
Sync-MS: Synchronized Messaging Service for Real-Time Multi-Player
Distributed Games

Yow-Jian Lin
Department of Computer Science

State University of New York, Stony Brook
yjlin@cs.sunysb.edu

Katherine Guo Sanjoy Paul
Center for Networking Research

Lucent Bell Labs
�kguo, sanjoy�@bell-labs.com

Abstract

Real-time, online multi-player games are becoming in-
creasingly popular due to advances in game design and the
proliferation of broadband Internet access. However, fair-
ness remains a major challenge when players over large ge-
ographic areas participate in a client-server based game to-
gether. This paper proposes a game-independent, network-
based service, called Sync-MS, that balances the trade-off
between response time and fairness. Sync-MS uses two
mechanisms, Sync-out and Sync-in, to address state update
fairness and player action fairness, respectively. Two met-
rics, ahead and behind measured against the fair order, are
defined to evaluate Sync-MS’s fairness performance. Sim-
ulation results show that Sync-MS dramatically improves
player action fairness for all players while slightly in-
creases average response time for players with shorter net-
work delay to the game server.

Key Words: online multi-player games, real-time, fair-
ness, response time, network delay.

1 Introduction

This paper describes a value-added service that supports
real-time, online multi-player distributed games using ad-
vanced networking technologies. Real-time, multi-user dis-
tributed applications, such as online multi-player games or
distributed interactive simulations (DIS), are becoming in-
creasingly popular due to advances in game design and the
proliferation of broadband Internet access such as DSL and
cable modem. When players over a wide geographic area
play a game together, however, variants in their network
performance (such as delay) pose a major fairness chal-
lenge. Currently each game application deals with these
variants at the application level, a practice that yields drasti-
cally different and often unsatisfactory gaming experiences.
To gaming network service providers, better network sup-

port for more consistent gaming performance could not only
attract more subscribers, but also keep them on the network
longer, both lead to larger revenue.

Most online multi-player games today are implemented
based on a client-server model instead of a peer-to-peer
model [3, 4, 6]. In the client-server model, an authorita-
tive game server is set up and all players or clients logon
to this game server to play the game against one another.
Player actions are forwarded from each player station to the
game server in action messages. The game server then pro-
cesses the actions in sequence, and notifies player stations
of the effects of their actions in state update messages or
simply update messages. The only communication in the
system is between the game server and player stations. Be-
cause of the real-time nature of these games, the majority
of action and update messages are sent over UDP. To up-
date states timely, dead reckoning is a technique commonly
used to compensate for late arrival or lost packets [14, 7].

We identify two fairness issues in client-server based on-
line multi-player games. One concerns the fairness among
players in accessing state updates. Since players may ex-
perience different network delays in receiving the same
state update from the game server, some players can take
early actions against the latest update before others have
chances to react. The other concerns the order that the game
server processes action messages from players. Action mes-
sages from a player further away from the game server or
connected to the server through congested links may take
longer time to reach the server. Without compensating for
execution environment differences, the server will process
these messages out of the order of their real-time occurrence
with respect to state changes.

An improved network support for better fairness in on-
line multi-player games must synchronize the delivery of
one-to-many update messages from the server to all play-
ers. At the same time, for action messages coming back
from players to the server, it must deliver the messages to
the server based on the order these messages react to global
state updates. To be game-independent, the support should

not require the use of any data embedded in application
messages.

1.1 Sync-MS Solution

We propose a network support service called Sync-MS
(Synchronized Messaging Service). Sync-MS addresses
two fairness issues of online multi-player games, namely:
state update fairness, and player action fairness. Note that
Sync-MS does not attempt to shorten message delay for
each player station; delay reduction could come from ad-
vances in CPU, link speed, or some game specific features.

State update fairness means that all players should re-
ceive each game state update from the game server at the
same time. When an update message arrives at some player
stations before others, Sync-MS uses a Sync-out mechanism
to properly queue up the message at the player stations and
deliver it to the game application only after the same update
message has arrived at all player stations. As a result, all
players can react to the same global state fairly.

Player action fairness means that the game server will
process action messages from all player stations in a fair
order based on their real-time occurrence1. Because ac-
tion messages from different players exhibit different de-
lays to reach the server, Sync-MS uses a Sync-in mecha-
nism to enforce a sufficient waiting period on each action
message dynamically in order to guarantee fair processing
of all action messages. In reality, the waiting period at the
server is bounded because of the real-time nature of interac-
tive games. We propose several Sync-in algorithms that can
trade higher delay at some players against improved fairness
among all players.

Sync-MS is designed to be transparent to real-time,
multi-user distributed applications, and is well suited for
the type of online multi-player games such as client-server
based, first person shooter games and role playing games in
which a fair order of player actions is critical to the out-
come. Sync-MS provides better overall fairness without
degrading the perceived interactive nature of online multi-
player games.

The rest of the paper starts with a description of related
work in Section 2, and the system model for online multi-
player games in Section 3. Section 4 describes the Sync-
out mechanism for state update fairness, and Section 5 the
Sync-in mechanism for player action fairness. The simula-
tion results of various Sync-MS mechanisms are evaluated
in Section 6, followed by concluding remarks in Section 7.

