to a floating point representation would be
awkwa rd.

10

3.2 Internal Operation of DNI
All of the procedures of which DNI consists will be

discussed in the following section. The first of these is
the main program.

The main program provides the control structure for
processing the input file received from ATOMLLL. It begins
by performing some initialization functions both for
internally defined variables and user defined input
parameters. Following this, it consists of three major
nested while loops. The outer loop simply controls reading
of input buffer information. The next inner loop allows for
the two passes through the input data. These are the
coloring phase and the highlighting phase. Finally, the
innermost loop determines the type of each input record and
calls an appropriate procedure to do the required
processing. A trace of what types of input records are
being processed will be printed on the user's default output
device while the trapezoids are being processed.
Unfortunately, because of Pascal's buffered output, long
periods may occur between interactive responses on a
timeshared system.

Some of the initialization routines which are called
are OPEN_FILES, GET_OPTlONS, INITIALIZE, READ_BUFFER, and
SET_TABLE.

The routine OPEN_FILES provides the interface to the
file system by opening the files for I/O processing.

11

The procedure GET_OPTIONS requests the necessary input
parameters from the user. These options include

1) waiting between finished frames for the operator to
input a signal to start the next frame when special
handling is required between frames,
2) a double film advance between frames to allow for
spacing so film can be cut to mount as 35mm slides,
3) a debugging option which produces a procedure
execution trace or a complete procedure, and variable
dump trace, and
4) a request for the resolution: 4096 X 4096,
2048 X 2048, or 1024 X 1024.
INITIALIZE loads various constants such as frame

counters, pixel sizes for point and vector calculations,
screen coordinates, color tables, and several others. It
also sends out Dicomed codes to ready the film recorder for
the first frame.

The READ_BUFFER routine reads in a block of 200 (in
general bufsize) input records when required.

The SET_TABLE procedure loads values into the color
look-up tables for the Dicomed film recorder. Initially, it
reads a set of measured film densities and computes 2048
exposure codes, one set of 256 for each of the eight
filters: black and white, red, green, yellow, blue,
magenta, cyan, and neutral.

12

As their
procedures cover
PROCESS_FRAME,
PROCESS TRAPEZOID

names suggest, the next group of four
a major part of the processing. These are
PROCESS_SPHERE, PROCESS_CYLINDER, and
. Each will be described in the following

paragraphs.
The PROC ESS_FRAME procedure is invoked for post­

processing after a frame is finished. It sends a frame
advance command to the film recorder. Then, if the wait
mode has been selected by the user, it waits until a signal
to continue is entered by the operator. The film recorder
is then initialized for the next frame.

The PROCESS SPHERE routine changes the color filter, if
necessary, to begin the trapezoid for a new sphere. Next,
it obtains some information about the sphere which will be
pertinent to processing the trapezoids which make up the
sphere. Several constants used in the differencing scheme
for computing exposure codes are calculated, completing the
procedure.

PROCESS_CYLINDER performs similar computations for a
bond record. For each of the three groups of numbers
appearing after ATOM_BOND_NO (i.e. one group for each of top
line, bisecting line, and bottom line), the type of the line
is determined and then the slope for the line (the second
entry), and the intercept value (the third entry) are

13

computed. The eleventh entry is used as a highlight
intensity for the bond, to compute initial values for the
differencing scheme.

The procedure PROCESS_TRAPEZOID is the major processor;
it handles the majority of the records. This routine has
been broken up into several smaller pieces. Thus,
PROCESS_TRAPEZOID computes some radius and slope information
(depending on the types of the lines), the number of scan
lines in the Y direction, and then calls the routine
SHADING_C ONTRO L.

SHADING_CONTROL is one large loop which moves across
the trapezoid in horizontal (X) increments generating
vertical (Y) scan lines. It computes a maximum and a
minimum Y value for the vertical scan line and the number of
pixels on the line. Then, if this trapezoid belongs to a
sphere, the QUAD routine can be called directly to shade the
entire region. However, if this trapezoid belongs to a
bond, the values already computed may be of no use at all
and the procedure SHADE_CYLINDER is called to make further
decisions on the required shading.

If SHADE_CYLINDER is called, the trapezoid is further
decomposed into two regions for shading. These are the
parts of the trapezoid above and below the bisecting line.
The reason for this split is that two different quadratic
equations have to be used to compute the shading in the two
different areas. (In the case that the bisecting line is

14

directly vertical, the entire trapezoid can be shaded by one
quadratic and the routine SHADE_VERT_SEG may be used.) The
maximum Y value, the minimum Y value, and the median Y value
on the bisecting line are computed and the procedure
CONTINUE_SHADING must be called for the general case.

The routine CONTINUE_SHADING uses the three values of Y
computed by SHADE_CYLINDER to decide which routines to use
to shade each of the two regions.

There are five different shading routines which may be
used to render a bond. These
SHADE_LOW_VERT, SHADE_LOW_HORZ,
SHADE HI HORZ.

are SHADE_VERT_SEG,
SHADE HI VERT, and

The procedure SHADE_VERT_SEG treats the entire
trapezoid the same way, using only one quadratic to produce
the shading for the entire region. A loop in the procedure
steps through the Y values sequentially as the X values for
the top, middle, and bottom lines are computed. These allow
the required exposure code for each pixel to be computed and
sent to the Dicomed film recorder.

The two routines SHADE_LOW_HORZ and1 SHADE_LOW_VERT form
a pair. Only one of these routines is executed for each
trapezoid. The former does the same job as SHADE_VERT_SEG
for the region below the highlight (bisecting) line, the
latter routine computes the first value of the quadratic and
the first two differences and calls QUAD to generate
exposure codes. The major difference between these two

15

routines is that Shade_Low_Horz generates scan lines running
in the X direction and thus must calculate individual
exposure codes itself, whereas Shade_Low_Vert can take
advantage of the differencing scheme because codes run along
Y scan lines.

The last two shading routines for bonds are
SHADE_HI_HORZ and SHADE_HI_VERT. They perform similar
functions to their 'LOW' counterparts described in the
preceding paragraph. Again, only one of these routines need
be executed for each trapezoid since they both shade above
the highlight line.

The remainder of the procedures are composed of various
support routines which are called from other parts of the
program when necessary.

DICOWD handles all Dicomed commands and stores them in
a buffer of size buff_len. When this buffer is full, the
routine flushes it and starts filling the buffer again, from
the start. The Lawrence Livermore Laboratory version of DNI
used double buffering, but this is unnecessary for the new
version because the program generates all of the Dicomed
codes before they are sent to the film recorder. Also, it
was noticed that periodic pauses in programs generating
codes directly left unpleasant burns in the phosphur which
resulted in poor film quality. For this reason, an Unix
filter was used to smooth out the output of Dicomed codes
from programs coupled directly to the film recorder.

16

QUAD evaluates a quadratic equation by using a
differencing scheme. Any quadratic can be evaluated at
succeeding points with two additions if the initial value
and the first and second differences are supplied. This
routine is passed the above three pieces of information plus
the number of pixels at which the quadratic is to be
evaluated. A loop in QUAD produces two Dicomed exposure
codes at a time using the differencing method, concatenates
them into a 16-bit word and sends them to the DICOWD
routine. This process continues until the pixel count has
been exhausted. For a more detailed explanation of the
differencing scheme, see reference (3).

CHANGE_COLOR flips the color filter on the Dicomed film
recorder.

TABOUT selects either the color translate mode or the
black and white translate mode for color or highlight
shad ing.

EMPTY_BUFFER flushes the remainder of the Dicomed
commands at the end of a frame when DICOWD's buffer is
partially full.

POWER is a function which raises a number to the given
exponent. The reason for the existence of this function is
that Pascal does not support such an operator. The
recommended method of doing this is to take the. log of a
number, multiply it by the power and take the exponential of
the result.

17

AMAX and AMIN are real functions whose two arguments
are real. They compute the maximum and minimum
respectively.

MAX INT and MIN INT are the integer equivalents of AMAX
and AMIN.

18

A simplified version of how the major procedures from
above tie together follows:

Main Program, read a buffer.
Begin processing, first in color then

repeat in black and white for highlights.
Case Sphere :

Read a sphere record.
Store data about the sphere.

Read a trapezoid record for this sphere.
Invoke Process_Trapezoid to determine the

number of scan lines in Y.
Invoke Shading_Control to compute the

maximum and minimum y values.
Invoke Quad to shade the trapezoid

using a differencing scheme.
Repeat until no more trapezoids.

Case Bond :
Read a bond record.

Store data about the bond.
Read a trapezoid for this bond.

Invoke Process_Trapezoid to determine
the number of scan lines in Y.

Invoke Shading_Control to compute the
maximum and minimum Y values.

Invoke Shade_Cylinder to compute maximum,
median, and minimum Y values.

If median line is vertical,
Invoke Shade_Vert_Seg to shade
the entire trapezoid.

Else
Split the trapezoid into two regions.
Shade below the highlight line using either

Shade_Low_Horz or Shade_Low_Vert.
Shade above the highlight line using either

Shade_Hi_Horz or Shade_Hi_Vert.
Repeat until no more trapezoids.

Repeat for the next record

19

3.3 Output Description
Currently, the DNI program produces Dicomed commands

encoded into ASCII as decimal digits. The reason for this
is that the Dicomed film recorder expects 16-bit words
containing commands, while the Honeywell system produces
36-bit integers. By not producing binary directly, the
program will behave the same way on any system with a Pascal
compiler, independent of the machine word size (as long as
it s at least 16-bits). The film recorder commands are
thus written out with a single blank between commands and
without any end of line characters.

A Unix filter program decodes the character
representations of the command codes and produces the
appropriate binary format for the film recorder. A very
simple C filter to do this job has been included in the
appendices. The file it produces can be transferred to a
tape or used directly to drive a Dicomed.

