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Chapter 1

Introduction

1.1 Background

Online multiplayer games have improved dramati-
cally in the past few years. The newest online virtual
worlds such as Everquest [5] feature fantastic art-
work, realistic graphics, imaginative gameplay and
sophisticated artificial intelligence. Before the next
generation of multiplayer games can complete the
transition to lifelike virtual worlds, they must be able
to support real-time interactions. The main obsta-
cle to real-time interactions is the Internet’s inability
to provide low-latency guarantees. In this paper, we
present a system for enabling real-time multiplayer
games.

In particular, we focus on real-time multiplayer
games that have strong consistency requirements.
That is, all players must share a common view of
a complex virtual world. The combination of low la-
tency and absolute consistency is difficult to achieve
because messages may be delayed indefinitely in the
network. Our system realizes these goals using three
building blocks: a Mirrored-Server architecture, a
trailing state synchronization protocol, and a low-
latency reliable multicast protocol. We have imple-
mented and integrated these three components into a
working prototype and performed some preliminary
experiments on our system.

Commercial games are either designed on top of

client-server architectures or, less frequently, on top
of peer-to-peer architectures. Client-server archi-
tectures are simple to implement and allow gam-
ing companies to retain control over the game state.
Peer-to-peer architectures deliver lower latencies
and eliminate bottlenecks at the server. Our pro-
posed Mirrored-Server architecture requires a com-
plex consistency protocol, but it achieves low latency
and allows administrative control over the game
state.

In order to make our mirrored server architecture
attractive, we have developed a consistency proto-
col that can be used to port a client-server game to
a Mirrored-Server architecture with minimal modifi-
cations. The two key pieces of the consistency proto-
col are a synchronization mechanism called trailing
state synchronization and CRIMP, a reliable multi-
cast protocol.

Previous synchronization mechanisms such as
bucket synchronization and Time Warp are not well
suited to the demands of a real-time multiplayer
game. Trailing state synchronization is designed
specifically for real-time multiplayer games, and
achieves better responsiveness and scalability while
maintaining near-perfect consistency.

The consistency protocol assumes a low-latency,
many-to-many reliable multicast protocol. Previous
reliable multicast protocols focus more on scalability
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of state rather than overall packet latency. CRIMP is
a custom-built, application-specific multicast proto-
col that provides the infrastructure requirements of
our architecture in a low latency manner.

Two bootstrapping services will be included in the
final system, although they have not yet been imple-
mented. The first is a master server that allows users
to locate candidate game servers. The second is a
server selection service named qm-find that can be
used to locate the closest game server to a particular
client.

The most significant result of this project is a
fully operational, distributed Quake system, com-
plete with a working synchronization mechanism
and a functional multicast protocol. In addition, we
have established the infrastructure to test and evalu-
ate our system under different network conditions.
The experimental evaluation of trailing state syn-
chronization is in its early phases, and our prelim-
inary results do not adequately explore the mecha-
nism’s potential to respond to different network con-
ditions. In future work, we would like to concen-
trate on understanding the effects of different con-
figurations on trailing state synchronization’s perfor-
mance.

1.2 Quake

We chose Quake as our proof-of-concept game be-
cause it is very sensitive to latency and provides a
virtual world environment. Quake is a commercial
game that was not designed for a distributed archi-
tecture. As such, Quake forces us to address the
needs of a real game, as opposed to a game that fits
neatly into our architecture. Another reason for using
Quake is that it is one of the few commercial games
for which the source code has been released.

In this section, we introduce Quake and describe
the features of Quake that are relevant to our report.

We outline Quake’s architecture, including its mas-
ter server. We describe Quake’s interest management
techniques and then delve into details about the mes-
saging protocols.

1.2.1 Introduction

Quake is a 3-D first player shooter, by id Soft-
ware, the creators of a revolutionary and spectac-
ularly successful line of games including Wolfen-
stein 3D, Doom, Quake and Quake III. Besides 3-
D graphics, their major innovation was the online
multiplayer game. College students found that they
could put the newly installed dorm LAN’s to use
by engaging in mortal combat with their neighbors.
Multiplayer Quake is a simple game. Your avatar
has a gun and so does everyone else. You’re going to
die in the next minute or so, but before that happens,
your goal is to finish off as many of your opponents
as possible. All interactions take place in real-time,
and more than a 100 ms lay can be a crippling hand-
icap.

John Carmack, the mastermind behind Quake, re-
leased the source code in 1999. Two open source
projects arose to improve Quake, QuakeForge and
QuakeWorld. The two subsequently merged their
sources into Quakeforge, which has developed sev-
eral new versions of the original game. Develop-
ment in Quakeforge is sporadic, with a handful of
people doing most of the work. Their major contri-
butions have been porting Quake to new platforms,
supporting more sound and graphics hardware, and
enhancing the graphics. Quakeforge has also built in
some simple cheat detection algorithm and a denial-
of-service attack prevention mechanism.

A significant amount of information about Quake
has been compiled by the Quake Documentation
Project. Two pieces of this project describe the net-
work code: The Unofficial Quake Specification and
The Unofficial DEM Format Description. For the
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most part, these documents focus on the details of
the message formats. Neither is a comprehensive
look at the networking issues in Quake. Other Quake
resources can be found at the Quake Developer’s
Pages.

The purpose of this document is to give a high-
level overview of the technologies Quake uses to en-
able multiplayer games. The first section describes
the Quake Client-Server architecture. Next, three op-
timizations are discussed: dead reckoning, area of in-
terest filtering and packet compression. The Quake-
forge modifications to prevent cheating and denial-
of-service attacks are discussed. Finally, the last sec-
tion presents the network protocols.

1.2.2 Architecture

Quake uses a centralized Client-Server architecture.
In this architecture, the server is responsible for
computing all game state and distributing updates
about that game state to the client. The client. The
client acts as a viewport into the server’s state and
passes primitive commands such as button presses
and movement commands to the server. Because this
architecture allows most of the game state computa-
tion to be performed on the server, there is no consis-
tency problem. However, the gameplay is very sen-
sitive to latencies between the client and the server,
as users must wait at least a round trip time for key
presses to be reflected in reality.

The server is responsible for receiving input com-
mands from client, updating the game state, and
sending out updates to the clients. The control loop
for this procedure is discussed in more detail in Ap-
pendix A. The server’s biggest job is keeping track
of entities. An entity is almost any dynamic object:
avatars, monsters, rockets and backpacks. The server
must decide when a player is hit, use physics models
to calculate the position of free-falling objects, turn
key presses into jumps and weapon fires, etc. The

server also informs clients of world state: gravity,
lighting and map information. Aside from its role in
gameplay, the server is a session manager that starts
and ends games, accepts client connections and per-
forms numerous other administrative tasks.

The client sends simple avatar control commands
(movements, tilts, buttons) to the server. It uses
its cache of the game state plus any updates from
the server to render a 3-D representation of the vir-
tual world. The graphics rendering is performed
on the client, as is fine-grained collision detection.
The client has been the main area of interest in the
game developer community because it is where all
the ’cool graphics’ are done. However, from an ar-
chitectural or networking point of view, the Quake
client is relatively simple compared to the server.

1.2.3 Master Server

Quake supports a master server that keeps track of
active game servers on the Internet. Although the
master server is not packaged with Quake, GameSpy
provides a full-featured master server service. For
a Quake server to be listed in GameSpy’s database,
the administrator must manually add GameSpy’s IP
address to the master server list. The server then pe-
riodically sends heartbeats containing the number of
connected client to the master server. The server also
informs the master server when it is shutting down.