1This requires synchronized clocks, which is the assumption we make
in Section 3.

2 Related Work

Borella [5] and Färber [6] are a few that have studied net-
work game traffic models. In first person shooter games, the
study found that the inter-arrival time of action messages in
client traffic has the characteristics of either extreme values
or deterministic distribution, or a combination of both. The
parameters of distribution for each client vary depending on
the type of hardware used. The server traffic, mainly update
messages, also follows an extreme value distribution.

Regarding the impact of delay on game players, Ar-
mitage [2] suggests that a round-trip delay of more than 150
ms could lead to un-smooth gaming experience for play-
ers. IEEE DIS (distributed interactive simulation) standards
specifies that a round-trip delay of 100–300 ms is appro-
priate for military simulations [9]. From empirical results
of user behaviors, Henderson [8] concludes that application
level delay, in other words, response time is in the range of
50–300 ms for most players in first person shooter games.

Bernier [3] discussed latency compensating methods
commonly used in client-server based first person shooter
games. The methods used are at the application level, and
are proprietary to each game. These methods are compli-
mentary to our Sync-MS in the sense that they are aimed at
making large delays and message loss tolerable for players.

The fairness issue has been addressed in the form of con-
sistency in peer-to-peer model. MiMaze [7, 13], an online
multi-player game, uses a bucket synchronization mecha-
nism. To overcome message delay variants (for delays up
to 100 ms), all player stations process each message in the
sampling period 100 ms after its sending time. The bucket
approach for player stations to process and display latest
states “at the same time” is similar to the playout buffer
mechanism used in delivering packet audio. Mauve [11]
describes a local lag concept in networked games and dis-
tributed virtual reality applications. Participants delay their
local actions for at least the maximum of average network
delays between any two participants in order to minimize
missing any remote actions in transient. In contrast, Sync-
MS deals with client-server based games. The Sync-out
mechanism for broadcast messages from the server to all
clients is similar to the other two, except that the server is
the one dictating the delivery time dynamically. For order-
ing messages from many clients to one server, since in the
Sync-in mechanism the server is the only decision maker, it
can better balance the trade-off between delay and fairness
without concerning consistency. Synchronizing the trade-
off will be difficult in peer-to-peer model.

3 System Model

This section describes the framework for client-server
based multi-player games with Sync-MS support. As de-

Internet

GS: Game Server
P: Player Station
SMS: Sync-MS Server
SMC: Sync-MS Client

GSP

P
P

P

P
P Internet

GSP

P
P

P

P
P

SMC

SMS

SMC
SMC

SMC

SMC

Figure 1. System model for Sync-MS for on-
line multi-player games

picted in Figure 1, Sync-MS Client (SMC) and Sync-MS
Server (SMS) refer to network support modules that inter-
act with player station and game server applications, re-
spectively. They are responsible for delivering messages to
game applications in a synchronized and fair fashion. The
modules can be collocated with game applications on the
same host, or they can run on the edge routers that the hosts
are connected to (provided the network delay from a host to
its respective edge router is compensated in the algorithm).
Communication between the game server and player sta-
tions must pass through their associated SMS and SMCs.
We assume that hosts and edge routers are capable of iden-
tifying and redirecting game service subscribers’ data traffic
to Sync-MS support modules based on some packet classi-
fication schemes. Each player station is connected to an
SMC, and each SMC can serve multiple player stations.

We assume that hosts and routers have synchronized
clocks using Network Time Protocol (NTP) [12] or Global
Positioning Systems (GPS). This paper concentrates on the
interaction between the SMS and SMCs, and assumes that
the game server and player stations have negligible message
delays to their directly connected SMS and SMCs.

SMC1

Player Station 1

SMC2

Player Station 2

Game Server
SMS

1

2

4

3

time

tupdate

U1

A1

A2

U2

�1 : ��������� �3 : ���������	�
 ��: Update message
�2 : �������� �4 : Action response time ��: Action message

Figure 2. Message passing sequence in
client-server model with Sync-MS support

Figure 2 presents a message passing sequence for Sync-
out and Sync-in mechanisms in Sync-MS. Detailed descrip-
tions of both mechanisms will follow in Sections 4 and 5.

Sync-out is for synchronized delivery of state update

messages to all player stations through SMCs. Typically
the game server sends periodical update messages to all
player stations. The update period ������� could be 40 ms
for a smooth showing of game states at 25 frames per sec-
ond [13], or a configurable value such as 50–200 ms in the
Quake game [4, 15]. For each update message, SMS deter-
mines how to accomplish Sync-out based on its knowledge
of one-way delays from itself to SMCs. Mark �1 in Fig-
ure 2 indicates the added delay ����	�
�� due to Sync-out.

Sync-in concerns fair delivery order of action messages
to the game server. Players respond to state updates with
action messages, which arrives at the SMS through SMCs.
Upon receiving an action message, the SMS must decide
how long it needs to hold on to the message before deliver-
ing it to the game server for Sync-in. For example, in Fig-
ure 2, the sending time of �� from Player Station 2, com-
paring to that of �� from Player Station 1, is closer to the
arrival time of update message ��. It implies that Player 2
reacts to the same update faster. Hence, the SMS should not
deliver �� until it has received and delivered ��, which we
term a fair order (cf. Section 6.1.1 for a precise definition
of fair order proposed in our study). Mark �2 in Figure 2
represents the added delay ����	��� due to Sync-in.