The above is a description of what happens when the
program runs smoothly. DNI may generate program trace and
variable dump information, or error messages when values are
not in their expected range. The trace facility and
variable dump data are used for checking intermediate
results and for following program flow. They print out the
internal names of procedures and their variables. The error
messages (for the most part related to variables indexing
into case statements) identify the procedure in which they

20

occur and the variable in error. The program attempts to
continue execution even when errors occur.

3.4 Testing of the Pascal Program
Testing the validity of the output from DNI turned out

to be a difficult problem. Some of the reasons for this
difficulty were the size of the output files generated and
the inconvenience of travelling to the site of the Dicomed
film recorder.

The first phase of testing the new version of DNI
involved comparing the disassembled codes generated from
both the Fortran and Pascal versions of the program. This
was not a completely satisfactory test because of the amount
of space used up by the files the disassembler created.
Thus, only the first twenty thousand codes were compared.
After the disassembler verified that this much of the output
was acceptable, an Unix C program was used to perform a byte
by byte comparison. This test proved the validity of the
output of the Pascal version of DNI by showing that all
exposure codes were either identical or different by at most
one unit (attributable to roundoff error) when compared to
the Fortran output.

The second phase of testing involved producing pictures
of atoms. Three of these pictures appear originally in
reference (4). They show simple scenes of three atoms with
two joining bonds. The second group of three pictures show
several atoms intersecting in a "CPK space-filling model".

21

This latter group of pictures were aided in creation by the
preview capability in the Waterloo version of the ATOMLLL
code which drew outlines of the models on a Tektronix
storage tube screen. Thus, a significant amount of testing
was performed before the pictures were commmitted to film.
A group of five pictures appear in the appendices.

4.0 DNI PORTABILITY
The new version of DNI has been written to adhere to

the version of Pascal described by Jensen and Wirth (see
reference (6)). Hopefully, there are only a small number of
portability problems. To determine some of these problems
after the program was debugged on the Honeywell system, DNI
was moved to the IBM 370/158 at Waterloo. The Waterloo
Pascal compiler, developed by the Computer Systems Group,
also implements the language developed by Jensen and Wirth.
By running DNI on these two different systems, many
unnecessary system dependencies were eleminated. Most of
these involved file I/O or features such as the curly braces
used in DNI to enclose comments.

Open statements for the files are the standard Pascal
defined procedures reset and rewrite. Each procedure takes
one argument which is the internal name of a file which
appears in the program statement and is declared in the main
program's Var section. The Honeywell version adheres to
this standard, but the IBM version requests an additional

22

character string containing the triple (filename, filetype,
filemode) to associate an external file with an internal
one. The problem of the comment delimiters will not arise
if the curly brackets exist in the character set one is
using; otherwise, some substitution must be made for them.
Because (* and *) are accepted by all Pascal systems, these
characters were used to enclose comments.

One final note which refers to the output discussed in
the previous section, is that the output format will be
compatible with almost all other systems. However, because
DNI does use large integers, the computer system it runs on
must define integers to be at least 32-bits long. This may
be a problem on some 16-bit machines, because of the
accuracy needed for differencing, in which case multiple
precision arithmetic will be needed. The Pascal compiler on
Waterloo's Unix system does not have 32-bit integers. The
program needs to take this into account to run on that
system.

5.0 CONVERSION OF DNI FOR A FRAME BUFFER DEVICE

5.1 Discussion of Operation
A frame buffer is an

intensities for each pixel of
reasonable method of employing a
index for a color lookup table a
of colors and/or intensities

array which
a complete
frame buffer

t each pixel,
can be inde

contains the
picture. One
is to store an
Thus, a table

ed, where each

23

entry contains three values to describe the red, blue, and
green components for this color.

To convert DNI to produce output for a frame buffer,
several things must be done. First, and most obviously, the
generation of Dicomed commands would no longer be necessary.
If the frame buffer contains 24-bits of intensity, the
problem becomes one of producing 8-bits representing each of
the colors red, green and blue. DNI currently computes
cos(theta) squared for a table lookup value. To maintain a
degree of compatibility with this scheme, the value
generated by DNI would still be used for a table lookup.
The table would contain the corresponding values of

2.9intensity for A + D cos(theta) and C cos(theta) . A color
table would also be used. This would contain the components
of red, green and blue for each of the colors to be used
plus one additional entry with equal amounts of these colors
for white. The first lookup value of A + D cos(theta) would
be used to modify the values of the red, green and blue
components for the selected color. This would provide for
the color, diffuse shading of the object. The value of

2 9C cos(theta) would be modified by the color components of
white to produce the effects of specular reflection.
Finally the two components for each of the three colors
would be combined and stored for each point in the frame
buffer.

24

The above discussion pertains to a 24-bit frame buffer
because the University of Waterloo will soon be acquiring
such a device. However, this amount of resolution is not
necessary to achieve the same results as those obtained on
the Dicorned. If a color lookup table is used, eleven bits
per pixel is sufficient. These would represent the 8-bit
exposure code DNI already computes and the 3-bits of color
selection information. The best method to use for the color
calculations would depend on the operating characteristics
of the device and how flexible it is. In the final
analysis, the fastest color decoding algorithm would be the
most desirable.

The use of a table lookup for the intensity values is a
useful idea because it makes changing the expressions for
shading very easy. Also, it would make the second pass
through the data for highlighting unnecessary. The
expressions for shading which were suggested originally
appear in reference (4).

5.2 The Aliasing Problem
The problem of aliasing has not been addressed in DNI

for output on the Dicomed film recorder. If a different
device like a frame buffer is used, an anti-aliasing
procedure could be added to remove jagged edges. (This
could also be done for the Dicomed and is suggested as an
improvement.)

25

The current version of ATOMLLL already keeps track of
the outlines of all the atoms and bonds for the preview
feature. These are exactly the areas which will be affected
by an anti-aliasing routine. On the regions between two
differently colored atoms or an atom and a bond, there exist
two separate lines colored in black. These lines prevent
the bleeding together of the two colored regions. This
means that all the edges of the atoms or bonds border
completely black regions. Therefore, the exposure codes
along the edges can be averaged given that one knows the
outside is black and the calculated exposure code for these
points (Note, the outline regions would no longer be drawn).
This gives rise to intensities at the edges which will
reduce the effects of aliasing.

5.3 Specific Changes to DNI
The code in DNI would be affected by the implementation

of the frame buffer algorithm in the following manner. The
SET_TABLE procedure would no longer be necessary in it's
present form. However, the color lookup table would still
have to be loaded for the frame buffer device. The
PROCESS_FRAME procedure would have to be modified and may
not be necessary any more because it's prime function was
sending out Dicomed codes to end a frame. SHADING_CONTROL
sends out a position CRT command to move the beam to the
correct position to draw the next vector in Dicomed vector
coordinates (in the range 1 to 32768). The two coordinates

26

in Y then X it generates would have to be divided by (8 *
pixel_size) to bring them back to the correct range for the
selected resolution. The routines SHADE_VERT_SEG,
SHADE_LOW_HORZ and SHADE_HI_HORZ need only call a new
routine instead of DICOWD. The new routine would produce
the exposure code by performing the table lookups and
computing the color information in the manner previously
described. QUAD would also call this new routine to produce
the necessary information for the 8-bit frame buffer
intensities. The CHANGE_COLOR routine could be modified to
keep track of the current color for the new implementation.
Finally, the procedures TABOUT and EMPTY_BUFFER would no
longer be necessary and the second pass in the main program
could be eliminated.

6.0 SUMMARY
The major points of interest in converting DNI from

Fortran to Pascal will now be reviewed. The first step that
was taken was to write down a dictionary of all the
variables in the Fortran program and to describe the purpose
of each. Next, the common blocks were reorganized to
structure them into consistent units of usage. These were
then used to create the Pascal record structures which
contain most of the variables used in DNI. Through the use
of the with statement, the scope of these record variables
was well defined. This gave rise to a one-to-one mapping

27

between most of the old variables and the new ones.
Following this, the convoluted Fortran source was analyzed
to determine what the control structures were and how they
should be organized in Pascal. At the same time, because of
this restructuring a great deal more insight into how DNI
worked was obtained. Finally, the new Pascal version of DNI
was written and debugged to the point where it produced
output.

This output was converted using a C filter into the
same 16-bit binary words which the original Fortran program
produced. After this, the binary from the old and new
versions of DNI were run through a Dicomed code disassembler
written by Alex White. The resulting files from that
program were then processed by the DIFF utility program on
the Unix operating system to determine any differences.
When none were found, another C program was written to
perform a direct comparison on a byte by byte basis on the
two binary files.* Once the two output files matched within
reasonable limits, a test file was run with the new Pascal
DNI to produce an output file for processing on the Dicomed
film recorder at the Defence and Civilian Institute for
Environmental Medicine at Downsview, Ontario. When this
test run had been verified to operate correctly, the DNI
code was transported to the IBM system running Waterloo
Pascal. By running DNI on another Pascal compiler with

* The two C programs and a reference to the disassembler
appear in the appendices.

28

slightly different specifications, most unnecessary system
dependent features of the Pascal code were located and
removed. Following this, DNI was retested on the Honeywell
system to ensure that it still worked properly. Finally,
several more test files were run through DNI to obtain
output for this essay.

Some points which are of interest with respect to
conversions in general follow.

The block data subprogram in the Fortran source code
was the cause of several problems in running Nelson Max's
version of DNI. It would appear that many loaders will only
satisfy external references that have been used in the
program. Thus, since there is no way to reference a block
data subprogram, it does not get loaded and the variables
initialized there are undefined. Two possible solutions
exist to this problem. Either one does not use block data
subprograms or some form of "kludge" is necessary to force
the loader to load the block data area. Neither is very
elegant.