1.2.4 Area of Interest Filtering

One of the advantages of having a server architecture
is that the server can dynamically filter information
before sending it to the clients. The Quake server
only sends a client information for entities that are
within that player’s potential field of sight. Simi-
larly, sounds are filtered to those that are within that
player’s earshot.

Calculating an entity’s potential field of sight is
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tricky. The data structure used to do this is called
a Binary Space Partition (BSP) tree or octree. The
three dimensional world is split into eight regions by
three planes. Each region can be further subdivided
until the necessary resolution is achieved. The field
of sight for entities in each leaf of the BSP tree is pre-
computed so that the server can quickly determine
which other leaves of the BSP tree to include in the
filter. For example, a room might be represented by a
single leaf. This leaf would have associated with it a
list of adjacent rooms (leaves) within the room’s field
of sight. A great deal of information about this gen-
eral technique is available on the web. Information
about BSP trees in Quake is available in the Unoffi-
cial Quake Specs.

1.2.5 Network Protocols

Almost all of the messages exchanged between the
client and the server during gameplay are sent un-
reliably. Because there are few reliable messages,
the client and server can get away with an inefficient
yet simple stop-and-wait protocol with single-bit se-
quence numbers. Although recovery of lost packets
is not necessary, the server does require knowledge
of which packets have been dropped so that it can
implement the FEC scheme described above. This is
accomplished using sequence numbers.

Both the client and the server have a frame rate.
On the client, this frame rate is the frame rate of the
rendered scene. On the server, a frame is a single it-
eration through the receive, process, send loop. This
is typically a tight loop unless the server machine is
also running a client, in which case some time is re-
served for client-side processing. At the start of a
frame, all waiting packets are read. During the pro-
cessing step of a frame, a number of different func-
tions may write messages into either the reliable or
unreliable message buffers. At the end of each frame,
the server sends at most one packet to each client.

Similarly, the client sends at most one packet to the
server. Packets can contain both reliable and unre-
liable data. Reliable data takes precedence over un-
reliable data when constructing a packet. All unsent
data is sent in the next frame.

Reliability is achieved using a stop-and-wait pro-
tocol with a single bit reliable sequence number.
The receiver will not reorder packets; stale packets
are discarded. Acknowledgments are piggybacked
on outgoing messages. Both unreliable and reliable
messages are sent using UDP datagrams.

Congestion control for both unreliable and reliable
messages is a simple rate-based scheme. In Quake-
forge 5, the channel is assumed to have a capacity of
20 Kbps. However, the original scheme used round
trip times as a measure of bandwidth, allowing the
channel capacity to increase up to 40 Kbps. The cho-
sen rate is enforced by aborting packet transmissions
that might result in an overloaded channel. A packet
is only sent if the sender decides, based on the time
and size of the last transmission, that the channel is
currently clear. Aborted packets are sent at the end
of the next frame. No flow control is performed - the
sender assumes that the receiver can process packets
as fast as the sender can send them.

1.2.6 Client to Server Messages

During gameplay, the client sends the following
commands to the server unreliably:

� move forward, up, sideways

� change orientation

� button presses

� impulse

� time between this command and the last

Each packet from the client contains the last three
commands to compensate for lost packets.
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A number of other non-gameplay messages can ei-
ther be generated automatically by the client or by
the user. These include instructions to spawn a new
entity, kill an unruly player, pause the game, down-
load a new map, change user information, etc.

1.2.7 Server to Client Messages

There’s a are a large number of server to client
messages. The ones that are directly involved in
the gameplay and require low latency describe the
state of each client in the game. Key elements of a
client’s state include that client’s position, orienta-
tion, health, weapons, and ammo. Client state infor-
mation is computed as a delta off a client’s baseline
state. All server-to-client messages are sent unreli-
ably.
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Chapter 2

Mirrored-Server Architecture

2.1 Introduction

This chapter describes the tradeoffs of the two ba-
sic multiplayer game architectures, the Client-Server
and Peer-to-Peer (P2P) architectures, and proposes
a new architecture, the Mirrored-Server architecture.
The architectures vary in their end-to-end latencies,
bandwidth requirements, degrees of administrative
control and consistency protocol requirements. The
Client-Server architecture is popular in the gam-
ing industry because it allows companies to retain
administrative control over servers and because no
elaborate protocol is required to maintain consis-
tency between different copies of the game state.
The P2P architecture exhibits lower end-to-end la-
tency and less concentrated bandwidth consumption.
The Mirrored-Server architecture can achieve low la-
tencies while still allowing administrative control of
servers.

2.2 Architecture Goals

The choice of architecture depends on the character-
istics of the game in question. The games consid-
ered in this report require very low latencies and a
high degree of consistency over a complicated game
state. First-person shooters such as Quake match this
description closely. Many games do not typically

fall into this category, including strategy games, role
playing games, racing games, flight simulators, and
sports games. Of secondary importance are minimiz-
ing bandwidth usage and maintaining administrative
control over servers.

We consider games that are extremely sensitive to
latencies. These games must be playable with laten-
cies equal to the network latency, but the playabil-
ity must degrade rapidly as the latency is increased.
For a racing game, a study has found that latencies
of 100 ms are almost unnoticeable, but as latencies
reach 200 ms, the players have trouble controlling
their race cars [15]. We have experienced similar la-
tency sensitivity despite Quake. In contrast, many if
not most games can function adequately with high
latencies. In strategy and role-playing games, re-
action times are not a factor. Even games that feel
like action games may mask latencies by implement-
ing vague or sluggish actions. For example, Ev-
erquest players report realistic fighting, even though
Everquest uses TCP connections over the Internet
[5]. Games can fake real-time interactions by requir-
ing a second to sluggishly swing an axe, or by using
weapons like spells where the exact time or direction
of the action is unimportant or the results are difficult
to verify.

The second criterion for relevant games is that
they have strict consistency requirements over a

9



complex game state. Quake’s game state must
quickly and accurately reflect a number of permanent
changes such as rocket fires, rocket impacts, damage
and death. For racing games [15] and simple games
like MiMaze [8], consistency requirements are much
simpler. Two game states need only agree on posi-
tional information, which is refreshed rapidly, can be
transiently incorrect and can be dead reckoned.

Bandwidth requirements for a multiplayer game
can be significant. The Quake clients send out tiny
command packets, and the Quake server performs
delta updates and interest management to reduce
state update sizes. Still, as you will see from our
results, an eight-player game consumes 50 Kbps on
the client side link, making modem play difficult.
Even worse, the server consumes 400 Kbps, which
means it must have good connectivity. If possible,
we would like our architecture to reduce bandwidth
requirements, particularly on the client-side links.

The fourth goal is to use an architecture that allows
game companies to retain administrative control over
servers. Administrative control can allow the game
company to:

� Create persistent virtual worlds. The game
company’s servers can securely store player
profiles and maintain centralized worlds that are
always ”on”. For example, Everquest [5].

� Reduce cheating. If a secure server manages
game state, opportunities for cheating may be
reduced [1].

� Facilitate server and client maintenance. The
game company can easily distribute bug fixes,
and can allow the game to evolve after its re-
lease date.

� Eliminate piracy. Players can be forced to log
in to verify their identity. [2]

� Enable player tracking. Everquest charges users
based on the amount of time they spend playing.

The drawback of administrative control is that the
game company is forced to run its own servers. Par-
ticularly for small companies, the cost of operating
servers may be prohibitive.

2.3 Assumptions

For the following discussion, we assume that the
gaming company operates a private low-latency net-
work where mirrors are gateways to that network.
This assumption makes the real-time multiplayer
game problem tractable; the Internet cannot provide
low latencies, nor can it handle gaming traffic that
lacks congestion control mechanisms. A side benefit
of this assumption is that we can choose to enable
IP-Multicast within the private network, whereas IP
Multicast is not available on the Internet. Without
IP-Multicast, our architecture would require an end-
host multicast protocol such as BTP [9], HyperCast
[13] or NARADA [20]. Unfortunately, these end-
host multicast protocols fail to provide the low la-
tency requirements needed by our architecture.