The effect of an action message is unknown until the
game server announces it in the next update message. Mark
�3 in Figure 2 refers to the time lag ����	������� due to
periodical state updates.

A player station will not realize the effect of an action
message until it receives a state update message containing
the effect. We define the response time of an action message
to be the time interval between the moment an SMC sends
the action message and the moment the SMC delivers the
update message that contains the effect of the action. Re-
sponse time consists of five parts: network delay from SMC
to SMS; Sync-in delay ����	���; the time lag at SMS due
to state update ����	�������; network delay from SMS to
SMC; and Sync-out delay ����	�
��. Mark �4 in Figure 2
indicates the response time of action message��. Note that,
because the effect of �� can only appear in the next period-
ical update ��, the added Sync-in delay does not increase
��’s response time. However, with Sync-in, message ��

will receive the added benefit of fair ordering. In general,
the response time of an action message could increase in
multiples of �������, with the value of � ��������

�����	

� � �������

in the worst case.
We assume that each update message sent by the SMS in-

cludes a tag of the scheduled delivery time. An SMC must
deliver each update message no earlier than the time speci-
fied in the tag for Sync-out. We also assume that all SMCs
will timestamp each action message they send to the SMS
with the message sending time, so that the SMS can use it
as the basis for Sync-in. The tagging does not depend on
any game specific data embedded in the messages, which

makes the proposed approach game-independent.

4 Sync-out

The goal of the Sync-out mechanism is for all SMCs to
deliver each update message to all player stations simulta-
neously. For each update message from the game server
to the player stations, the SMS selects a delivery time, and
SMCs enforce the delivery schedule.

The SMS chooses a delivery time for each update mes-
sage based on an up-to-date information it maintains about
one-way delay from itself to every SMC. Upon receiving an
update message � from the game server at time �, the SMS
chooses a delivery time � � ��� for �, where� is greater
than the longest one-way delay. It then tags the message �
with the time � and forwards � to all SMCs. The SMS can
use network delay measurement algorithms [1] to acquire
delay information, or rely on the delay guarantees offered
through quality assured services.

With the clocks at the SMS and SMCs synchronized,
each SMC simply uses its local clock to schedule the de-
livery of update messages received from the SMS. Assume
the update message � with a delivery time tag � arrives at
an SMC � at time �� . If �� � � , SMC � delivers the packet
at time � . Occasionally, an update message may arrive at
an SMC later than the time specified in the delivery time
tag. In such cases, the SMC may deliver the update mes-
sage without further delay, discard the late message, or take
other actions depending on specific applications. SMCs
can discard late packets because real-time gaming applica-
tions have built-in mechanisms to handle late packets or lost
packets [3].

5 Sync-in

The SMS runs a Sync-in mechanism to deliver the action
messages it receives from SMCs fairly to the game server.
We propose three different Sync-in algorithms; each offers
a different trade-off between the action response time of in-
dividual SMCs and the fairness among all SMCs.

For simplicity, we assume there are � SMCs in the sys-
tem, and each �	
�, � � � � �, handles only one player
station. The SMS keeps track of estimated one-way action
message delay, ����, from �	
� to the SMS. For each ac-
tion message � it receives, the SMS retrieves the sending
time ��� from A’s tag, and notes the receiving time ����.

Figure 3 illustrates the concepts of waiting period in a
Sync-in execution. Assume that an update message �� sent
by the SMS has reached three SMCs, �	
�, �	
� and
�	
� at the same time �� by virtue of Sync-out. �	
�

does not react to state updates in ��, whereas �	
� and
�	
� react by sending action messages�� and�� at time

SMS

SMC1

SMC2

SMC3

�2

�3

t1 t3 t2 t2+W time

A2
A3

W for A2

U1

Figure 3. Waiting period in Sync-in

�� and �� respectively. Because �	
� reacts to the state
update faster (Æ� � Æ�, and thus �� � ��), the SMS should
deliver �� to the game server ahead of ��, even though
it receives �� first. To do so, the SMS let �� wait in a
delivery queue until it is reasonably sure it has received all
earlier action messages (such as ��) from other SMCs. We
define the waiting period for an action message � to be the
time from the sending time ��� of � till the time the SMS
is ready to deliver � to the game server.

The Sync-in objective is to deliver action messages to
the game server based on when SMCs generate the actions
with respect to state updates. With a Sync-out mechanism
in place for state update fairness, the SMS can simply de-
liver action messages based on their sending time tag, which
reflects their fair oder.

The SMS implements a Sync-in algorithm as follows.
It maintains a queue of received action messages that are
pending for delivery to the game server.The messages in the
queue are sorted based on their sending time in ascending
order. Let � be the head message in the queue and ���
be its sending time. The SMS decides a waiting period �
for � . If � is still the head message at time ��� �� ,
then the SMS takes it out of the queue and delivers it to the
game server. Otherwise, the SMS repeats the same to the
new head message. The three proposed Sync-in algorithms,
MaxWait, SelectWait, and TossWait differ in the choice of
the waiting period � for the message at the head of the
processing queue.