The use of Pascal record structures to represent
Fortran common blocks was very successful. Not only did it
make the conversion effort easier, but it also allowed one
to explicitly restrict the scope of the record variables
through the use of the with statement. The only immediate
drawback of this scheme was that potential ambiguities could
arise with respect to other variables. For example, if aFor example,

29

local variable in a procedure has the same name as one of
the record variables, within the scope of a with statement,
it would not be possible to access the local variable.
Clearly, this situation is syntactically correct, but there
is no method available to distinguish between the two
different variables.

Through general experience gained in this project, it
is not recommended to attempt to transport files from one
system to a second before some form of conversion is done.
The program or data which is essential on the second system
should be made as compatible as possible on the transport
medium before the information is moved. An example of this
is the transport of DNI to the IBM system. DNI was
converted from ASCII to upper case EBCDIC before the IBM
system received the file. This saved a considerable amount
of effort. Another example was the transport of the ASCII
file of Dicomed codes from the Honeywell system to the Unix
operating system. This phase of the project turned out to
be a major headache. The main reason for this was that the
files being manipulated were very large. Because Unix had
very restricted amounts of available disk storage and fairly
heavy CPU usage, conversion from ASCII to 16-bit binary code
was a considerable bottleneck. A suggestion to alleviate
this problem on the Honeywell would be to add an assembler
subprogram to take 9 Dicomed codes of 16-bits and
concatenate them into four 36-bit words. These could be

30

written out to tape directly to bypass the C filter and the
Unix operating system. Such a subprogram would have to be
written from scratch at each different installation at which
DNI was implemented because it depends on machine word size.

One last point which should be stressed: every effort
should be made to avoid writing unnecessary code. In
general, this refers to becoming acquainted with the
operating system and finding out what utility programs are
available. Examples of this included the use of ACL for
disk to tape conversion on the Honeywell 66/60, using DIFF
and CMP on the Unix system for file comparison, various
routines like DD for input/output conversion on Unix, and
the Dicomed code disassembler. Thus, considerable effort
was saved by not writing programs already in existence.

References

Crow, F. C. "The Aliasing Problem
generated Shaded Images", CACM,
November 1977.

in Computer-
20(11):799,

Knowlton, Ken and Cherry, Lorinda. "ATOMS, a
three-d opaque molecule system", Computers and
Chemistry Vol. 1, no. 3 (1977) pp. 161-166.
Max, Nelson. "ATOMLLL - ATOMS with Shading and
Highlights", Computer Graphics, 13(1):165, Spring
1979.
Max, Nelson. "ATOMLLL - a three-d opaque molecule
system, Lawrence Livermore Laboratory version",
UCRL-52645, Lawrence Livermore Laboratory 1979.
Newman, W. M. and R. F. Sproull, Principles of
Interactive Computer Graphics, 2nd edition,
McGraw-Hill, New York, 1979.
Wirth, N. and K. Jensen, PASCAL : User Manual and
Report, 2nd edition, Springer-Verlag, New York,
1975.

APPENDIX I H o n e y w e l l B a t c h J C L

The following Honeywell JCL is used to run the DNI
program in batch mode. The files which are referenced by
the program supply the following:

1) gr/./hyuen/dni contains the source code for DNI,
2) gr/,/hyuen/new.2 contains the output description
supplied by the ATOMLLL program,
3) gr/./hyuen/f02 will be used to dump debug
information onto,
4) gr/./hyuen/new.two will receive the Dicomed codes,

5) hyuen/fort04 contains measured film densitites for
the color lookup tables in the film recorder, and
6) hyuen/dni.in contains the input parameters requested
by DNI.

The JCL is presented below.
ident
lowload
option
pr ogram
select
limits
prmfl
select
limits
prmfl
prmfl
prmfl
prmfl
prmfl
endjob

hyuen,dni
nofcb
pascal,range,s inglecase,stack=10000
pascal/compile
5
s* #r ,s ,gr/./hyuen/dni
pascal/execute
20,50k
at,r,s,g r/./hyuen/new.2
de,w,s,g r/./hyuen/f02
di,w,s,gr/./hyuen/new.two
ta,r,s,hyuen/fort04
i* ,r ,s ,hyuen/dni .in

APPENDIX I I ACL Tape T r a n s f e r s

The two Honeywell JCL programs in this appendix perform
tape transfer functions. The first one converts the ASCII
version of DNI into EBCDIC and writes it onto a tape which
is used to transport it to the IBM 370/158. The second
program is used to write out a Dicomed code file onto tape
for use on the Unix system.

Program 1

copy
close
end

Program 2

ident hyuen,dni.tape
msg2 l,need tape 12012 with ring
program acl
prmfl ** ,r, r,,/batchacl
tape t0,xld,,12012,,dni,pf,den8
gr/,/hyuen/dni to at:t0(ebcdic,upper,fb=80,blksize=800)

endjob

copy
copy
copy
end

ident hyuen,unix.tape
msg2 l,need tape 12351 with ring - scratch tape
program acl
prmfl **#r , r,,/batchacl
tape tOrxld,,12351,,dni.2, ,den8
gr/./hyuen/new.two to at:tO(blksize=6000)
gr/./hyuen/new.for
gr/./hyuen/new.six
endjob

APPENDIX I I I C F i l t e r s

The first C program performs the byte by byte
comparison of two files to determine the differences. The
second C program decodes ASCII Dicomed codes and packs them
into 16-bit words.
Program 1

#include <stdio.h>
main (argc,argv)
int argc;
char *argv[];
{ static int ftn[256], pasc[256];

int nl, n2, i;
long pointer, count = 0;
FILE *fopen(), *fptr, *pptr;
fptr = fopen(*++argv,"r");
pptr = fopen(*++argv," r") ;
while ((nl = fread(ftn,sizeof(*ftn),256,fptr)) > 0)
{

n2 = fread(pasc,sizeof(*pasc),256,pptr);
if (nl != n2)

{printf("Length of files not equall\n");
if (count > 0)

printf("Files equal up to %ld blocks\n",count);
printf("Count = %ld\n",count);
break;
}

else
for (i=0; i < 256; i + +)
{pointer = (count * 256) + i;
if (ftn[i] != pasc[i])
{
printf("Word number %ld different ftn = %4x, ",

"pasc = %4x\n"»pointer,ftn[i],pasc[i]);
}

}
count++;

}
fclose(fptr);
fclose(pptr);

}

Program 2
iinclude <stdio.h>
main()
{

int inword;

}

while(scanf("%d", sinword) == 1)
if(fwrite(&inword, sizeof(int), 1,

error("Urk — probably no more
stdout) 1= 1)
space\n");

The
under the

Dicomed code disassembler
catalog /u/ksbooth/dicomed.

is available on Unix
The compiled version

is named DICODE and the source is available as DASM.C

F i g u r e 1 Three distinct atoms with two joining bonds. This
frame appears in reference (4).

Figure 2 This is the same as Figure 1 with two of the atoms
increased in size. This frame also appears in
reference (4).

Figure 4 One of the occulated atoms is completely sur­
rounded by the central atom in this frame.

Figure 5 There are seven atoms in this picture. Only two
very small parts of one of the atoms is visible;
it is shaded in blue. The perspective ratio has
been increased to produce a smaller sized model.

APPENDIX I V D a t a F i l e s and P i c t u r e s o f Atoms

The first two figures appear in reference (4) . The
ATOMLLL data to generate these pictures can be found there.
The file used as input to ATOMLLL for figures 4, 5 and 6
follows below.

ATOMLLL Input File
5 0.49

0.0 0.0 14.8 1.0 4
-.7 -.7 14.5 0.6 1
.7 .7 14.5 0.6 1

-.7 .7 14.5 0.6 1
.7 -.7 14.5 0.6 1
0 0.0
4 0.49

0.0 0.0 14.5 1.2 3
-0.7 0.7 14.0 0.7 1
0.7 0.7 14.0 0.7 1
0.0 -0.4 13.7 0.7 1

0 0.0
7 0.30

0.0 0.0 15.0 1.0 4
-0.5 -0.4 14.5 0.8 2
0.5 -0.4 14.5 0.8 2
0.0 0.5 14.5 0.8 2

-0.8 -0.7 14.0 0.6 1
0.8 -0.7 14.0 0.6 1
0.0 0.8 14.0 0.6 1

0 0.0

APPENDIX V DNI S o u r c e Co de

program dni (input,atomfi,debugfo,dicofo,tablefi»output);
const

b_w = 2;
b_w_translate = 21;
buff_len = 20;
bufsize = 200;
color = 1;
co1o r_mod e = 18;
color_translate = 22;
cylinder = 4;
end_of_job = 2;
frame = 1;
frame_advance = 49408;
func_select = 8192;
init_cond = 34985;
load_trans_table = 53248;
neutral_filt = 15;
plot_elements = 28672;
plot_horz = 4096;
plot_line = 12288;
Pi ot_vector = 20480;
point_select = 40960;
position_crt = 16384;
raster_mode = 16;
resett = 36864;
shade_hi_v_call = 5;
sphere = 3;
trapezoid = 5;

(* Black and white shading *)
(* Black and white translation; P. 3-2 *)
(* Size of output buffer *)
(* Size of input buffer *)
(* Color shading *)
(* Select color mode; P. 3-2 *)
(* Select color translation; P. 3-2 *)
(* Type of record being processed *)
(* Type of record being processed *)
(* Type of record being processed *)
(* Exposure and filter select; P. 3-21 *)
(* Function element select; P. 3-8 *)
(* Initial condition select; P. 3-17 *)
(* Second word of func select; P. 3-14 *)
(* Select neutral filter; P. 3-2 *)
(* Second word of func_select; P. 3-12 *)
(* Offset from bottom of screen *)
(* Second word of func_select; P. 3-9 *)
(* Vector or position absolute; P. 3-15 *)
(* Point element select; P. 3-20 *)
(* Vector or position absolute; P. 3-15 *)
(* Select raster output mode; P. 3-2 *)
(* Initial condition select; P. 3-17 *)
(* Identifies calling routine in Quad *)
(* Type of record being processed *)
(* Type of record being processed *)

(* NOTE : All page numbers refer to DICOMED film recorder
manual (Publication No. 12M069, February, 1979
Edition - Revision A.