2.4 Client-Server vs Peer-to-Peer
Architecture

In this section, we will briefly describe the key fea-
tures of the Client-Server and P2P architectures and
compare them along the axes described in the pre-
vious section, namely: latency, consistency, band-
width, and administrative control.

Most commercial games use a Client-Server ar-
chitecture, where a single copy of the game state is
computed at the server. This architecture is used in
Quake [16], Starcraft [3] . The Client-Server ar-
chitecture as used in Quake is depicted in Figure
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Figure 2.1: Peer-To-Peer Architecture

2.2. Clients input key presses from the user and
send them to the server. We refer to these client-to-
server messages as commands. The server collects
commands from all of the clients, computes the new
game state, and sends state updates to the clients. Fi-
nally, the clients render the new state. Notice that
this is a thin client architecture, where clients are
only responsible for inputting commands and render-
ing game state.

In the peer-to-peer (P2P) architecture, there is no
central repository of the game state. Instead, each
client maintains its own copy of the game state based
on messages from all the other clients (see Figure
2.1). A P2P architecture has been used in a few sim-
ple games, including Xpilot [19] and MiMaze [8]. It
is also used in complex, scalable battlefield simula-
tors such as STOW-E. In MiMaze, clients multicast
their game positions to every other client. Each client
computes its own copy of the game state based on
messages from other clients and renders that game
state.

The primary advantage of the P2P architecture is
reduced message latency. In the Client-Server archi-

cmdcmd

cmd

updates

Figure 2.2: Client-Server Architecture

tecture, messages travel from clients to a potentially
distant server, then the resulting game state updates
propagate back from the server to the clients. In
the P2P architecture, messages travel directly from
one client to another through the multicast tree. Be-
cause no widespread multicast service that we know
of is provided on the Internet, in practice, latency-
sensitive P2P messages need to be sent using unicast,
which scales poorly with the number of clients.

In the Client-Server architecture, game state con-
sistency is not a problem. There is only one copy
of the game state, and that copy is maintained by a
single authoritative server. In the P2P architecture,
there are multiple copies of the game state. If mes-
sages are lost or arrive at different times, inconsis-
tencies can arise. Although synchronization mech-
anisms such as our novel trailing state synchroniza-
tion can resolve these inconsistencies, these mecha-
nisms tend to increase the system’s complexity and
may require disorienting rollbacks.
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The relative bandwidth consumption of the two ar-
chitectures are roughly equivalent. In the P2P archi-
tecture, each host multicasts an input message ev-
ery time period. This results in reception of N2 to-
tal input messages per time period, where N is the
number of hosts/players. In the Client-Server archi-
tecture, each host unicasts an input message to the
central server every time period. Also, the server
sends a game state message per client per time pe-
riod. So the Client-Server architecture totals N input
messages and N game state messages per time pe-
riod. Typically, game state messages grow linearly
with N because they must describe the change in
state that occurred as a result of N input messages.
Both architectures consume total bandwidth propor-
tional to N2. However, note that the traffic in the
Client-Server architecture is concentrated at the cen-
tral server, which must handle all N2 messages.

Interest management techniques can be used to re-
duce the bandwidth requirements of both architec-
tures [14]. Hosts are only interested in a small por-
tion of the game state. If this portion of the game
state is constant despite the addition of new play-
ers to the game, interest management will improve
the scalability of both architectures. A centralized
server can determine which pieces of state a client is
interested in and only send them this filtered state in-
formation. The result, constant-sized state updates,
would result in cN total bandwidth consumption.
In a P2P architecture, a host can subscribe only to
the multicast groups that match its area of interest.
Again, the result would be cN total bandwidth con-
sumption. A detailed discussion of interest manage-
ment is beyond the scope of this paper. Overall, the
relative bandwidth consumption depends on the sizes
of different messages and the effectiveness of interest
management techniques. Later we will present sim-
ple experiments that show that the total bandwidth
usage of the two architectures is comparable.

The fourth axis along which we compare the two

architectures is administrative control. Administra-
tive control is trivial for Client-Server architectures.
The game company need only run its own servers,
where it can protect sensitive information such as
player profiles and the server code itself. In the P2P
architecture, most if not all of the code and data
that are necessary to run a game must be resident
on the clients, where they are vulnerable to hackers.
Some administrative control can be retained by using
a Client-Server protocol for non-gameplay messag-
ing, but this does not resolve the security issues.

For most large scale massively-multiplayer games,
gaming companies overwhelmingly choose Client-
Server architectures, but DOD simulations have gone
with the P2P architecture. The simplicity of deal-
ing with a single repository of consistent state far
outweighs the cost of increased latency. In addi-
tion, game companies may prefer to retain admin-
istrative control of their servers. On the other hand,
other large organizations operate highly scalable dis-
tributed simulations. They generally have no admin-
istrative control problems because they control all of
the clients.

2.5 Mirrored-Server Architecture

Our chosen architecture is the Mirrored-Server archi-
tecture, where game server mirrors are topologically
distributed across the Internet and clients connect to
the closest mirror. The Mirrored-Server architecture
is a compromise between the two previously dis-
cussed architectures. As in the Client-Server archi-
tecture, the Mirrored-Servers can be placed under a
central administrative control. Like the P2P archi-
tecture, messages do not have to pay the latency cost
of traveling to a centralized server. Unfortunately, a
Mirrored-Server system must still cope with multi-
ple copies of the game state. We hope to solve this
last remaining problem with our trailing state syn-
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chronization mechanism.
In our mirrored version of Quake, clients send

commands to their closest mirror. The mirror closest
to the sender is referred to as the ingress mirror. The
ingress mirror multicasts incoming commands to the
other mirrors, which we term egress mirrors. The
egress mirror calculates its own copy of the game
state and sends state updates to its directly connected
clients. The client then renders this updated game
state.

Comparing bandwidth consumption among the
three architectures becomes more complicated when
assuming a high-speed network with each client
sending messages to the nearest gateway. A detailed
analysis of the bandwidth requirements of each ar-
chitecture is presented in Section ?? The Mirrored-
Server architecture uses more bandwidth on the pri-
vate network where bandwidth is plentiful than it
does on the public network. Also, the traffic con-
centration seen in the Client-Server architecture is
shared by the mirrors in the Mirrored-Server archi-
tecture. Overall, the bandwidth consumption of all
three architectures is comparable.

The Mirrored-Server architecture appears to be a
reasonable alternative to the Client-Server architec-
ture. Some of the larger gaming companies have
already distributed game server clusters across the
world. Both Blizzard [3] and Verant [5] have a num-
ber of geographically distributed clusters. To our
knowledge, no game state is shared between these
clusters.

2.6 Experiments and Results

The experiments in this section are designed to inves-
tigate the bandwidth requirements of the three archi-
tectures. We begin by developing a model to predict
bandwidth usage based on the number of players in
a game. Then, we collect some bandwidth statistics

to populate the model. Our findings confirm that the
architectures use similar amounts of bandwidth. The
measurements are also used to evaluate the effective-
ness of Quake’s interest management techniques, but
the results are inconclusive. We also include plans
for future experiments in this section.