5.1 MaxWait

MaxWait is a straightforward, conservative Sync-in al-
gorithm. By choosing� � � � max�����������, the
longest one-way delay from all SMCs to the SMS, the SMS
can deliver the head message� at time ����� , and be
reasonably sure that it has received and delivered all action
messages sent to it from any SMC earlier than ���.

There is no guarantee that waiting for � will always
be long enough to cover all network delay cases. Occasion-
ally a newly arrived message may be sent earlier than the
last delivered message. The algorithm considers the new
message too late to be processed in a fair order.

5.2 SelectWait

SelectWait is more aggressive in delivering action mes-
sages. The idea is to wait for messages from only the subset
of SMCs that can generate earlier actions.

We observe that each SMC takes some time to send
consecutive action messages. This time interval could be
either due to player station hardware or enforced by net-
work support modules. Let ���� be the time between ac-
tions of �	
�, and ���� be the sending time of the last
known action message sent by �	
�. The SMS con-
cludes that �	
� will not send another action message un-
til some time after ���� � ����. Hence, for the head mes-
sage � in the queue, SelectWait chooses � � �� �
max���������� � ���� � ���� � � � � ��. Thus, it con-
siders only the ���� values of those SMCs that could have
generated actions earlier than the sending time of� .

Since the waiting period selection is now based on the
message delay of a subset of SMCs, the average added de-
lay ����	��� of SelectWait is shorter compared to that of
MaxWait. Nevertheless, since SelectWait explores the time
gap between action messages and is not a random guess,
the algorithm does not compromise much to the overall fair-
ness. When the data about the time between actions ���� are
accurate, SelectWait could achieve the best fairness possible
with the least added Sync-in delay.

5.3 TossWait

TossWait is a probabilistic approach to the selection of
waiting period. As stated earlier, even the use of � in
MaxWait cannot guarantee the delivery of action messages
in 100% fair order. TossWait seeks to add unfairness ran-
domly in exchange for better action responsiveness.

Assume that the current head message is � , with its re-
spective sending and receiving time ��� and ����. Note
that MaxWait chooses a waiting period � � � �
max����������� and delivers the message � at the time
����� . Therefore, any choice of� , ����� ��� �
� � � , can yield some measure of fairness. The closer
the value of � is to ���� � ���, the lower is the added
Sync-in delay and hence the better is the average response
time. On the other hand, choosing a � closer to � im-
proves fairness for the players with longer message delays.

One simple way to choose the waiting period � in
TossWait is to select a value between ���� � ��� and
max����������� with a uniform probability distribution.
The simple strategy, nonetheless, may be extremely unfair
to the module�	
� with the longest message delay ����.
Because of the uniform distribution, the probability of the
SMS choosing � � ���� as a waiting period is close to
0. As a result, most of the time the SMS will have delivered
the messages it received from other SMCs before it receives

the one sent at about the same time by �	
�.
We propose to select waiting periods using a proba-

bility function on percentile one-way message delay of
SMCs. Let ����� be the � ��-percentile delay values,
that is, ���-percentile of ����, � � � � �, are less
than or equal to �����. The SMS then follows a set of
percentile-probability pairs, called toss vector of the form
���� � ����

�
� �� � �����, and uses � � ������ ��-

percent of the time. Note that MaxWait is an extreme in-
stance �������� ������ of this TossWait strategy.

Given a set of ��� � ��� pairs, we expect any SMC whose
message delay is less than ����� will be treated fairly�

������
��� of the time. For example, with a toss vector

�(100��,50%) (90��,30%) (80��,20%)�, the SMS running
TossWait should treat a SMC with 85�� percentile message
delay fairly 30%+50%= 80% of the time.

6 Performance Evaluation

This section presents performance results of the Sync-
MS mechanisms in client-server based, first person shooter
games. The results are acquired by simulating message ex-
changes between 10 player stations and a dedicated server
using Matlab [10]. The server sends out update messages
every 40 ms. The inter-arrival time of action messages
generated by each player station follows an extreme value
distribution [5]. We assume the one-way message delay
between the SMS and each SMC is symmetric and expo-
nentially distributed. We also assume the delay between
each player station and its corresponding SMC is negligi-
ble, same is the delay between the sever and the SMS.

Table 1 summarizes the parameters used in the experi-
ments. We use the terms “player” and “player station” in-
terchangeably, given that commonly there is an one-to-one
relationship between them. To evaluate the effectiveness of
Sync-MS on a variety of network delays, we assign mean
delay values to players almost uniformly from 4 to 30 ms.
Players with smaller IDs have shorter delay mean values.
The low-end mean values simulate players residing in the
same LAN environment as the server, whereas the high-end
ones represent players being some distance away from the
server or using low speed connections. Their delay variance
is roughly proportional to the delay mean, and is small to re-
flect the assumption that game service providers offer qual-
ity network service. Players having the same action mes-
sage inter-arrival time signifies their use of similar player
station hardware. We have run experiments with various
mixes of delay and inter-arrival time parameters and found
minor differences from the results presented here.