*)

input_rec =
record

atom bond no : integer;

type_top_arc
type_bot_arc

integer ;
integer;

(* Describes what the current
record is : (-3) a sphere,
(-2) a bond , (-D a trapezoid,
(-5) the end of frame, or
(-4) the end of job.

*)
(* Arc is : *)
(* 1 convex downwa rd

2 convex upwa rd
3 a straight 1 ine
4 special case to reflect the

results of normalization

*)
xleft : integer; (*
xright : integer; (*

*)
top_arc_ xcent : integer; (*
top_arc_ ycent : integer; (*
top_arc_ radius : integer; (*

*)
bot_arc xcent : integer; (*
bot_arc_ycent : integer; (*
bot_arc_ radius : integer; (*

These flags are used to
determine the type of processing
required for the rest of the
record.
X coordinates of the left and *)
right sides of the trapezoid.
Center and *)
radius of *)
the top arc
Center and *)
radius of *)
the bottom arc *)

end ;

b o n d _ r e c =
r e c o r d

(* top_line_typ, bot_line_typ, mid_line_typ :
1 : line convex downward
2 : line convex upward
3 : line straight
4 : special case to deal with normalization

*)
top_line_typ : integer;
top_slope : real;
top_intercept : real;
bot_line_typ : integer;
bot_slope : real;
bot_intercept : real;
mid_line_typ : integer;
mid_slope : real;
mid intercept : real;
fm : real;
fs : real;
top_ind icator
bot indicator

(* Used to compute intermediate
values *)

(* for the differencing scheme -
done in process cylinder. *)

integer; (* Flags used to indicate what
quadratic scheme to use for *)

integer; (* shading the particular trapezoid
and thus, which shading
procedures to use. *)

end;

isp_rec =
record

pixel_size : integer;
half_pixel : integer;
vector_size : integer;
half_vector_size : integer;
real_vector_size : real;
real_half_vector : real;
twice_vector : real;
two_sqr_vect : real;

end;

(* Single element plotting
resolution *)

(* Vector plotting resolution *)
(* Equal to vector size - real *)

screen_rec =
record

screen_top : integer;
screen_bot : integer;

end;

sphere_rec =
record

sphere_rad ius
sphere_xcent
sphere_ycent

end;

integer;
integer;
integer;

diff_rec =
record

c : real; (*d : real; (*
e : real; (*
f : real; (*k3 : integer; (*

end;

Various computed values *)
from either process sphere *)
or process cylinder, used *)
in the differencing scheme *)
Second difference of quadratic

radius_rec =
record

sqr_top_rad : real;
sqr_bot_rad : real;
radius_sqr : real;

end;
color_tbl_rec =

record
color_min : array[1..7,1..2] of real;
color_range : array[l..7,1..2] of real;

end;

equation *)

main_rec =
record

a : real;

ad : real;
back_exposure : integer;
buffer_start : integer;
curr_color : integer;

eoj : boolean;

frame_no : integer;
horz_space : integer;
i : integer;
idum : integer;

ier : integer;

kind : integer;
min_slope : real;

new_color : integer;
not_done : boolean;

range_col : real;

shading : integer;
shift_op : integer;

this_buffer : boolean;

vert_space : integer;
end;

(* Used to compute first quadratic
value - initialized in
Change_color. *)

(* Used to compute x_exposure,
initialized in Process_Sphere *)

(* Computed DICOMED code
*)
(* Pointer to first record of
current buffer or frame *)

(* Currently selected DICOMED color
filter

*)
(* Used in main program control
structure

*)
(*
*)
(*
*)
(*
*)
(*

*)
(*
*)
(*
*)
(*
*)
(*
(*
*)
(*
*)
(*
*)
(*

(*
*)
(*
*)

Current frame count
Computed DICOMED code
Pointer to current input record
Used to read into to cause a

wait for the operator between
frames
Not currently used, was an error
flag in the Read_Buffer routine
Either a sphere or a bond
If the slope of an arc is less

than this value, it is straight
Contains new

current input
Used in main
structure

color from the
record *)
program control

Maximum range for color
exposure
Either color or black and white
Normalization factor, used to
convert reals to 16 bit
integers *)
Used in main program control
structure
Computed DICOMED code

t r a p _ r e c =
r e c o r d

debug_flag
max_y_scan
mid_y_scan
min_y_scan
no_pixels :
top_y_bond
mid_y_bond
bot_y_bond
x : integer
y : integer
xtop : real
xmid : real
xbot : real
x exposure

(*
(*
(*

boolean;
real;
real;
real;
.nteger;
integer; (*
integer; (*
integer; (*

(*
(*
(*

integer; (*

end;
dico_rec =

record
bufferl : array[1..buff
buffer2 : array[1..buff
buff_ptr : integer;

end;

Used to compute *)
scan line length *)
- real values *)
Used to compute *)
scan line length *)
- integer values *)

Used to compute scan line *)
length for horizontal *)
shading lines. *)
Computed exposure code according
to x value on a horizontal scan
line. *)

len] of integer;
len] of integer;

buffer : array[l..bufsize] of input_rec;
bond_c : bond_rec;
isp_c : isp_rec;
screen_c : screen_rec;
sphere_c : sphere_rec;
diff_c : diff rec;
radius_c : raclius_rec;
color_c : color_tbl_rec;
main_c : main_rec;
trap_c : trap_rec;
dico_c : dico_rec;
processing : integer; (* Contains current record type *)
advance_flag, wait_flag
debug_option

0 . . 1 ;
0. . 2;

advance_mode
debug_proc
debug_var
wait mode

boolean;
boolean;
boolean;
boolean;

(* If advance_flag = 1, allow blank film
between 35mm slides. *)

(* If debug_option = 1 or 2,
print a trace of procedure calls. *)

(* If debug_option = 2,
print values of variables *)

(* If wait_flag = 1, pause between frames
by reading a dummy variable. *)

a t o m f i , d e b u g f o , d i c o f o , t a b l e f i : t e x t ;

real;

function amax (first, second : real) : real; forward;
function amin (first, second : real) : real; forward;
procedure continue_shading (irinteger); forward;
procedure change_color (var curr_color : integer;

new_color : integer; var a,bp
shading : integer); forward;

procedure dicowd (iword : integer); forward;
procedure empty_buffer; forward;
function max_int (first, second : integer) : integer; forward;
function min_int (first, second : integer) : integer; forward;
function power (no, exponent : real) : real; forward;
procedure quad (kl, k2, k3, nw, icall : integer); forward;
procedure set_table (kind : integer); forward;
procedure shade_cylinder (i : integer); forward;
procedure shade_hi_horz; forward;
procedure shade_hi_vert; forward;
procedure shade_low_horz; forward;
procedure shade_low_vert; forward;
procedure shade_vert_seg; forward;
procedure shading_control (tmax, ix, trap_xleft, trap_xright,

arc_bot, arc_top : integer;
trap_slope_top, trap_slope_bot : real);
forward;

procedure tabout (translate_mode : integer); forward;

procedure open_files;
beg in

reset(atomfi);
rewrite(debugfo);
rewrite(dicofo);
reset(tablefi);

end ;

(* ATOMSLLL input to DNI *)
(* Debug information file *)
(* Output of DICOMED codes *)
(* File of measured film
densities

*)

double film advance
to enable. ');

procedure get_options;
var resolution : integer;
beg in

with main_c, isp_c do
begin
writeln('Enter options for waiting,
writeln(' - 0 to disable and 1
read(wait_flag, advance_flag);
writeln('Enter debug options - output on file debugfo');
writeln(' 0 - no debug information');
writeln(' 1 - Procedure trace');
writeln(' 2 - Procedure trace and variable dump');
writeln(' - WARNING : This produces huge amounts
writeln(' output.');
read(debug_option);
wait_mode := wait_flag = 1;
advance_mode := advance_flag =1;
if debug__option in [0..2] then

case debug option of

of

end

begin
debug_proc
debug_var

end;
1 : begin

debug_proc
debug_var

end;
2 : begin

debug_proc
debug_var

end;
end (* of case debug_option *)

else begin
debug_proc := false;
debug_var := false;

end;
writeln('Enter resolution
read(resolution);
pixel_size := 4096 div resolution;
end;

(*of procedure get options *);

false ;
false ;

true ;
false ;

true;
true;

1024, 2048 or 4096 ')

(*
Initialize various constants and reset the DICOMED
plus set up horizontal and vertical spacing.

*)
var i,j : integer;
begin

if debug_proc then writeln(debugfo,' Enter Init');
with color_c do
begin

for i := 1 to 7 do
for j := 1 to 2 do

begin
color_min[i,j] := 0.01;
color_range[i,j] := 0.99;
end;

color_range[7,1] := 0.45;
end (*of with statement*) ;
dico_c.buff_ptr := 1;
with main_c, isp_c do
begin

frame_no := 0;
dicowd(resett);
set_table(sphere);
shift_op := round(power(2.0,22.0));
half_pixel := pixel_size div 2;
vector_size := 8 * pixel_size;
half_vector_size := 8 * half_pixel;
real_vector_size := vector_size;
real_half_vector := real_vector_size / 2.0;
twice__vector := 2 * real_vector_size;
two_sqr_vect :=. 2 * sqr (real_vector_size) ;
min_slope := 0.1;
screen_c.screen_top := 7 * 4096 - vector_size;
screen_c.screen_bot := 4096;
horz_space := point_select + (512 * pixel_size) + 8
vert_space := 512 * pixel_size + 8;
back_exposure : = pixel_size * 17;
dicowd(resett);
dicowd(raster_mode);
dicowd(color_mode);
dicowd(ini t_cond);
dicowd(color_translate);
dicowd(horz_space);
dicowd(vert_space);
dicowd(back_exposure);
idum := 0;

end (* of with statement *);
if debug_proc then writeln(debugfo,'

end (* of procedure initialize *);

p r o c e d u r e i n i t i a l i z e ;

Exit Init');

procedure read buffer(buf len : integer; var error : integer);
(*Read a buffer of size bufsize (in const section) of input
records. These records are read according to the format
created by ATOMSLLL (i.e. Fortran columnwise order) which
runs across record boundaries for the Pascal records.