The bandwidth requirements of Quake can be de-
scribed using a simple model. Clients always gen-
erate commands at a rate a, regardless of the archi-
tecture. The command streams increase to a rate b

upon being forwarded to the multicast channel due
to added timestamps and multicast headers. In both
the Client-Server and Mirrored-Server architectures,
the server sends state updates to each client at a rate
c+n(d+�e). For the Mirrored-Server architecture,
we assume 8 clients per server, m = n

8
. Variable

definitions are listed in Table 2.6.
First we calculate the asymptotic bandwidth re-

quirements of the architectures as the number of
clients increases. In Quake, interest management
techniques remove only about 70% of the informa-
tion about clients that are not in the area of interest,
so they do not affect the asymptotic results. We fur-
ther simplify the model by assuming that all mes-
sages are unicast. The asymptotic input and output
rates of the clients, servers and mirrors are listed
in Table 2.6. For the Mirrored-Server architecture,
the server rates are for messages between the client
and mirrors and the mirror rates are for messages
between mirrors. Notice that all of the approaches
use �(n) �(n2) bandwidth on the public and private
networks and bandwidth at the client. However, the
Mirrored-Server architecture uses only �(n) band-
width at the mirrors, while the Client-Server archi-
tecture uses �(n2) bandwidth at the server.

To determine the values of a; b; c; d; e and � we
set up a simple series of experiments. We ran a total
of five experiments with n = 1; 2; 3; 4; and 5 clients.
For each experiment, the clients connected to a sin-
gle mirror and played a two-minute game, 60 sec-
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a Command rate on the Client-Server connection
b Command rate on the mirror-mirror connection
c Rate of state updates with zero clients
d Rate of information that is always included about each client
e Rate of information about clients in proximity to the receiving client
� Describes the effectiveness of the interest management techniques
n Number of clients in the game
m Number of mirrors

Table 2.1: Variable Definitions

Client-Server Peer-to-Peer Mirrored-Server
Client Output Rate a bn a

Server Input Rate an a

Client Input Rate c+ (d+ e)n bn c+ (d+ e)n

Server Output Rate cn+ (d+ e)n2 c+ (d+ e)n

Mirror Output Rate bn

Mirror Input Rate bn

Private Network Rate an+ cn+ (d+ e)n2 bn2 bn2

Public Network Rate an+ cn+ (d+ e)n2 bn2 an+ cn+ (d+ e)n2

Total Client a+ c+ (d+ e)n bn a+ c+ (d+ e)n

Total Mirror/Server an+ cn+ (d+ e)n2 bn+ c+ (d+ e)n

Table 2.2: Asymptotic Input and Output Rates
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a 5.68 Kbps
b 10.6 Kbps
c 1.16 Kbps

d+ e 5.36 Kpbs

Table 2.3: Linear Regression Results

onds of which was used for analysis. The server was
instrumented to record the transport-layer bandwidth
consumption of client-to-server, server-to-client, and
mirror-to-mirror messages. The coefficients a and b

were directly observable. The values of c and d + e

were calculated by doing a linear regression on the
server-to-client bandwidth measurements. Table 2.3
contains the measured coefficient values. The lin-
ear regression had a fairly encouraging correlation
of 0.8682.

The asymptotic bandwidth usages of the architec-
tures without interest management can be computed
using the values of a; b; c; and d + e. First, Figure
2.3 compares our actual and predicted bandwidth us-
ages. The actual server output rates are much lower
than the predicted server output rates, although both
increase quadratically. This discrepancy is due to
Quake’s interest management techniques, which are
not reflected in our simple model. Table 2.4 show the
bandwidth consumptions of each architecture. With
Quake-like bandwidth configurations, the P2P archi-
tecture would use twice as much total bandwidth as
the traditional Client-Server architecture. However,
Quake’s messaging protocols have been optimized
for the Client-Server architecture, so this comparison
is not fair. Note that the Mirrored-Server architec-
ture uses a twice as much bandwidth on the private
network where congestion is not a problem. The ad-
vantages of the Mirrored-Server architecture are il-
lustrated in Figure 2.4, which compares the Client-
Server server load and the Mirrored-Server mirror
load. With four mirrors and 32 clients, mirrors con-

sume 2 Mbs, while servers in the Client-Server ar-
chitecture must handle 6 Mbs.
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Figure 2.3: Measured vs. Predicted Bandwidth Us-
age

To determine the success of Quake’s interest man-
agement techniques, we attempted to estimate the
values of c; d and e separately. Given these values,
� can be computed for each trace. Remember that �
represents the proportion of the other clients whose
detailed state is included in any given state update.
Because d and e are both coefficients of n, it is im-
possible to separate them using regression analysis.
Instead, we looked at the source code and attempted
to estimate how many bytes per state update would
be devoted to c; d and e. These estimates are im-
perfect because the amount of data written for each
client depends on how much that client’s state has
changed since the last state update.

Table 2.5 lists the value of � for each set of mea-
surements. We expected a fixed percentage of the
other clients to be represented in any state update
regardless of the number of clients. Unfortunately,
the results are not strongly correlated. We need to
perform more experiments with a larger number of
clients to better understand the behavior of Quake’s
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Client-Server Peer-to-Peer Mirrored-Server
Private Network Rate 5:36n2 + 6:84n 10:6n2 10:6n2

Public Network Rate 5:36n2 + 6:84n 10:6n2 5:36n2 + 6:84n

Total Client 5:36n+ 6:84 10:6n 5:36n+ 6:84

Total Mirror/Server 5:36n2 + 6:84n 53:5n+ 9:28, n

m
= 8

Table 2.4: Bandwidth Consumption
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Figure 2.4: Predicted Client-Server and Mirrored-
Server Bandwidth Requirements

interest management mechanism. Also, better instru-
mentation could be installed to eliminate the error
due to rough estimations of the coefficients c; d and
e. We reserve this for future work.

Latency is the most important experimentally veri-
fiable difference between the architectures presented
in this section. Unfortunately, coming up with mean-
ingful latency comparisons involves choosing a real-
istic network topology. At one extreme, a star topol-
ogy centered at the server will result in identical la-
tency for both the Client-Server and P2P architec-
ture (see Figure 2.5a.). At the other extreme a topol-
ogy where the server is located in an infinitely dis-
tant or congested part of the network, as in Figure

Clients in
Clients State Updates (%)

1 N/A
2 66.7
3 13.2
4 28.5
5 16.7

Table 2.5: � Values

2.5b., will result in the P2P architecture being in-
finitely faster than the Client-Server architecture. For
the Mirrored-Server architecture, the best and worst
cases are less clear. The topology in Figure 2.5c. will
result in much better average end-to-end latency for
the Mirrored-Server and P2P architectures, because
a centralized server would have to be placed far away
from half of the clients. The topology-dependent
study evaluation is reserved for future work.

2.7 Conclusions

Each of the three architectures sports a different set
of advantages and disadvantages. No single architec-
ture is suited to all classes of multiplayer games. The
Client-Server architecture has poor latency and good
consistency characteristics, so it is a good match for
any non-real-time game. The P2P architecture has
good latency but poor administrative control char-
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a. Star b. Remote Server c. Bi-nodal

Figure 2.5: Different topology types

acteristics, making it ideal for small scale, latency-
sensitive games. The Mirrored-Server architecture
achieves low latency and administrative control; we
feel it is a great solution for next-generation real-time
persistent-world games.
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Chapter 3

Consistency Protocols and Synchronization
Mechanisms

3.1 Introduction

The Mirrored-Server and P2P architectures involve
computing multiple copies of the game state. Lost
or delayed messages can cause inconsistencies be-
tween game states. A consistency protocol is needed
to deliver messages to their destinations, and a syn-
chronization mechanism must be used to detect and
resolve inconsistencies. Although the Mirrored-
Server and P2P architectures pose identical con-
sistency problems, we will focus on the Mirrored-
Server architecture because it is the chosen architec-
ture for our Quake system.