Table 2 lists the combination of algorithms simulated in
each run. TossWait1 uses a toss vector [(100��, 50%) (50��,
30%) (10��, 20%)], which means that maximum delay is
used for waiting period 50% of the time, �� �� percentile

Player 1 2 3 4 5 6 7 8 9 10

Message Delay Mean 4 6 8 10 11 15 20 25 28 30
(between SMS & SMC) Variance 0.8 0.8 1 1 1 1 1 2 2 2
Action Message Mean 18 18 18 18 18 18 18 18 18 18
Inter-arrival Time Variance 1 1 1 1 1 1 1 1 1 1

Table 1. Message delay and action message inter-arrival time parameters (in ms)

No Sync-in With Sync-in

No Sync-out NsoNsi NsoWsi (MaxWait Sync-in)

With Sync-out WsoNsi
MaxWait, SelectWait,
TossWait1, TossWait2,
TossWait3

Table 2. Combinations of algorithms

delay is used 30% of the time, and so on. TossWait2 uses a
toss vector [(100��, 30%) (50��, 70%)], and TossWait3 uses
[(100��, 20%) (30��, 30%) (10��, 50%)].

In each experimental run, we first generate a sequence
of update messages sent by the SMS throughout the simu-
lation time. Each update message has its respective sending
time at the SMS and its delay time to each SMC, with the
first update message being sent at time 0. We also generate
for each player (thus each SMC) a sequence of action mes-
sages. Each action message has its sending time relative to
time 0 and its delay time to reach the SMS. For each algo-
rithm combination in the run, the message sending time of
this action message sequence is then time-shifted based on
the arrival time of the first update message to produce the
sending time of action messages for the combination. Note
that all simulated combinations in a run share the same up-
date message sequence. However, depending on whether
a combination includes Sync-out, and whether we use es-
timated or exact delay when Sync-out is simulated, the ar-
rival time of the first update message at each SMC might be
different for different combinations, resulting in different
sending time for each action message sequence. Neverthe-
less, these action message sequences share the same delay
and inter-arrival time characteristics, which enables us to
compare various proposed algorithms.

We ran five runs of each algorithm combination. The
simulation time for each run is 80,000 ms, long enough for
each player to send more than 4,000 action messages. The
SMS processes over 40,000 action messages for each simu-
lated combination. The results are the average of five runs.

6.1 Terms and Definitions

This section provides detailed description of terms crit-
ical to the evaluation of Sync-MS mechanisms. See Sec-
tion 3 for the definition of terms such as response time.

time

Player Station

SMS

Game Server

SMC

A1 A2 A3

U1 U2

Figure 4. Identifying the respective update
message

6.1.1 The Fair Order of Action Messages

The fair order of action messages is based on their virtual
sending time, which we derive from the actual sending time
of each action message with respect to the arrival time of up-
date messages. One key question is which update message
we should relate to for each action message. To answer it we
look closely into how games are implemented. According
to Bernier’s description [3] of a generic client’s frame loop
(running at a player station), a client checks for new arrival
of update messages immediately after sending out an action
message. If an update message were not readily available by
then but arrived later during the same frame loop, the client
would not render the update in the next frame. As a result,
the actions collected and sent during the next frame will be
based on the previous update extrapolated over simulation
time.

Figure 4 illustrates the point. The three gray bars depict
three frame loops run at a player station, whereas the three
bullets signify the time the player station attempts to read
update messages sent by the server. After the player sta-
tion sends action message �� and is ready to read update
messages, only �� is available. Hence, the scene rendered
during the first bar is based on ��, which is also the one
that actions in �� act upon. Similarly, the actions included
in �� are based on the scene rendered during bar 2, after
the player station sends out �� and reads �� from its input
queue. We call the update message � that an action mes-
sage � is based on the respective update message of �, and
label it ������. For example, in Figure 4, ������� � ��,
and ������� � ��.

We define the virtual sending time of an action message
�� to be ������ � ����� ������������ ����������,

Delivery Order 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Fair Order 16 18 19 15 20 17 22 23 14 24 25 26 27 28 21
Ahead -2 -3 -3 -1 -2 -1 -2 -2 -1 -1 -1 -1 -1
Behind 3 3 8 7

Table 3. An example of the ahead and behind measures

where ��� and ���� are the sending and receiving time
of message �. That is, the virtual sending time of an ac-
tion message effectively were the action time should the
respective update message take zero delay. The fair order
among action messages follows naturally based on their vir-
tual sending time.

6.1.2 The Ahead and Behind Measures

The proposed ahead and behind measures are for evaluating
the fairness among delivery orders generated by different
combinations of algorithms. An action message is behind
by � steps in a delivery order if � action messages behind it
in the fair order are delivered ahead of it. Similarly, an ac-
tion message is ahead by � steps if � action messages ahead
of it in the fair order are delivered behind it. Note that an
action message could be � messages ahead and � messages
behind at the same time, over different sets of messages.
Table 3 is a sample of ahead and behind measures taken
from an experimental run. Each column corresponds to an
action message from some player, with its delivery order
at the SMS, its calculated fair order, and its ahead and be-
hind measures. The sender and the ID of each message are
irrelevant here and are omitted. For example, the 15th mes-
sage in terms of the fair order, delivered as the 17th in the
delivery order, is one message ahead (of the 14th fair or-
der message, delivered at 22nd place) but three messages
behind (the 16th, 18th, and 19th fair order messages).