*)
var i : integer;
beg in

if debug_proc then writeln(debugfo,' Enter Read Buffer');
for i := 1 to buf_len do

read(atomfi, buffer[i].atom_bond_no);
for i := 1 to buf_len do

read(atomf i , buffer[i].type_top_arc);
for i := 1 to buf_len do

read(atomfi , buffer[i].type_bot_arc) ;
for i := 1 to buf_len do

read(atomfi, buf fer [i] . xlef t) ;
for i := 1 to buf_len do

read(atomfi, buffer[i] .xright) ;
for i := 1 to buf_len do

read(atomfi, buffer[i].top_arc_xcent);
for i := 1 to buf_len do

read(atomfi, buffer[i].top_arc_ycent);
for i := 1 to buf_len do

read(atomfi, buffer[i].top_arc_radius);
for i := 1 to buf_len do

read(atomfi , buffer!i].bot_arc_xcent);
for i := 1 to buf_len do

read(atomfi , buffer[i].bot_arc_ycent);
for i := 1 to buf_len do

read(atomfi, buffer[i].bot_arc_radius);
error := 0;
if debug_proc then writeln(debugfo,'

end (* of procedure read buffer *) ;
Exit Read Buffer');

(*
The following procedure reads a set of measured film densities
from a file. These are then used to compute color look-up
tables for color shading, highlights, and standard linear
compensations.
Parameters Passed :

kind - Either a sphere or a cylinder
*)

var density : array [1..32,1..7] of integer;
film_density : array [1..32] of real;
out_intensity : array [1..32] of integer;
bl, cl, el, b2, c2, e2 : real;
max_fintensity, min_fintensity, range_fintensity : real;
norm_k, desired intensity, dl, d2, wl : real;
i, j, idum, m, ¥, 1, mnt, md : integer;
not_done : boolean;
procedure compute_mnt;
beg in

mnt := round (16.0 * ((desired_intensity - film_density[1-1])
(out_intensity[1] - out_intensity[1-1]) /
(wl - film_density[1-1]) +
out_intensity[l-l])

);
if (k = 0) then mnt := 0;
if (m = 1) and (kind = cylinder) then mnt := 4 * k;

end;
beg in

if debug_proc then writeln(debugfo,' Enter Set Table');
bl := 0.10; cl := 0.90; el := 0.61;
b2 := 0.08; c2 := 0.39; e2 := 14.0;
if not (kind = cylinder) then

begin
for i := 1 to 32 do

begin
read(tablefi, out_intensity[i]);
for j := 1 to 7 do read(tablefi, density[i,j]);
end;

read(tablefi, idum);
end;

if (idum >= 8000)
then writeln(debugfo, ' Exposure Translation Table');

dicowd(func_select);
dicowd(load_trans_table + 2048);
for m := 1 to 8 do

beg in
j : = m - 1;
if (j = 0) then j := 7;
for i := 1 to 32 do

film_density[i] := exp(ln(10.0) * (-density!i,j]/100.0));
max_fintensity := film_density[32];
min_fintensity := film_density[l];
range_fintensity := max fintensity - min_fintensity;

p r o c e d u r e s e t t a b l e ;

(* Compute the desired intensity *)
for k := 0 to 255 do

begin
norm_k := k / 255.0;
if not (kind = sphere) then

desired_intensity := min_fintensity +
norm_k * range_fintensity

else
beg in
dl := bl + cl * power(norm_k,el);
desired_intensity := min_fintensity +

range_fintensity * dl;
if (m = 1) then

begin
d2 := b2 * dl + c2 * (0.8 * power(norm_k,e2)

+ 0.2 * power(norm_k, e2/4.0));
desired_intensity := min_fintensity +

range_fintensity * d2;
end;

end;
(* Now look for an intensity greater than the

desired one found above. *)
1 := 2;
not_done := true;
while (1 <= 32) and (not_done) do

beg in
wl := film_density[1];
if (wl > desired_intensity) then

begin
not_done := false;
compute_mnt;
end

else
if (wl = desired_intensity) then

begin
mnt := out_intensity[1] * 16;
not_done := false;
end

else 1 := 1 + 1;
end (* of while loop *);

if not_done then compute_mnt;
dicowd (mnt) ;
md := mnt div 16;
if (idum >= 8000 + m) then

writeln(debugfo, ' ' , m:6, k:6, 1:6, md:6, mnt:6,
desired_intensity:11:4);

end (* of for k := ... *) ;
end (* of for m := ... *) ;
empty_buffer;
if debug_proc then writeln(debugfo,1 Exit Set Table');

end (* of procedure set table *);

<*
This routine is called when a frame has been finished, to
perform some post-processing and resett the DICOMED film
reco rder.
Parameters Passed :

i - pointer to current input record.
*)

begin
if debug_proc then writeln(debugfo,' Enter Frame');
with main_c do
beg in

buffer_start := i;
dicowd(frame_advance) ;
frame_no := frame_no +1;
writeln(' Finished frame 1 , frame_no:l);
if wait_mode then

begin
empty buffer;
read(Tdum); (* Used to cause a wait between frames *)
end;

if advance_mode then dicowd(frame_advance);
dicowd (resett) ;
dicowd(raster_mode) ;
dicowd(color_mode) ;
dicowd(init_cond) ;
dicowd(color_translate) ;
dicowd(horz_space) ;
dicowd(vert_space) ;
dicowd(back_exposure);

end;
if debug_proc then writeln(debugfo,'

end (* of procedure process frame *);

p r o c e d u r e p r o c e s s _ f r a m e (i : i n t e g e r) ;

Exit Frame');

This procedure is called to initialize variables associated with
processing trapezoids which are part of this sphere.

*)
begin

if debug_proc then writeln(debugfo,' Enter Sphere');
with main_c do
begin
with bufferti], diff_c, isp_c, radius_c, sphere_c do
begin

(* Change color filter and compute 'a' for differencing
and 'ad' for the number of points to plot. *)

new_color := type_top_arc;
if not (new_color = curr_color) then

begin
change_color(cur r_color,new_color,a,range_col,shad ing);
ad := a / shift_op;
end;

(* Load data into sphere record *)
sphere_xcent := type_bot_arc;
sphere_ycent := xleft;
sphere_radius := xright;
radius_sqr := sqr(sphere_radius);
(* Compute constants for differencing scheme *)
c := range_col * 255.0 * shift_op / radius_sqr;
d := a + c * radius_sqr;
e := c * vector_size * 2;
f := c * sqr(vector_size);
k3 := trunc(-2 * c * sqr(vector_size));
kind : = sphere;

end;
end;
if debug_proc then writeln(debugfo,'

end (* of procedure process sphere *);

p r o c e d u r e p r o c e s s s p h e r e ;
(*

Exit Sphere');

procedure process_cylinder;
(* This procedure sets the values of the items in the bond record
These parameters will be used to compute scan line length for
the following trapezoids. A cylinder is defined by it's
left and right edges and a middle line which bisects the
two edges. These are the lines refered to below.

*)var five : integer;
beg in

if debug_proc then writeln(debugfo,' Enter Cylinder');
five := 5;
with main_c do
begin
with buffer[i], bond_c do
begin

(* Change color filter and compute 'a' for the
differencing scheme. *)

if not (new_color = 5) then
chang e__color (five ,f ive, a ,range_col, shading) ;

(* Compute values to process the upper line. *)
top_line_typ := type_top_arc;
top_slope := type_bot_arc / 32767.0;
top_indicator := 0;
if (not (top_line_typ = 1)) and (abs(top_slope) <= min_slope)

begin
top_indicator := 1;
top_line_typ := 3;
end;

top_intercept := xleft;
if debug_var then

writeln(debugfo, ' Top line type = ',top_line_typ:1,
' Top slope = ',top_slope:10:4,
' Top intercept = ',top_intercept:10:4);

(* Compute values to process the bottom line. *)
bot__line_typ := xright;
bot_slope := top_arc_xcent / 32767.0;
bot_indicator := 0;
if (not (bot_line_typ = 1)) and (abs(bot_slope) <= min_slope)

begin
bot_indicator := 1;
bot_line_typ := 3;
end;

bot_intercept := top_arc_ycent;
if debug_var then

writeln(debugfo, ' Bot line type = ',bot_line_typ:1,
' Bot slope = ' ,bot slope:10:4,

then

then

(* Compute values to process the middle line. *)
mid_line_typ := top_arc_radius;
mid_slope := bot_arc_xcent / 32767.0;
if (not (mid_line_typ = 1)) and (abs(mid_slope) <= min_slope) then

begin
top_indicator := 1;
bot_indicator := 1;
mid_line_typ := 3;
end;

mid_intercept := bot_arc_ycent;
if debug_var then

writeln(debugfo, ' Mid line type = 1,mid_l ine_typ:1,
' Mid slope = ',mid_slope:10:4,
' Mid intercept = ',mid_intercept:10:4);

if (bot_line_typ > 1) and (mid_line_typ > 1)
and ((bot_slope * mid_slope) < 0)
then bot_indicator := 1;

if (top_line_typ > 1) and (mid_line_typ > 1)
and ((top_slope * mid_slope) < 0)
then top_indicator := 1;

if debug_var then
writeln(debugfo, ' Top indicator = ',top_indicator:1,

' Bot indicator = ',bot_indicator:1);
(* Compute the constant 'c' for use in the

differencing scheme. *)
fm := bot_arc_radius / 32767.0;
fs := 255.0 * fm * range_col;
diff_c.c := fs * shift_op;
if debug_var then

writeln(debugfo, ' Diff_c.c = ',diff_c.c:10:4);
kind := cylinder;

end;
end;
if debug_proc then writeln(debugfo,'

end (* of procedure process_cylinder *);
Exit Cylinder');

<*
This procedure computes the control variables (i.e. xleft, xright
values, etc.) to process the current trapezoids.