This chapter begins with some key definitions and
an overview of our consistency goals. Next, we
launch into a description of two consistency proto-
cols. The last half of the chapter concerns our syn-
chronization mechanism, trailing state synchroniza-
tion (TSS). We set the stage with a discussion of pre-
viously proposed synchronization mechanisms and
how our approach differs from those mechanisms.
TSS is described in detail, with some analysis of op-
timal configurations. The results in this section sup-
port our claim that TSS is an efficient, low-latency,
consistent synchronization protocol that is appropri-
ate for multiplayer games.

3.2 Definitions

We make a distinction between the consistency pro-
tocol and the synchronization mechanism. The con-
sistency protocol is responsible for delivering mes-
sages to the destination mirror and incorporating
those messages into the game state. A key piece
of the consistency protocol is the synchronization
mechanism, which detects and resolves inconsisten-
cies. The consistency protocol gives a high-level
specification of the messaging protocols, while the
synchronization mechanism deals with the details of
maintaining consistent state.

Commands are simple messages that convey input
from a client to a server. In Quake, commands con-
tain key presses and orientation information. Quake
servers calculate the game state directly from com-
mands. If instead we think of the Quake server as a
simulator, then it is responding to events by chang-
ing the game state. We have simplified the Quake
gameplay so that the following events are sufficient
to initiate all game state changes.

� Move event: An avatar moves to a new position.

� Fire event: An avatar fires a rocket.

� Impact event: The rocket impacts and detonates
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� Damage event: An avatar takes damage and
possibly dies.

� Spawn event: An avatar is reborn in a random
part of the map.

The clients generate move, fire and spawn events,
while the mirrors generate impact and damage dur-
ing the game state computation.

A key observation is that different events have dif-
ferent consistency and latency requirements. Real-
time events have strict timeliness and lax consistency
requirements. At the other end of the spectrum, con-
sistent events have lax timeliness and strict consis-
tency requirements. The most challenging events are
consistent real-time events, which have strict timeli-
ness and strict consistency requirements.

Real-time events are those events that players
must be informed of in real-time in order to react
reflexively. The best example of a real-time event
is the move event. Any delay in the reaction time
of one’s own avatar movement inhibits the effective-
ness of player reflexes. Delays in the perceived mo-
tion of other avatars force the player to anticipate
their motion. Because shooting another player re-
quires significant hand-eye coordination, players are
extremely sensitive to the timeliness of move events.
If possible, real-time event latency must be less than
100 ms. Although human reflexes can act on the
order of 100 ms, players cannot easily detect short-
lived inaccuracies in avatar position. Therefore, real-
time events can occasionally be lost or delayed with-
out ill effect.

All events that take more than 100 ms to react
to are termed consistent events. Damage events,
die events, and spawn events can all be placed into
this category. Unlike real-time events, these events
affect the game state in permanent and noticeable
ways. Therefore, consistent events must be consis-
tently processed across all clients. For example, all

clients must agree that an avatar took a hit and died.
Here, consistency is far more important than timeli-
ness, so we might be willing to wait 500 ms before
the avatar keeled over.

Unfortunately, there are some events that have
tight real-time constraints and require a high degree
of consistency. Fire events and impact events are two
examples. Clearly, all clients must agree on whether
or not a rocket hit an avatar or whether that avatar
dodged, allowing the rocket to whiz by. Assume that
we treated this event like the consistent events, where
there could be a 500 ms delay after the event oc-
curred before the event is reflected in the game state.
Then all weapon impacts would occur after they have
struck their targets. This means that rockets would
continue along their trajectory for a fraction of a sec-
ond, possibly passing through their target before det-
onating. This behavior is unacceptable, so we must
treat consistent real-time events differently.

3.3 Consistency Protocols

3.3.1 Consistency Protocol Goals

The goals of the consistency protocol follow directly
from the event class definitions. Real-time events
must appear in the game state with the lowest possi-
ble latency and consistent events must be consistent
between game states. The mechanisms to accom-
plish this should be as efficient as possible, both in
bandwidth and computational load. For example, if
real-time event servicing can be made more efficient
than consistent real-time event servicing, the same
mechanism should not be used for both.

3.3.2 Distributing Game State Computa-
tions

So far, we have not explicitly examined the issue
of where the game state calculation should occur.
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For this discussion, it helps to think of each ingress
mirror as a sender in the peer-to-peer architecture,
and the egress mirrors as the receivers. Should the
ingress mirror calculate the new game state and then
send a state update to the egress mirror? Or should
the ingress mirror just forward the incoming com-
mand to the egress mirror and allow it to generate
the new game state? As a compromise, should the
ingress mirror perform some computation, send an
intermediate result to the egress mirror, and then al-
low the egress mirror to complete the computation?

Computing the game state at the ingress mirror is
a strange proposition. This has the advantage that the
game state calculation need occur only once. How-
ever, if different pieces of game state are computed
at different ingress mirrors without input from other
mirrors, there will be no interactivity between clients
on different mirrors. For example, two ingress mir-
rors could simultaneous decide that two different
avatars occupy the same position on the map instead
of coordinating to detect a collision.

The more natural solution is to have all game state
calculated at the egress mirror. This approach is
used in the command-based consistency protocol. In
this configuration, the ingress mirror forwards com-
mands to the egress mirrors, and each egress mir-
ror computes its own copy of the game state. This
approach requires redundant calculations, but colli-
sions and other interactions are handled properly be-
cause the egress mirror makes decisions based on in-
put from all the clients.

A compromise between the two approaches is to
compute game state that is entirely under the control
of the ingress mirror at the ingress mirror. For ex-
ample, the ingress mirror could take raw front-end
commands and convert the into different events (see
Section 3.4). This is the key feature of the event-
based consistency protocol. It could also perform
initial avatar position calculations, which would then
be modified by the egress mirror to account for dy-

namic collisions. This is the approach used in Mi-
Maze, which does an initial position calculation at
the ingress mirror, then calculates the final interac-
tions at the egress mirror [8].

The decision on where to place the game state
computation may be based on which representation
consumes the least bandwidth. In Quake, the initial
command is very small. After some event calcula-
tion, the generated events might be slightly larger
than a command. If a significant amount of game
state were calculated at the ingress mirror, the result-
ing game state updates could be huge.

In our implementation, we elected to use the
command-based consistency protocol, where no
game state computations are performed at the ingress
mirror. This decision produced a much simpler
implementation where most of the Quake code re-
mained intact. Dividing the game state computa-
tion between the egress mirror and the ingress mir-
ror would have required a complete rewrite of the
server code into modular event handlers. In gen-
eral, keeping all of the game state computation on
one server becomes more attractive as the game be-
comes more complicated. Although we chose the
command-based consistency protocol, we also inves-
tigate the event-based consistency protocol.

3.3.3 Command-Based Consistency Proto-
col

Our implementation places all of the game state com-
putation at the egress mirror. The ingress mirror
timestamps commands from the client and reliably
multicasts them on to the egress mirror. Given the
commands from each client and the time at which
they were issued, the egress mirror can compute the
correct game state. The egress mirror sends game
state updates only to its directly connected clients.
The command-based consistency protocol is sim-
ple and provides low latency, reliable delivery of
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all commands. However, it does not distinguish
between different classes of events and requires a
many-to-many, low-latency, reliable multicast proto-
col.