By summarizing the percentage of behind messages for
each player, we can compare how unfairly each player has
been treated by the server. Similarly, the percentage ahead
measure indicates how often a player’s action messages
have been taking advantage of others’.

6.1.3 Delay and Inter-arrival Time Estimation

In simulating both Sync-out and Sync-in mechanisms,
the algorithms must compute expected delay between the
SMS and each SMC as well as, in the case of Select-
Wait, the inter-arrival time of action messages. We use
an exponential-weighted window average on the one-way
delay of past messages from and to �	
� to derive the
present mean and variance. Given its current delay mean
�����, and variance ����, the most recent message delay
� and its variance ���� �� ������� �, we first update the

mean and variance

����� � ��� �������� � �� �

���� � ��� ������� � � � ����

The estimated delay � is then � � ����� � � ����,
where is a scale function based on the latest variance
����. We use � � �

�
, � � �

�
, and

 �

��
�

� if ���� ! ����

	 if �

�
���� � ���� � ����

� otherwise

The estimation of action message inter-arrival time follows
similar approach. To exclude the effect of inaccurate esti-
mation in our study, we also run experiments based on the
exact delay of each message.

6.2 Simulation Results

6.2.1 General Results

Figures 5(a) and 5(b) illustrate the fairness improvement
due to various Sync-MS mechanisms. The results are the
average of five runs using estimated delay and inter-arrival
time for each combination of algorithms listed in Table 2.
As noted in Table 1, message delay between the SMS and
SMCs increases as player ID increases. With both Sync-in
and Sync-out of Sync-MS, the fairness improves dramati-
cally over the no Sync-MS case (NsoNsi). As shown in Fig-
ure 5(a), players with shorter delays, such as players 1 to 5,
experience almost no messages being delivered behind. At
the same time, Figure 5(b) shows that only a small portion
of their messages (less than 10%, except in TossWait2 and
TossWait3) are taking advantage of others and being deliv-
ered ahead. Players with longer delay receive much fairer
treatment as well. For example, in Figure 5(a), Player 10
only has 7% of messages being delivered behind with Se-
lectWait Sync-in, as opposed to 100% behind without Sync-
out or Sync-in (NsoNsi). The lines in Figures 5(a) and 5(b)
representing NsoNsi, NsoWsi and WsoNsi cases also show
that either Sync-out or Sync-in alone has marginal improve-
ment. However, overall fairness improves significantly, if
both update and action messages are delivered fairly.

To accomplish this kind of fairness, Sync-MS increases
the response time of players that exhibit shorter message

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10

Player

%
 A

ct
io

n
M

es
sa

ge
s

NsoNsi NsoWsi WsoNsi MaxWait
SelectWait TossWait1 TossWait2 TossWait3

(a) Behind measures

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10

Player

%
 A

ct
io

n
M

es
sa

ge
s

NsoNsi NsoWsi WsoNsi MaxWait
SelectWait TossWait1 TossWait2 TossWait3

(b) Ahead measures

Figure 5. Comparison of fairness measures
(estimated delay and inter-arrival time used
in both Sync-in and Sync-out)

delay. Each line in Figure 6 depicts the average response
time of action messages sent by each player over the five
runs. MaxWait increases the average response time of all
players to the same value which is the maximum response
time across all players. Other Sync-in algorithms improve
upon the average response time of MaxWait at the expense
of a slight decrease in fairness compared to MaxWait, as
shown in Figures 5(a) and 5(b). However, as long as the
average response time is still within an acceptable range of
network gaming (for example, a delay bound of 100–300
ms for distributed interactive simulation [9]), this is a rea-
sonable trade-off. Notice MaxWait has its limitations. If
certain players have a response time higher than the tolera-
ble threshold of game players (300 ms), MaxWait will slow
down every player to the maximum response time. Select-
Wait and TossWait are still applicable in this scenario, be-
cause they can lower the average response time by sacrific-
ing fairness for the players with longer delays.

As shown in Figures 5(a), 5(b) and 6, among different
Sync-in mechanisms, SelectWait constantly exhibits fair-
ness performance slightly lower than but close to MaxWait,
with shorter average response time across all players. For
each player, TossWait1, TossWait2 and TossWait3 in that

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Player

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

NsoNsi NsoWsi WsoNsi MaxWait
SelectWait TossWait1 TossWait2 TossWait3

Figure 6. Average response time (estimated
delay and inter-arrival time used in both Sync-
in and Sync-out)

order, exhibits increasing percentage of messages delivered
out of fair order, but decreasing average response time.
Therefore we can see that with different toss vectors, Toss-
Wait can strike a balance between average response time
and fairness. Note that the average response time of Select-
Wait is the best possible given the most fair delivery order
possible. As shown in Figure 6, with a toss vector such as
the one used by TossWait3, TossWait can even have better
average response time than that achieved by SelectWait for
players with shorter delay (players 1 to 5) 2. However, Toss-
Wait3 did so by delivering more messages out of fair order
for all players than SelectWait did.