*)
var ixl, ix2, ix3, ix4, ix, tmax : integer;

trap_xleft, trap_xright : integer;
arc_top, arc_bot : integer;
trap_slope_top, trap_slope_bot: real;

begin
if debug_proc then writeln(debugfo,' Enter Trapezoid')?
with main_c do
begin

p r o c e d u r e p r o c e s s _ t r a p e z o i d ;

with buffer[i], isp_c,
beg in

radius_c, sphere c, trap_c do

(* Dump current input record *)
if debug_var then

begin
wr i teln(debug fo, • No. = ', atom bond no:l);
wri teln(debugfo, ' Top Arc = ', type_top_arc: 1);
writeln(debugfo, ' Bot Arc = ', type bot_arc:l);
writeln(debugfo, ' Xleft ', xleft:1);
writeln(debugfo, ' Xright = ', xright:1);
writeln(debugfo, ' Top Xc = ', top arc_xcent: 1);
writeln(debugfo, ' Top Yc = ', top arc_ycent:1);
writeln(debugfo, ' Top Rad = ', top arc_radius:1);
writeln(debugfo, ' Bot Xc = ', bot arc_xcent: 1);
wri teln(debug fo, ' Bot Yc = ', bot arc_ycent: 1);
writeln(debugfo, ' Bot Rad = ', bot_arc_radius:1);
end;

(* Compute left and right edges of this trapezoid
for x coordinates. *)

ixl := xleft + half_vector_size;
ix3 := ixl mod vector_size;
if (ix3 < 0) then ix3 := ix3 + vector_size;
trap_xleft := ixl - ix3;
ix2 := xright - half_vector_size;
ix4 := ix2 mod vector_size;
if (ix4 < 0) then ix4 := ix4 + vector_size;
trap_xright := ix2 - ix4;
if debug_var then

begin
writeln(debugfo, ' Ixl = ' ,ixl:l, ' 1x3 = ',ix3:l,

' 1x2 = ,,ix2:l,' 1x4 = *,ix4:l);
writeln(debugfo, ' Trap Xleft ■= ',trap xleftsl,

'Trap Xright = ',trap_xrTght:1);
end;

arc_top := type_top_arc;
arc_bot := type_bot_arc;
if debug_var then

writeln(debugfo, ' i = ',i:l,' kind = ',kind:l,
' Arc top = ',arc_top:l,
' Arc bot = ' ,arc bot:l);

(* Compute values necessary to determine
the scan line length in the y direction. *)

if (arc_top in [1,2]) then
sqr_top_rad := sqr(top_arc_radius)

else if (arc_top in [3,4]) then
trap_slope_top := top arc_xcent / 32767.0

else writeln('Process Trapezoid - Error in type
'of top arc = ', arc_top:5);

if (arc_bot in [1,2]) then
sqr_bot_rad := sqr(bot_arc_radius)

else if (arc_bot in [3,4]) then
trap_slope_bot := bot_arc_xcent / 32767.0

else writeln('Process Trapezoid - Error in type ',
'of bottom arc = ', arc bot:5);

i f (t r a p _ x r i g h t >= t r a p _ x l e f t) t h e n
b e g i n

(* lx is the starting value of x for this trapezoid.
Tmax is the number of pixels to be processed in x. *)

ix := trap_xleft - vector_size;
tmax := trunc((trap_xright-trap_xleft) / vector_size) + 1
shad ing_control(tmax,ix,trap_xleft,trap_xright,arc_bot,

arc_top,trap_slope_top,trap_slope_bot);
if debug_var then

writeln(debugfo, ' Sphere Rad = ',sphere_radius:1,
' Sphere Xc = ',sphere_xcent:1,
' Sphere Yc = ',sphere_ycent:1,
' C = ' , d i f f_c.c:10: 4) ;

end (* of if xright >= xleft *);
end;
end;
if debug_proc then writeln(debugfo,' Exit Trapezoid');

end (* of procedure process trapezoid *);

(*
This routine determines how many vertical scan lines will be
produced for the current trapezoid. Also, the length of the
vertical scan line is computed. If a sphere is being processed,
all necessary data is already available and shading may proceed.
However, if a bond is being processed several further cases
must be handled.

p r o c e d u r e s h a d i n g c o n t r o l ;

Parameters Passed :
tmax - number of points in x direction for shading.
ix - starting x value
trap_xleft - left x boundary value
trap_xright - right x boundary value
arc_bot - type of this trapezoids bottom arc
arc_top - type of this trapezoids top arc
trap_slope_top - slope of top arc
trap slope bot - slope of bottom arc

*)
var temp, kl, k2 : integer;

ysq : real;
Enter Shading Control');

radius c, sphere c, trap_c
beg in

if debug_proc then writeln(debugfo,'
with buffer[main_c.i], diff_c, isp_c,
begin

for temp := 1 to tmax do
begin
ix := ix + vector_size;
if debug_var and (main_c.kind = cylinder) then

writeln(debugfo, ' Tmax = ',tmax:l,' Ix =
' Trap Tslope = ',trap_slope_
' Trap Bslope = ',trap slope bot

do

'fix : 1,
top:10:4,

10:4
) ;

x := ix + half vector size;
(♦Find top and bottom of quad ratically shaded segment

according to the values of arc_top and arc_bot.
Explanation of these values can be found in the
front of the declaration of Bond Rec. *)

(* Compute the maximum y value for the current scan line *)
if arc_top in [1..4] then

case arc top of
1 : begTnysq := sqr_top_rad - sqr(x - top_arc_xcent);

max y scan := top_arc_ycent + sqrt(abs(ysq));
end;

2 : begin
ysq := sqr_top_rad - sqr(x - top_arc_xcent);
max_y_scan := top_arc_ycent - sqrt(abs(ysq));
end;

3 : max_y_scan := trap_slope_top * x + top_arc_radius;
4 : max_y_scan := (x - top_arc_radius) / trap_slope_top;

end (* of case arc_top *)
else writeln(1 Shading Control - Error in ' ,

'arc top = ', arc_top:l);

(* Compute the minimum y value for the current scan line *)
if arc_bot in [1..4] then

case arc bot of
1 : begTn

ysq := sqr_bot_rad - sqr(x - bot_arc_xcent);
min_y_scan := bot_arc_ycent + sqrt(abs(ysq));
end;

2 : begin
ysq := sqr_bot_rad - sqr(x - bot_arc_xcent);
min_y_scan := bot_arc_ycent - sqrt(abs(ysq));
end;

3 : min_y_scan := trap_slope_bot * x + bot_arc_radius;
4 : min_y_scan := (x - bot_arc_radius) / trap_slope_bot

end (* of case arc_bot *)
else writeln('Shading Control - Error in ',

'arc bot = ', arc bot:l);
max_y_scan := max_y_scan + 16384;
min_y_scan := min_y_scan + 16384;
(* Top_y_bond and Bot_y_bond are rounded integer values

of max_y_scan and min_y_scan. *)
top_y_bond := trunc((max_y_scan+half_vector_size)

/ vector_size) * vector_size - vector_size;
bot_y_bond := trunc((min_y_scan+half_vector_size)

/ vector_size) * vector_size;
no_pixels := trunc((top_y_bond - bot_y_bond) / vector_size)

+ 1;
if debug_var then

begin
writeln(debugfo,'I
wr i teln(debugfo ,'I
wri teln(debugfo ,'I
end;

Min_y_scan = ',min_y_scan:10: 4,
Max_y_scan = ',max_y_scan:10:4);

Bot_y_bond = ',bot_y_bond:1,
Top_y_bond = ',top_y_bond:1);

Ysq = ',ysq:10:4,
No pixels = ',no pixels:!);

CL'
(* Ready the DICOMED to begin drawing the

current trapezoid. *)
dicowd(position_crt);
dicowd (bot_y_bond) ;
dicowd(ix + 16384);
case main_c.kind of
sphere : begin

(* Plot the next scan line *)
dicowd(func_select);
dicowd(plot_line + no_pixels);
y := sphere_ycent - (bot_y_bond

+ half_vector_size - 16384);
kl := trunc(d - c *

(sqr(x - sphere_xcent) + sqr(y)));
k2 := trunc(e * y - f);
if debug_var then

writeln(debugfo,' Sphere : Kl = ',
kl:l,' K2 = ' ,k2:1,
' K3 = ' ,k3: 1) ;

quad(kl,k2,k3,no_pixels»sphere);
end;

cylinder : shade_cylinder(main_c.i);
end (* of case kind *);

end (* of no_pixels > 0 *);
end (* of for loop *);
ebug_proc then writeln(debugfo,'

end (* of procedure shading control *);

i f (n o _ p i x e l s > 0) t h e n
b e g i n

Exit Shading Control');

(*This procedure processes a trapezoid which is part of a bond.
Parameters Passed :

i - pointer to the current input record.
*)

begin
if debug_proc then writeln(debugfo,' Enter Shade Cylinder');
with trap_c, bond_c do
begin

bot_y_bond := bot_y_bond - 16384;
top_y bond := top_y_bond - 16384;
y := Bot_y_bond + isp_c.half_vector_size;
if debug_var then

writeln(debugfo,' Top line type = ',top_line_typ:1,
' Mid line type = ',mid_line_typ:1,
' Bot line type = ',bot_line_typ:1);

p r o c e d u r e s h a d e c y l i n d e r ;

(* Compute parameters using data from last cylinder processed.