By using a reliable multicast protocol, we ensure
that all commands eventually reach the egress mirror.
The egress server can compute the correct game state
by executing the commands in the order in which
they were issued. Because we perform optimistic
execution of command packets, we must correct the
game state when commands are received out of or-
der. These corrections, or rollbacks, can cause unex-
pected jumps in the game state, severely degrading
the user experience. Therefore, we must at all costs
minimize the frequency and magnitude of rollbacks.
Informally, we have found that rollbacks of less than
100 ms are unnoticeable. The details of the trail-
ing state synchronization mechanism are presented
in section 3.4.

The main feature of the command-based consis-
tency protocol is simplicity. Our command-based
protocol requires minimal modifications to the server
when the protocol is added to an existing game. To
the existing server back-end running on the egress
mirror, commands from any of the ingress mirrors
can appear to have come from a client attached di-
rectly to the local mirror. On the ingress mirror the
changes are minimal as well. Instead of calling the
local back-end to execute a command after pulling it
up from the client, it multicasts it to the other mir-
rors, and then later processes it like every other com-
mand. Other consistency protocols require at least
partial processing at the ingress mirror, and changes
to the back-end to accept partially processed com-
mands instead of raw commands. When a game is
not designed with distribution in mind this is an im-
portant feature.

Aside from simplicity, the command-based con-
sistency protocol has several secondary advantages.
First, it achieves consistency without the need for

a third-party trusted server. Second, it should re-
sult in reasonably efficient bandwidth usage by using
multicast and sending only small command packets.
Third, it will achieve the lowest possible latency be-
cause commands are sent directly from mirror to mir-
ror across a private network. The weakness of this
protocol is that it requires low latency many-to-many
multicast, which is a difficult problem. Our reliable
multicast protocol, CRIMP, is covered in Chapter 4.

3.3.4 Event-Based Consistency Protocol

Previously, we stated that the ingress mirror can pro-
cess incoming commands in order to generate differ-
ent events. Real-time events, consistent events, and
consistent real-time events can then each be handled
in a different way. In this section, we present a con-
sistency protocol that does not require low-latency
many-to-many multicast. Instead, it relies on an
überserver and a standard (not low latency) one-to-
many reliable multicast protocol.

In this protocol, a single überserver is responsible
for maintaining the authoritative game state, while
each egress mirror maintains a local, possibly incon-
sistent game state. The überserver is responsible for
informing the egress mirrors of consistent events. If
an egress mirror disagrees with the consistent event,
it must perform a rollback to the correct state.

The ingress mirror generates move events in re-
sponse to move commands. Remember that move
events require low latency but not reliability. There-
fore, move events can be multicast to other egress
mirrors using unreliable multicast. However, in or-
der to ensure approximately correct game state at the
überserver, move events are unicast reliably from the
ingress mirror to the überserver. There are no con-
sistency checks for move events.

Consistent events are generated solely by the
überserver, because the überserver is the only server
with the correct positional information. For example,
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the überserver is the only one that can determine ex-
actly how much damage an avatar took because it is
the only server that knows exactly how far an avatar
was from the blast. The überserver sends consistent
events to the egress mirrors using reliable multicast.
On reception of a consistent event, the egress mirror
makes the necessary changes in the game state. Note
that the reliable multicast protocol could take on the
order of a second to deliver the consistent event.

The most challenging events are consistent real-
time events. The only way to deal with such events
is to process them optimistically, then do a rollback
if the event was processed out of order. A mecha-
nism for performing efficient rollbacks is presented
in the next section 3.4. The ingress mirror generates
fire events in response to fire commands from the
client. However, the ingress mirror does not know
the exact position and orientation of the shooter, so
it cannot generate an authoritative fire event. The
non-authoritative fire event is multicast unreliably to
the egress mirrors and processed as if it were the
correct fire event. It is also forwarded reliably to
the überserver, which generates an authoritative fire
event. This authoritative fire event is multicast reli-
ably to the egress mirrors. If the authoritative and
non-authoritative fire events differ, the egress mirror
performs a rollback using the trailing state synchro-
nization mechanism.

Although the event-based consistency protocol is
probably a superior solution, it is much more com-
plicated than the command-based consistency proto-
col. Implementing the event-based consistency pro-
tocol would have meant ripping apart the very poorly
written Quake code into event handlers. We must
leave this ordeal for someone with more time on their
hands.

3.4 Synchronization Mechanisms

In order for each mirror to have a consistent view of
the game state, we need some mechanism to guaran-
tee a global ordering of events. This can either be
done by preventing misordering outright, or by hav-
ing mechanisms in place to detect and correct mis-
orderings. At the same time, if we are unable to
maintain ordering within a reasonable delay, no one
will be willing to use the game servers. In both mil-
itary simulations and simpler games, similar prob-
lems exist and there are a number of synchronization
algorithms used in these cases [7]. However, none
of these algorithms work well in a fast-paced mul-
tiplayer game such as Quake. Unlike other uses of
synchronization, the events in Quake are not directly
generated by other events – they are generated by
user commands. Therefore, many of the concepts in
these other algorithms such as event horizons, fixed
buckets and rounds of messages are not applicable.
Likewise, unlike less complicated games, it is not
sufficient to be mostly consistent and dead reckon the
rest. The speed at which game state changes causes
these types of errors to quickly multiply and lead to
large divergences.

3.4.1 Conservative Algorithms

Lock-step simulation-time driven synchronization
[7] is by far the simplest, and by far the least suit-
able for a real-time game. No member is allowed to
advance its simulation clock until all other members
have acknowledged that they are done with compu-
tation for the current time period. This takes the first
approach to preventing inconsistencies from possi-
bly being generated. In this system, it is impos-
sible for inconsistencies to occur since no member
performs calculations until it is sure it has the exact
same information as everyone else. Unfortunately,
this scheme also means that it is impossible to guar-
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antee any relationship with real wall-clock time. In
other words, the simulation does not advance in a
clocked manner, much less in real time. In an in-
teractive situation such as a multi-player game, this
is not an acceptable tradeoff. There are a num-
ber of similar algorithms and variants such as fixed
time-bucket synchronization which still suffer from
the same problem of simulation-time and wall-clock
having no real correlation.

Chandy-Misra synchronization does not require
the coordinated incrementing of simulation time like
the previous two algorithms. Instead, each member
is allowed to advance as soon as it has heard from
every other member it is interacting with. Addition-
ally, it requires that messages from each client ar-
rive in order. This requires the concept of a round
of messages to be of any use. In a mirrored game
server architecture, different servers will have differ-
ent event generation rates depending on the number
of connected clients. This scheme limits execution
to the rate of the slowest member. Additionally, the
times at which these events are generated will have
little relation with the generation of earlier events.

3.4.2 Optimistic Algorithms

The two types of algorithms above have taken a cau-
tious approach to synchronization. There are also
several algorithms which execute events optimisti-
cally before they know for sure that no earlier events
could arrive, and then repair inconsistencies if they
are wrong. These types of algorithms are far better
suited for interactive situations.

Time Warp synchronization works by taking a
snapshot of the state at each execution, and rolling
back to an earlier state if an event earlier than the
last executed event is ever received. Periodically, all
members reset the oldest time at which an event can
be outstanding, thereby limiting the number of snap-
shots needed. On a rollback, the state is first restored

to the snapshot, and then all events between the snap-
shot and the execution time are re-executed. Addi-
tionally, since, like the other algorithms, Time Warp
assumes that events directly generate new events, as
part of the rollback anti-messages are sent out to
cancel any now invalid events (which in turn trigger
other rollbacks). The big problem with Time Warp in
a game such as Quake is the requirement to check-
point at every message. A Quake context consumes
about one megabyte of memory, and new messages
arrive at a rate of one every thirty milliseconds for
each client. Additionally, copying a context involves
not just the memory copy but also repairing linked
lists and other dynamic structures. The other prob-
lem of Time Warp, anti-message explosion, is not as
important since the Mirrored-Servers do not directly
generate new events in response.