Performance of Sync-MS depends on estimated message
delay. In these five experimental runs, we chose a more
conservative delay estimation for Sync-out (� �) than
the one for Sync-in (� �, 2, or 4 based on current delay
variance). That explains why in Figure 6 the response time
of WsoNsi is slightly longer than that of NsoWsi.

6.2.2 SelectWait vs. MaxWait

SelectWait gears toward the best possible average re-
sponse time without sacrificing the fairness achievable by
MaxWait. Figures 7(a) and 7(b) compare average response
time and message behind percentage of both SelectWait
and MaxWait. In this comparison, the Sync-out portion
is based on exact delay knowledge so that the delivery of
each update message is perfectly synchronized. Estimate
and Exact differentiate whether Sync-in is based on esti-
mated or exact action message delay information. In ad-
dition, for SelectWait it also indicates whether the inter-
arrival time of action messages from each player is esti-
mated or known. As shown in Figure 7(a), SelectWait im-

2This conclusion depends on the delay profile of different players. We
have simulated other environments where most players are in the same
LAN as the server and thus have shorter action message delays, and Se-
lectWait exhibits better average response time compared to TossWait3.

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6 7 8 9 10

Player

R
es

po
ns

e
T

im
e

(m
s)

MaxWait/Estimate SelectWait/Estimate
MaxWait/Exact SelectWait/Exact

(a) Average response time

0%

1%

2%

3%

4%

5%

6%

7%

8%

1 2 3 4 5 6 7 8 9 10

Player

%
 A

ct
io

n
M

es
sa

ge
s

MaxWait/Estimate SelectWait/Estimate
MaxWait/Exact SelectWait/Exact

(b) Behind measures

Figure 7. SelectWait vs. MaxWait (with exact
delay information used in Sync-out)

proves average response time over MaxWait for all players,
and the improvement is significant for players with shorter
delays. Naturally, in terms of average response time, Select-
Wait/Estimate performs better than MaxWait/Estimate. In
the scenario we have simulated, SelectWait/Estimate even
outperforms MaxWait/Exact. In terms of the behind mea-
sures shown in Figure 7(b), SelectWait/Estimate exhibits
slightly higher percentage for players with longer delays
due to estimated inter-arrival times. With exact inter-arrival
time and exact delay information for Sync-in, Figure 7(b)
also shows that SelectWait/Exact matches MaxWait/Exact
completely in delivering fairness.

6.2.3 The Impact of Toss Vectors

While both MaxWait and SelectWait are for achieving the
best possible fairness, subject to the accuracy of their de-
lay and inter-arrival time estimation, TossWait allows us to
tune the trade-off between average response time and fair-
ness through toss vectors. Figures 8(a) and 8(b) compare the
performance of TossWait for different toss vectors. Recall
that TossWait1 uses a toss vector [(100��, 50%) (50��, 30%)
(10��, 20%)], which means that maximum delay is used for
waiting period only 50% of the time, and so on. TossWait2

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6 7 8 9 10

Player

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

TossWait1 TossWait2 TossWait3

(a) Average response time

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10

Player

%
 A

ct
io

n
M

es
sa

ge
s

TossWait1 TossWait2 TossWait3

(b) Behind measures

Figure 8. TossWait performance (with exact
delay information used in Sync-out and esti-
mated delay information used in Sync-in)

uses the toss vector [(100��, 30%) (50��, 70%)], and Toss-
Wait3 uses [(100��, 20%) (30��, 30%) (10��, 50%)]. To
minimize the unfairness introduced by Sync-out, the com-
parison is based on simulations with exact delay informa-
tion for Sync-out. TossWait1, TossWait2 and TossWait3
uses less percentage of waiting period based on the 100 ��

percentile delay value in that order (from 50% in TossWait1
to 30% in TossWait2 to 20% in TossWait3). The toss vector
of TossWait3 even has 50% chance to wait for 10 �� per-
centile delay value. As shown in Figure 8(a), by having
a higher percentage of waiting periods to be based on less
percentile delay values, TossWait consistently improves av-
erage response time across all players.

In terms of the behind measures, the trade-off between
average response time and fairness clearly shows in Fig-
ures 8(a) and 8(b). Those toss vectors that yield better aver-
age response time (shown in the order of TossWait3, Toss-
Wait2 and TossWait1 in Figure 8(a)) in turn give worse fair-
ness results (shown in the same order in Figure 8(b)).