(* Compute the y value on the top edge of the cylinder *)

if top line typ in [1. .3] then
case top line typ of
1 : max y scan := top_slope * x + top intercept;
2 : max y scan := (X - top intercept) / top_slope;
3 : (*Do nothing*) ;

end (* of case *)
else writeln('Shade Cylinder - Error in top_',

'line typ = ', top line_typ:l);

(* Compute the y value on the bottom edge of the cylinder *)
if bot_line_typ in [1..3] then

case bot_line_typ of
1 : min_y_scan := bot_slope * x + bot_intercept;
2 : min_y_scan := (x - bot_intercept) / bot_slope;
3 : (*Do nothing*) ;

end (* of case *)
else writeln('Shade Cylinder - Error in bot_' ,

'line typ = ', bot line typ:3);

(* Compute the y value on the line bisecting the cylinder *)
if mid_line_typ in [1..3] then

case mid_line_typ of
1 : begin

mid_y_scan := mid_slope * x + mid_intercept;
continue_shading(i);

end;
2 : begin

mid_y_scan := (x - mid_intercept) / mid_slope;
continue_shading(i);

end;
3 : begin

no_pixels := trunc((top_y_bond - bot_y_bond)
/ isp_c.vector_size) + 1;

if (no_pixels > 0) then shade_vert_seg;
end;

end (* of case *)
else writeln('Shade Cylinder - Error in mid_',

'line_typ = ', mid_line_typ:3);
if debug_proc then writeln(debugfo,' Exit Shade Cylinder')

end;
end (* of procedure shade cylinder *) ;

(*This procedure uses the data computed about the bond to determine
which quadratics must be computed to produce the appropriate
shading for this trapezoid. Different quadratics may have to be
used for different trapezoids on the same bond. However, their
shading must agree where they join.
Parmeters Passed :

i - pointer to the current input record.
*)

var endflag : boolean;
beg in

if debug_proc then writeln(debugfo,1 Enter Continue Shading');
with trap_c, isp_c, bond_c do
begin

endflag := false;
mid_y_scan := amax (amin(mid_y_scan,32767.0), -32767.0);
if debug_var then

begin
writeln(debugfo,' I = ',i;l);
writeln(debugfo,' Bot y bond = ',bot_y_bond:1,

' Top y bond = ',top_y_bond:1);
writeln(debugfo,1 Min y scan = ',min_y_scan:10:4,

' Mid y scan = ' ,mid_y_scan: 10: 4,
' Max y scan = ',max_y_scan:10:4);

end;
mid_y_bond := trunc((mid_y_scan - real_half_vector)

/ real_vector_size) * vector_size;
(* Determine the orientation of the cylinder by the y values

and compute the number of pixels to shade accordingly. *)
if (bot y_bond <= mid_y_bond) then

begTn
if (top_y_bond < mid_y_bond) then

no_pixels := trunc((top_y_bond - bot_y_bond)
/ vector_size) + 1

else
no_pixels := trunc((mid_y_bond - bot_y_bond)

/ vector_size) + 1;
if (no_pixels <= 0) then

endflag := true
else

beg in
if (bot_indicator = 1) then shade_low_horz
else shade_low_vert;
if (top_y_bond > mid_y_bond) then

no_pixels := trunc((top_y_bond - mid_y_bond)
/ vector_size)

else
endflag := true;

end;
end

else
no_pixels := trunc((top_y_bond - bot_y_bond)

/ vector size) + 1;

p r o c e d u r e c o n t i n u e s h a d i n g ;

end

if not endflag then
begin
if (no_pixels > 0) then

if (top_indicator = 1) then shade_hi_horz
else shade_hi_vert;

end;
end (* of with statement *);
if debug_proc then writeln(debugfo,' Exit Continue Shading');
(* of procedure continue_shading *);

This routine computes the length of a horizontal scan line each
time through the loop (i.e. x values) and shades a vertical
segment using horizontal lines.

*)
var j : integer;
beg in

if debug_proc then writeln(debugfo,' Enter Shade Vert Seg');
with trap_cf bond_c do
begin

dicowd (func_select) ;
dicowd(plot_elements + no_pixels);
for j := 1 to no_pixels do

begin
(* Y is constant and shading is along the horizontal line *)

p r o c e d u r e s h a d e v e r t s e g ;
(*

(* Compute x for left edge of cylinder *)
if top_line_typ in [1..3] then

case top_line_typ of
1 : xtop := (y - top_intercept) / top_slope;

2,3 : xtop := top_intercept + y * top_slope;
end (* of case *)

else writeln('Shade Vert Seg - Error in type ',
'of top line = ', top line typ:l);

(* Compute x for bisecting line of cylinder *)
if mid_line_j_typ in [1..3] then

case mTd_line_typ of
1 : xmid := (y - mid_intercept) / mid_slope;

2,3 : xmid := mid_intercept + y * mid_slope;
end (* of case *)

else writeln('Shade Vert Seg - Error in type ',
'of middle line = ' ,mid line. typ:l);

(* Compute x for right edge of cylinder *)
if bot_line_typ in [1..3] then

case bot line_typ of
1 : xBot := (y - bot_intercept) / bot_slope;

2,3 : xbot := bot_intercept + y * bot_slope;
end (* of case *)

else writeln('Shade Vert Seg - Error in type ',
'of bottom line = ', bot_line_typ:1);

if ((x - xmid) * (xbot - xmid) < 0) then
x_exposure := trunc(fs * (1.0 - sqr((x-xmid)

/(xtop-xmid))) + main_c.ad)
else

x_exposure := trunc(fs * (1.0 - sqr((x-xmid)
/ (xbot-xmid))) + main_c.ad);

dicowd(plot_horz + x_exposure);
y := trunc(y + isp_c.real_vector_size);

end (* of for loop *);

end

if debug_var then
begin
writeln(debugfo,' X exposure = ',x_exposure: 1);
writeln(debugfo,' Xbot = ',xbot:10:2,

' Xmid = ' ,xmid : 10: 2,
' Xtop = ',xtop:10:2f ' X = ',x:l);

writeln(debugfo,' Fs = 'rfs:10:2f
' Ad = main c.ad:10:2);

end;
end (* of with statement *);
if debug_proc then writeln(debugfo,'
(* of procedure shade vert seg *);

Exit Shade Vert Seg')

(* ~ ” . .This procedure computes the first value, the first difference,
and the second difference for the quadratic equation and
initializes the shading for vertical scan lines below the
highlight line.

*)
var kl, k2 : integer;

yd, cb : real;
beg in

if debug_proc then writeln(debugfo,' Enter Shade Low Vert');
with trap_c, isp_c, diff_c do
beg in

yd := y - mid_y_scan;
cb := c / sqr(mid_y_scan - min_y_scan);
kl := trunc(c - cb * sqr(yd) + main_c.a);
k2 := trunc(-cb * twice_vector * (yd + real_vector_size));
k3 := trunc(-cb * two_sqr_vect);
if debug_var then

writeln(debugfo, ' No pixels = ',no_pixels:1,
' Kl = ' ,kl:1, ' K2 = ',k2:1,
' K3 = ',k3:1);

dicowd(func_select);
dicowd(plot_line + no_pixels);
quad(kl,k2,k3,no_pixels,cylinder);
y := y + no_pixels * vector_size;

end (* of with statement *);
if debug_proc then writeln(debugfo,'

end (* of procedure shade low vert *);

p r o c e d u r e s h a d e low v e r t ;

Exit Shade Low Vert');

(*
This procedure computes the length of a horizontal scan line
each time through the loop and shades below the highlight line
using horizontal lines. Shading is done from the bisecting
line of the cylinder to it's right edge.

*)
var j : integer;
beg in

if debug_proc then writeln(debugfo,' Enter Shade Low Horz')»
with trap_c, bond_c do
begin

dicowd(func_select);
dicowd(plot_elements + no_pixels) ;
for j := 1 to no_pixels do

begin

p r o c e d u r e s h a d e _ l o w h o r z ;

(* Compute x for the right edge of the cylinder *)
if bot_line_typ in [1..3] then

case bot_line_typ of
1 : xbot := (y - bot_intercept) / bot_slope;

2,3 : xbot := bot_intercept + y * bot_slope;
end (* of case *)

else writeln('Shade Low Horz - Error in type ',
'of bottom line = ', bot line typ:l);

(* Compute x for the bisecting line of the cylinder *)
if mid_line_typ in [1..3] then

case mid_line_typ of
1 : xmid := (y - mid_intercept) / mid_slope;

2,3 : xmid := mid_intercept + y * mid_slope;
end (* of case *)

else writeln('Shade Low Horz - Error in type ',
'of middle line = ', mid_line_typ:l);

x_exposure := trunc(fs * (1.0 - sqr((x-xmid)/(xbot-xmid)))
+ main_c.ad);

x exposure := max_int(min_int(x_exposure,255), 0);
dTcowd(plot_horz + x_exposure);
y := y + trunc(isp_c.real_vector_size);

end (* of for loop *);
if debug_var then

b e g i n
w r i t e l n (d e b u g f o , '
w r i t e l n (d e b u g f o , '

writeln(debugfo,'

X exposure = ',x_exposure:1);
Xbot = ' ,xbot:10:2,

Xmid = ',xmid:10:2,
Xtop = ',xtop:10:2, ' X = ',x:l);

Fs = ',fs:10:2,
Ad = main c.ad:10:2);

end;
end (* of with statement *);
if debug_proc then writeln(debugfo,'

end (* of procedure shade low horz *);
Exit Shade Low Horz');

(* “ “
This routine computes the first value, the first difference, and
the second difference of the quadratic equation and initializes
the shading for vertical scan lines above the highlight line.