There are additionally a class of algorithms which
are “breathing” variations on the above algorithms.
Instead of fully optimistic execution, breathing algo-
rithms limit their optimism to events within an event
horizon. Events beyond the horizon can not be guar-
anteed to be consistent, and are therefore not exe-
cuted. Since in Quake events do not directly generate
new events, this concept does not work.

The algorithm implemented in MiMaze [8] is an
optimistic version of bucket synchronization. Events
are delayed before being executed for a time which
should be long enough to prevent misorderings. If
events are lost or delayed however, MiMaze does
not detect an inconsistency and attempt to recover
in any way. If no events from a member are available
at a particular bucket, the previous bucket’s event is
dead reckoned; if multiple events are available, only
the most recent is used. Late events are just sched-
uled for the next available bucket, but, because only
one event per bucket is executed, are not likely to
be used. For a simple game such as MiMaze, these
optimizations at the cost of consistency are claimed
to be acceptable. For a much faster paced multi-
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player game though, a higher level of consistency is
required.

3.5 Trailing State Synchronization

As described above, none of the existing distributed
game or military simulation synchronization algo-
rithms are well suited to a game such as Quake.
Our solution to this problem is trailing state syn-
chronization (TSS). Similar to Time Warp, TSS is an
optimistic algorithm, executing rollbacks when nec-
essary. However, it does not suffer from the high
memory and processor overheads of constant snap-
shots. TSS also borrows several ideas from Mi-
Maze’s bucket synchronization algorithm. Instead of
executing events immediately, synchronization de-
lays are added to allow events to reorder. The end re-
sult is an algorithm which has the strong consistency
requirements needed by a rapidly changing game
without the excessive overhead of numerous snap-
shots of game state. Because TSS was designed with
our mirrored game server in mind, we refer to com-
mands being synchronized as opposed to the events
in the last section. This is merely semantic and has
no bearing on the operation of TSS.

In order to recover from an inconsistency, there
must be some way to “undo” any commands which
should not have been executed. The easiest way
to handle this problem is to “roll-back” the game
state to when the inconsistency occurred, and then
re-execute any following commands. The difficult
part is where to get the state to roll back from. Since
any command could be out of order and there are
hundreds of commands generated every second, the
number of states needed quickly grows out of hand.
Even if a limit is placed on how old a command
can be and still be successfully recovered (creating a
window of synchronization), to maintain reasonable
consistency this limit will probably still be larger

than the number of snapshots we would like to keep.
Instead of keeping snapshots at every command,
TSS keeps multiple constantly updating copies of the
same game, each at a different simulation time. If the
leading state (which is the one that actually commu-
nicates to clients) is executing a command at simu-
lation time t, then the first trailing state will be exe-
cuting commands up to simulation time t � d1, the
second trailing state commands up to t � d2 and so
on. This way, only one snapshot’s worth of mem-
ory is required for each trailing state, reducing and
bounding the memory requirements.

TSS is able to provide consistency because each
trailing state will see fewer misordered commands
than the one before it. The leading state executes
with little or no synchronization delay d0. The syn-
chronization delay is defined as the difference be-
tween wall-clock time and simulation time, used
to allow commands to be reordered properly at the
synchronizers before execution. If a command is
stamped with wall-clock time a at the ingress mir-
ror, then it cannot be executed until wall-clock time
a+ d, even on the same ingress mirror. With a delay
of zero, the leading state will provide the fastest up-
dates to it’s clients (preserving the “twitch” nature of
the game) but also very frequently be incorrect in it’s
execution. The first trailing state will wait longer be-
fore executing commands, and therefore will be less
likely to create inconsistencies but also less respon-
sive to clients. This continues, forming a chain of
synchronizers each with a slightly longer synchro-
nization delay than its predecessor.

In order to detect inconsistencies, each synchro-
nizer looks at the changes in game state that the ex-
ecution of a command produced, and compares this
with the changes recorded at the directly preceding
state. In Quake, there are two basic classes of events
that a command can generate. The first type we refer
to as weakly consistent, and consists of move com-
mands. With these events, it is not essential that the
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Figure 3.1: Trailing State Synchronization Execution

same move happened at the same time as much as
that the position of the player in question is within
some small margin of error in both states. The other
class is strictly consistent, and for these events (such
as missiles being fired) it is important that both states
agree on exactly when and where it occurred.

If an inconsistency is discovered, a rollback from
the trailing state to the leading state is preformed.
This consists of copying the game state as well as
adding any commands after the rollback time back
to the leading state’s pending list. The next time that
state executes, it will calculate it’s execution time as
t�d and execute all the commands again. The differ-
ence in delays between states determines how dras-
tic the rollback will be. Additionally, the rollback of
one state may cause, upon it’s re-execution, incon-
sistencies to be detected in its leading state. In this
fashion, any inconsistencies in a trailing state which
the leading state also shares will be corrected. The
last synchronizer has no trailing state to synchronize
it, and therefore any inconsistencies there will go un-
detected. However, if it is assumed that the longest
delay, as in the other bounded optimistic algorithms,

is large compared to expected command transit de-
lays, this is unlikely to occur.

3.5.1 An Example of TSS

Figures 3.1 and 3.2 depict a simple example of TSS.
There are three states in the example with delays of
0ms, 100ms and 200ms each. Two commands are
hi-lighted. Command A is a MOVE, issued (locally)
at t = 150 and executed immediately in the leading
state. At time t = 250, the first trailing state reaches
a simulation time of 150 and executes command A.
Since A was on time, it’s execution matches the lead-
ing state’s and no inconsistency occurs. Similarly, at
time t = 350, the final trailing state reaches simula-
tion time 150 and executes command A. It too finds
no inconsistency, and no one is left to check it (this
is a contrived example, in real life you would likely
want a longer delay than 200ms on the last synchro-
nizer). Command B is a FIRE event, issued at time
t = 200 on a remote mirror. By the time it arrives,
the real-time is t = 225. The command is executed
immediately in the leading state and placed in the
proper position in the other two states since they are
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at simulation times 100 and 0. At time t = 300, the
first trailing state executes B. When it compares it’s
results with the leading state’s, it is unable to find a
FIRE event from the same player at time 200, and
signals the need for a rollback. Figure 3.2 zooms in
on the recovery procedure. The state of the trailing
state is copied to the leading state which places it
at time 200. The leading state then marks all com-
mands after time 200 as unexecuted and re-executes
them up to the current t. This example hi-lights one
of the features of TSS. It is possible that there were
other inconsistencies in the gap between times 200
and 300 (a burst of congestion perhaps). The re-
covery of the first inconsistency at time 200 in effect
canceled any future recoveries in this window.

3.5.2 Analysis of TSS

Although similar to many other synchronization al-
gorithms, TSS has key differences with each of them.
It is clearly very different from any of the conser-
vative algorithms, since its scheduling of execution
is based on synchronization delay and not when it
is safe. It is also clearly different from MiMaze’s
bucket synchronization since it provides absolute
synchronization for events delayed no later than the
longest synchronization delay. MiMaze on the other
hand does not really detect let alone recover from any
inconsistencies it may cause. TSS and Time Warp
both execute commands as soon as they arrive. They
differ however in their methods of recovering from
inconsistencies. TSS is a little more optimistic than
Time Warp in that it does not keep a snapshot of the
state before executing every command so that it can
recover as soon as a late command arrives. Instead it
catches inconsistencies by detecting when the lead-
ing state and the correct state diverge, and correcting
at that point. It is possible, especially with weakly
consistent events, that though executed out of order
commands may not cause an inconsistency.

