
Cheat-Proof Playout for 
Centralized and Distributed 
Online Games

IEEE InfoCom’01 Paper by
Nathaniel E. Baughman and Brian Neil Levine

CPSC 538A Presentation: Georg Wittenburg



Background of the Paper

Authors:
Nathaniel E. Baughman – BS in 1998 @ 
Ohio Northern University

Brian Neil Levine – Professor at
UMass since 1999



What is Cheating?

What is fair?
“[…] an online game is fair if state as perceived by every player is 
consistent with every other player’s expectations, including the
server, as defined by the game rules.”

Cheats take advantage of a technical 
weakness to gain an unfair advantage over 
another player.
Cheats are game (genre) dependant and
implementation dependant.



Some Background on Security

The three major goals of information security 
are:

Confidentiality – Data is protected against spying.

Integrity – Data is protected against manipulation.

Availability – Data (or services) can be accessed.



Some Background on Security

Choices need to be made on how to reach 
these goals.

The most crucial single aspect in this design 
process is what one knows about potential 
attacks.

Hence we need to model the attacker.



Modelling the Attacker

Common characteristics of hackers are:



Modelling the Attacker

Common characteristics of hackers are:
They are incredibly smart.



Modelling the Attacker

Common characteristics of hackers are:
They are incredibly smart.
They dress in black.



Modelling the Attacker

Common characteristics of hackers are:
They are incredibly smart.
They dress in black.
They know Kung-Fu.



Modelling the Attacker

Common characteristics of hackers are:
They are incredibly smart.
They dress in black.
They know Kung-Fu.

So the typical hackers are:



Modelling the Attacker (2)

Attackers are characterized by their 
capabilities:

read, write, and block messages
on parts of the network
on the entire network

modify the client
read and write data on the server
deny service (client or server side)



Centralized and Distributed Games



Attacks and Defenses

Suppress-Correct Cheat
In a dead reckoning environment, gain advantage by 
delaying your actions.

Lookahead Cheat
For simultaneous actions, gain advantage by being the last 
player to decide.

Verifying Secret Possessions
Verify current claims (e.g. possession) based on previously 
secret actions.

Verifying Hidden Positions
Verify information (e.g. a player’s position) without giving 
that information away.



Suppress-Correct Cheat

Bucket implementation, that assumes 
disconnect after n lost packets; compensates 
with dead reckoning.
Delay your replies in a way so that you miss 
only n-1 packets.
In your reply you can take other players’ 
actions into account, thus “seeing into the 
future.”



Lookahead Cheat

In turn-based games, delay your action until 
you have received the actions of all other 
players.
Proposed Solution: Lockstep Protocol

Instead of sending actions, players send a 
cryptographic hash of their intended action.
Only after the hashes of all other players have 
been received, the plain text actions are sent.
This has performance issues as it effectively 
synchronizes all players.



Lookahead Cheat - Optimization

Optimization: Only synchronize with players 
whose actions can affect you.
Model possibility of interaction with “Spheres 
of Influence”:



Lookahead Cheat – Optimization (2)

Based on current position / state, the number 
of steps is calculated that it takes to reach 
another player’s sphere of influence.
Gameplay proceeds asynchronously until 
spheres intersect or could intersect during the 
next turn.
Players with intersecting spheres synchronize 
as before.
Additional benefit: Packets may be lost as 
long as spheres have a safe distance.



Performance Analysis



Verifying Secret Possessions

Players need to verify that their current state 
was reached by legal means, e.g. to have 
item X, you need to find it in the past.
Proposed Solution:

Have a designated entity (“Logger”) store 
cryptographic hashes of critical parts of a player’s 
current state.
Make this information available when required in 
the future.



Verifying Hidden Positions

A piece of information (e.g. player’s position) 
needs to be compared without revealing it.
Proposed Solution: Basic Cryptography

Use a commutative cryptosystem.
Exchange random numbers, XOR them, add 
secret, encrypt, and trade results.
Due to commutative nature of the cryptosystem, 
repeated encryption with own key will yield a 
comparable value.



Conclusion

Four attacks / problems were discussed.

Three solutions were proposed.

One solution was evaluated extensively.



Evaluation

The process of cheating was not modelled, 
the definition of fairness is weak.
The description of possible attacks is helpful.
The proposed solutions have merit, pending 
evaluation on a wider variety of games.
As a side note, I had problems with scope 
and structure of the paper.



References

SySL Reading Group Presentation by Chris 
Chambers @ OGI 
www.cse.ogi.edu/sysl/readings/slides/CheatProof.ppt

“Cheatproof Playout Summary” by Chris 
GauthierDickey @ UOregon
www.cs.uoregon.edu/~chrisg/summaries/baughman01.pdf



The End



Discussion


	Cheat-Proof Playout for Centralized and Distributed Online Games
	Background of the Paper
	What is Cheating?
	Some Background on Security
	Some Background on Security
	Modelling the Attacker
	Modelling the Attacker
	Modelling the Attacker
	Modelling the Attacker
	Modelling the Attacker
	Modelling the Attacker (2)
	Centralized and Distributed Games
	Attacks and Defenses
	Suppress-Correct Cheat
	Lookahead Cheat
	Lookahead Cheat - Optimization
	Lookahead Cheat – Optimization (2)
	Performance Analysis
	Verifying Secret Possessions
	Verifying Hidden Positions
	Conclusion
	Evaluation
	References
	The End
	Discussion