*)
var yd, ct : real;

kl, k2 : integer;
beg in

if debug_proc then writeln(debugfo,' Enter Shade Hi Vert');
with trap_c, diff_c, isp_c do
begin

yd := y - mid_y scan;
ct := c / sqr(mTd_y_scan - max_y_scan) ;
kl := trunc(c - ct * sqr(yd) + main_c.a);
k2 := trunc(-ct * twice_vector * (yd + real_vector_size));
k3 := trunc(-ct * two_sqr_vect);
if debug_var then

writeln(debugfo, ' No pixels = ',no_pixels:1,
' Kl = ' ,kl:1, ' K2 = ' ,k2:1,
' K3 = ',k3:1);

dicowd(func_select);
dicowd(plot_line + no_pixels);
quad(kl,k2,k3,no_pixels,shade_hi_v_call);

end (* of with statement *);
if debug_proc then writeln(debugfo,1

end (* of procedure shade hi vert *);

p r o c e d u r e s h a d e h i v e r t ;

Exit Shade Hi Vert');

This procedure computes the length of a horizontal scan line each
time through the loop and shades above the highlight line using
horizontal lines. Shading is done from the left edge to
the bisecting line of the cylinder.

*)
var j : integer;
beg in

if debug_proc then writeln(debugfo,' Enter Shade Hi Horz');
with trap_c, bond_c do
beg in

dicowd(func_select);
dicowd(plot_elements + no_pixels);
for j := 1 to no_pixels do

begin

p r o c e d u r e s h a d e h i h o r z ;
(* - -

(* Compute x for the left edge of the cylinder *)
if top_line_typ in [1..3] then

case top_line_typ of
1 , 2 : xtop := (y - top_intercept) / top_slope;

3 : xtop := top_intercept + y * top_slope;
end (* of case *)

else writeln('Shade Hi Horz - Error in type
'of top line = ', top_line_typ:1);

(* Compute x for the bisecting line of the cylinder *)
if mid_line_typ in [1..3] then

case mid_line_typ of
1 : xmid := (y - mid_intercept) / mid_slope;

2 , 3 : xmid := mid_intercept + y * mid_slope;
end (* of case *)

else writeln('Shade Hi Horz - Error in type ',
'of middle line = ',mid_line_typ:1);

x_exposure := trunc(fs * (1.0 - sqr((x-xmid)/(xtop-xmid)))
+ main_c.ad);

x_exposure := max_int(min_int(x_exposure,255) , 0);
dicowd(plot_horz + x_exposure);
y := y + trunc(isp_c.real_vector_size);

end (* of for loop *);
if debug_var then

begin
writeln(debugfo,' X exposure = ',x_exposure:1);
writeln(debugfo,' Xbot = ',xbot:10:2,

' Xmid = ',xmid:10:2f
' Xtop = ',xtop:10:2, ' X = ',x:l);

writeln(debugfo,' Fs = ',fs:10:2,
' Ad = ', main_c.ad:10:2);

end;
end (* of with statement *);
if debug_proc then writeln(debugfo,' Exit Shade Hi Horz');

end (* of procedure shade hi horz *);

This routine buffers the output to the DICOMED from the program
and handles the buffer manipulation.
Parmeters Passed :

iword - contains DICOMED code
*)

var word, i : integer;
beg in

with dico_c do
begin

word := iword;
if (buff_ptr > buff_len) then

beg in
for i := 1 to buff_len do write(dicofo,' ',bufferl [i]:1);
buff_ptr := 1;
end;

bufferl[buff_ptr] := word;
buff_ptr := buff_ptr + 1;

end (* of with statement *);
end (* of procedure dicowd *);

p r o c e d u r e d i c o w d ;
(*

(*
Quad computes 8 bit exposure codes and concatenates pairs of
these to produce 16 bit words for output to the DICOMED.
Parameters Passed :

kl - initial value of the quadratic equation
k2 - first difference of the quadratic equation
k3 - second difference of the quadratic equation
nw - number of pixels to generate exposure codes for
icall - debugging parameter, identifies calling routine

3 : called from shading control
4 : called from shade low vert
5 : called from shade hi vert

*)
var limit, upper, lower, i : integer;
beg in

limit := (nw + 1) div 2;
for i := 1 to limit do
begin

upper := kl div main_c.shift_op;
kl := kl + k2;
k2 := k2 + k3;
lower := kl div main_c.shift_op;
kl := kl + k 2;
k2 := k2 + k3;
dicowd(256*upper + lower);

end (* of for loop *);
end (* of procedure quad *);

p r o c e d u r e q u a d ;

(*
This routine changes the color filter for the DICOMED and
computes some constants related to color shading.

p r o c e d u r e c h a n g e c o l o r ;

new_color
a
bp
shading
: integer;
real ;

Enter Change Color')

Parameters Passed :
curr color - currently selected color filter

new selection for color filter
used to compute initial value of quadratic
contains limiting range for color exposure
either color or black and white

*)
var iadd

ap :
beg in

if debug_proc then writeln(debugfo,1
with color_c do
beg in

curr_color := new_color;
ap := color_min[new_color,shading];
bp := color_range[new_color,shading];
a := ap * 255 * main_c.shift_op;
iadd := 8 + new_color;
if (shading = b_w) then dicowd(neutral_filt)
else dicowd(iadd);

end (* of with statement *);
if debug_proc then writeln(debugfo,'

end (* of procedure change color *);

eqn.
code

Exit Change Color');

(*
This procedure sends a code to the DICOMED for either color or
black and white shading.
Parameters Passed :

translate mode - either color or black and white
*)

begin
if debug_proc then writeln(debugfo,' Enter Tabout');
if translate_mode in [b_w,color] then

case translate_mode of
color : dicowd(color_translate);
b_w : dicowd(b_w_translate);

end (* of case *)
else writeln('Possible error in Tabout ');
if debug_proc then writeln(debugfo,' Exit Tabout');

end (* of procedure tabout *);

p r o c e d u r e t a b o u t ;

(*This routine empties the remainder of the DICOMED buffer.
*)

var i, limit : integer;
beg in

if debug_proc then writeln(debugfo,' Enter Empty Buffer')?
with dico_c do
begin

if not (buff_ptr = 1) then
beg in
limit := buff_ptr - 1;
for i := 1 to limit do write(dicofo,' ' ,bufferl [i] : 1)
buff_ptr := 1;
end;

end (* of with statement *);
if debug_proc then writeln(debugfo,'

end (* of procedure empty_buffer *);

p r o c e d u r e empty b u f f e r ;

Exit Empty Buffer');

(*
Compute the value of 'no' raised to the power 'exponent'

*)
var abs_power : real;
beg in

if no = 0 then abs_power := 0
else abs_power := exp(ln(abs(no)) * exponent);
if (no < 0) and (trunc(exponent) = exponent)
then if odd(trunc(exponent))

then abs_power := -abs_power;
power := abs power;

f u n c t i o n p o w e r ;

end;

(*A type real maximum function.
Both first and second are real values.

*)
begin

if first > second
then amax := first
else amax := second;

f u n c t i o n amax;

e n d ;

(*
A type real minimum function.
Both first and second are real values.

*)
beg in

if first < second
then amin := first
else amin := second;

f u n c t i o n am i n ;

e n d ;

(*
A type integer maximum function.
First and second are integer values.

*)
begin

if first > second
then max_int := first
else max_int := second;

f u n c t i o n max i n t ;

e n d ;

(*
A type integer minimum function.
First and second are integer values.

*)
begin

if first < second
then min_int := first
else min__int := second;

f u n c t i o n m i n _ i n t ;

e n d ;

procedure close_files
beg in

reset(atomfi);
reset(debug fo);
reset(dicofo);
reset(tablefi);

end;

(* Main Program
Contains the control structure which processes the input on a
record by record basis for a buffer of size, bufsize. Each buffer
is initially processed for color shading and then, it is
reprocessed for the highlights.

*)

begin
with main_c do
begin

writeln(' Program Start')?
open_f iles;
get_options;
Initialize;
eoj ;= false;
shading := color;
while not eoj do

begin
read_buffer(bufsize, ier);
buffer_start := 0;
this_buffer := true;
(* Process the current buffer *)
while this_buffer do

begin
tabout(shading);
curr_color := 0;
i ;= buffer_start + 1;
not done := true;

(* Process the current record *)
while (i <= bufsize) and (not_done) do

begin
if (buffer[i] .atom_bond_no > 0) then

processing := trapezoid
else

processing := buffer[i].atom_bond_no + 6;
(* Call appropriate routines to process this record *)
if processing in [sphere,cylinder,trapezoid,frame,

end_of_job] then
case processing of
sphere : begin

writeln(debugfo,'*** New Sphere');
writeln('*** New Sphere');
process_sphere;
writeln('*** End Sphere');
end;

cylinder : begin
writeln(debugfo,'*** New Cylinder');
writeln('*** New Cylinder');
process_cylinder;
writeln('*** End Cylinder');
end;

trapezoid : begin
writeln(debugfo , '*** New Trap'
wri teln('*** New Trapezo id');
process trapezoid 9
writeln('*** End Trapezo id');
end;

: begi n
wr iteln(debugfo,• *** End of Frame'
wri teln('*** End of Frame');
if (shading = b_w) thien

frame

begin
process frame(i);
if (bufTer_start >= bufsize) then

this_buffer := false;
end;

not_done := false;
writeln('*** End Frame');
end;

end_of_job : begin
writeln(debugfo,'*** End of Job');
writeln('*** End of Job');
not_done := false;
this_buffer := false;
eoj := true;
writeln('*** End of Job');
end;

end (*of case Processing*)
else writeln('Main Program - Processing error ');
i := i + 1;
if (i > bufsize) and (shading = b_w)

then this_buffer := false;
end (* of while i <= bufsize ... *) ;

(* Change the processing switch to do highlights after
color or color after highlights. *)

case shading of
color : shading := b_w;
b_w : shading := color;

end (*of case shading*) ;
end (* of while this_buffer *);

end (* of while not eoj *);
empty_buffer;

end;
close files;

end. (* oT program *)