Based on the discussion in Section 5.3, the behind mea-
sure of Player 10 in TossWait1 should be (100-50)% = 50%.
And for TossWait2 and TossWait3, Player 10’s behind mea-
sure should be (100-30)% = 70% and (100-20)% = 80%,

respectively. In Figure 8(b), however, the behind measures
of Player 10 is much lower than the expected values: 25%,
45% and 65% for TossWait1, TossWait2 and TossWait3 re-
spectively. One key factor is due to the way the SMS de-
livers messages in the queue. Ideally, an action message,
given a waiting period, will be delivered at the end of the
period. However, since SMS delivers in order those action
messages waiting in the queue, a head message with a long
waiting period could delay the delivery of subsequent mes-
sages. Consequently, even though a toss vector may suggest
to wait at least � for Y% of action messages, the actual
waiting period these messages encountered could be longer
than � . In other words, less than ���� � � �� of action
messages have a waiting period shorter than � . Notice
only an action message with a waiting period shorter than
� could cause another message with delay longer than �
to be delivered out of fair order. This explains why the be-
hind measures for TossWait are better than expected.

7 Conclusion and Future Work

We have proposed a network-based service, Sync-MS,
for real-time, multi-user distributed applications such as on-
line multi-player games. Sync-MS is game-independent,
and balances the trade-off between average response time
and fairness of player actions. It is well suited for the type of
client-server based, multi-player games in which a fair or-
der of player actions is critical to the outcome. Its Sync-out
mechanism dynamically synchronizes the delivery of state
updates from the server to all players so that players can
react to the same update fairly. Its Sync-in mechanism de-
livers action messages from all player stations in a fair order
to the game server.

We have introduced the concept of fair order among all
player action messages based on the real-time occurrence of
messages with respect to state updates. Two metrics, ahead
and behind measured against the fair order, are defined to
evaluate Sync-MS fairness performance. We also proposed
three Sync-in algorithms, MaxWait, SelectWait and Toss-
Wait, each of which provides different average response
time and fairness trade-offs.

Simulation results show that with Sync-MS, action fair-
ness improves dramatically. Players with longer delay can
now have less than 10%, instead of 100%, of their action
messages being delivered behind. Players with shorter de-
lay will experience increased average response time, but
Sync-MS keeps the increase within a reasonable range.
Among different Sync-in algorithms, MaxWait offers the
best fairness but longest average response time. Compared
to MaxWait, SelectWait exhibits similar fairness perfor-
mance but shorter average response time. TossWait can bal-
ance between improved average response time and reduced
fairness performance through the use of toss vectors. Never-

theless, many factors also affect the performance outcome,
in addition to a particular vector used. We plan to further
investigate their effects.

Acknowledgment

The authors thank anonymous reviewers for many useful
comments. Our colleagues M.C. Chan, S. Mukherjee, S.
Rangarajan, and M. Vernick helped improve an earlier draft
of this paper.

References

[1] M. Allman and V. Paxson. On Estimating End-to-End Net-
work Path Properties. In Proc. of ACM SIGCOMM’99, Sept
1999.

[2] G. Armitage. Sensitivity of Quake3 Players to Network
Latency. In Proc. of IMW’01, Workshop Poster Session,
Nov 2001. URL: http://www.geocities.com/gj_
armitage/q3/quake-results.html.

[3] Y. W. Bernier. Latency Compensation Methods in
Client/Server In-game Protocol Design and Optimiza-
tion. In Proc. of Game Developers Conference’01,
2001. URL: http://www.gdconf.com/archives/
proceedings/2001/prog_papers.html.

[4] S. Bonham, D. Grossman, W. Portnoy, and K. Tam.
Quake: An Example Multi-User Network Applica-
tion – Problems and Solutions in Distributed Interac-
tive Simulations. Technical report, CSE 561 Term
Project Report, University of Washington, May 2000.
URL: http://www.cs.washington.edu/homes/
grossman/projects/561projects/quake/.

[5] M. S. Borella. Source Models of Network Game Traffic.
Computer Communications, 23(4):403–410, Feb 2000.

[6] J. Färber. Network Game Traffic Modelling. In Proc. of
NetGames2002, Apr 2002.

[7] L. Gautier and C. Diot. Design and Evaluation of MiMaze,
a Multiplayer Game on the Internet. In Proc. of IEEE Multi-
media (ICMCS’98), 1998.

[8] T. Henderson. Latency and User Behavior on a Multiplayer
Games Server. In Proc. of NGC’01, pages 1–13, Nov 2001.

[9] IEEE. 1278.2–1995, IEEE Standard for Distributed Interac-
tive Simulation – Communication Services and Profiles, Apr
1996.

[10] MathWorks. URL: http://mathworks.com.
[11] M. Mauve. Consistency in Replicated Continuous Interactive

Media. In Proc. of ACM Conference on Computer Supported
Cooperative Work (CSCW’00), pages 181–190, 2000.

[12] D. Mills. Simple Network Time Protocol (SNTP) version 4
for IPv4, IPv6 and OSI. RFC-2030, Oct 1996.

[13] L. Pantel and L. Wolf. On the Impact of Delay on Real-Time
Multiplayer Games. In Proc. of ACM NOSSDAV’02, May
2002.

[14] S. Singhal and D. Cheriton. Exploiting Position History
for Efficient Remote Rendering in Networked Virtual Re-
ality. Presence: Teleoperators and Virtual Environments,
4(2):169–193, 1995.

[15] R. Swamy. idSoftware Releases Quake 1 Source Code
Under the GPL. URL: http://linuxtoday.com/
stories/14111/html.