TSS will perform best in comparison to other syn-
chronization algorithms when three situations are
present: the game state is large and expensive to
snapshot, the gap between states’ delays is small and
easy to repair, and event processing is easy. The first
is definitely present in Quake, with one megabyte of
data per context. The second is a parameter of TSS
and therefore it is possible to tweak the number and
delays of synchronizers (see Section 3.5.3). The cost
of processing each command is not immediately ap-
parent, and we must determine this experimentally.
A preliminary study of the performance of TSS is in
Section 3.6.

3.5.3 Choosing Synchronization Delays

Picking the correct number of synchronizers and the
synchronization delay for each is critical to the op-
timal performance of TSS. If too few synchronizers
are used, in order to provide a large enough window
of synchronization the gaps between synchronizers
must necessarily be large. This leads to greater delay
before an inconsistency is detected, and more dras-
tic and noticeable rollbacks. Conversely, if too many
synchronizers are used the memory savings provided
by TSS will be eliminated. Additionally, rollbacks
will likely be more expensive since a longer cascad-
ing rollback is needed before reaching the trailing
state. Given information on the network and server
parameters, (delay distribution, message frequency,
cost of executing a message and the cost of a context
copy) it should be possible to build a model to cal-
culate how many synchronizers should be used and
with what delays. Due to time constraints, this aspect
of TSS has not been fully explored.

3.5.4 Implementation

The first step in implementing TSS, or any opti-
mistic synchronization algorithm for that matter, in
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Figure 3.2: Trailing State Synchronization Rollback

Quake was to alter the server so that all game state
data was within a context, and create functions capa-
ble of copying one context onto another. Although
Quake uses almost no dynamic memory for perfor-
mance reasons, they make numerous very ugly hacks
to their static structures to avoid extraneous derefer-
encing of pointers for the same reason. Additionally,
the actual game play within the server is not done
in C code, but in a primitive interpreted byte code
language known as QuakeC. It was because of the
amount of work done within QuakeC that we decided
to simplify the Quake game to a single weapon and
level.

Once the Quake server had been altered to use
contexts, it was fairly simple to add synchronization.
Instead of executing client packets immediately, they
are intercepted and sent out over the multicast chan-
nel. Upon receiving a multicast command, it is in-
serted back into Quake’s network buffer and parsed
by quakes normal function. All commands other
than moves (which also include fires) get executed
normally in all contexts, while the moves are inserted
into the synchronizers. Every time through the main
event loop, each of the synchronizers is checked, and
any pending commands which can be are executed,

and inconsistencies checked for.
In addition to the mirroring and synchronization,

we also added a trace feature to the server. This logs
to a file every command sent to the multicast channel
and allows games to be replayed exactly in the future
for deterministic simulations.

3.6 Experimental Results

To test the performance of TSS, we ran a series of
simulations using the trace feature described above
with different network and synchronization param-
eters. Unfortunately, due to QuakeC code still ex-
hibiting randomness in certain situations, even with
a single server and two states inconsistencies would
occasionally occur. Because of this, a detailed and
accurate study of the behavior of TSS with different
configurations and different network conditions was
not possible.

From the experiments we were still able to gather
several useful results. The results in Table 3.6 show
seven runs, all using the same trace file with three
users connected to each of two servers. The statistics
were gathered at mirror one, which saw 18593 com-
mands from local clients and the multicast group.
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Synchronization Executed Execution Rollbacks Rollback Total Command Rollback
Delays Commands Time Time Time Cost Cost
0,50 40780 6.135408 817 1.148895 8.953207 .15ms 1.41ms
0,100 45401 6.369374 870 1.226166 9.317506 .14ms 1.41ms
0,50,100 59981 9.024021 938 1.315154 12.296119 .15ms 1.40ms
0,100,1000 331687 26.195788 6687 10.105350 43.772133 .08ms 1.51ms
0,50,100,150 79357 12.144979 1092 1.534347 15.904039 .15ms 1.41ms
0,50,100,500 99730 13.261478 2370 3.361073 19.375112 .13ms 1.42ms
0,50,500,1000 251044 23.223288 6995 10.513721 39.266619 .09ms 1.50ms

Table 3.1: Trailing State Synchronization Execution Times

For each configuration of TSS, the seconds spent ex-
ecuting commands (including re-execution of com-
mands due to rollbacks) and those spent performing
rollbacks (copying contexts and moving commands
back to the pending list) as well as the number of
occurrences of these events is listed. These are then
used to calculate a per-event cost of executing a com-
mand or performing a rollback. In all the cases these
costs were nearly identical, with command execution
being an order of magnitude less expensive. This
supports the third condition for TSS to be advanta-
geous, that event processing be inexpensive. For ev-
ery command executed, TSS does an order of mag-
nitude better than Time Warp or other similar opti-
mistic algorithms.

3.7 Future Work

As discussed above, a more through examination of
the parameter space for synchronization delays is
needed. Additionally, taking the idea of weakly con-
sistent events one step further, it would be interesting
to look at the effect of correcting positional differ-
ences between states as opposed to performing a full
rollback. While we were limited in what we could
implement by Quake’s existing design, in another sit-

uation the Event based consistency protocol might
be implemented and studied. Finally, even though
it is entirely subjective, a better user study to deter-
mine what delay and rollback rates are unnoticeable,
what are noticeable but playable, and at what point
the game becomes unplayable is needed to determine
the true usefulness of the mirrored multi-player game
servers.
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Chapter 4

Reliable Multicast

4.1 Introduction

As stated in earlier sections, our architecture requires
a reliable many-to-many delivery method between
mirrors. In this chapter, we investigate the require-
ments of a delivery method, and provide a design,
the Clocked Reliable Interactive Multicast Protocol
(CRIMP), that meets them.

This part is organized as follows. Section 4.2 de-
scribes the requirements and desired features of our
delivery method. In Section 4.3 we discuss other de-
signs in literature that fueled our design decisions.
Section 4.4 provides a description of our architec-
ture. In Section 4.6 we provide some evaluation and
analysis of CRIMP. We close the chapter with future
work.

4.2 Requirements and Simplifica-
tions

To provide perfect consistency, our architecture re-
quires that all packets be delivered to each mir-
ror. Each server provides consistency by execut-
ing the commands sent between mirrors. If pack-
ets are dropped, the servers’ states could diverge, in
essence, no longer being consistent.

The mirrored architecture, from a quality of play
point of view, also requires that packets be delivered

in a low latency manner. If a long delay synchronizer
plays back a packet which an earlier synchronizer
did not play back, the mirror is forced to roll-back.
Our architecture evaluation shows why this circum-
stance should be avoided. If possible, a reliable de-
livery method designed for our architecture should
minimize what we call perceived latency. We define
perceived latency as the difference between when a
packet is originally sent by the sender, ts, and when
a receiver receives the packet, tr.

Since the consistency layer of the architecture
does its own ordering of packets, packet ordering is
not required by the delivery layer. Instead, the syn-
chronizer insists that the packets be passed up to the
application layer as soon as they arrive.

As described in [12], most packet loss is due to
congestion, and the delivery layer must carefully re-
act to packet loss. The delivery layer should avoid
flooding the network when a loss is detected to avoid
deteriorating network conditions further.

The delivery layer can use the abstraction of an
überserver. This is an entity on the delivery chan-
nel which can provide authority on any issues in the
channel.

Since the mirrors in the channel forward client
commands to the many-to-many delivery channel,
delivery rate is thus determined by the clients, and
not the mirror. Congestion control must thus be done
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with the cooperation of the clients. Since we are un-
able to modify the Quake client, congestion control
is out of the scope of our design.

Since each mirror has a finite number of synchro-
nizers, after a packet misses its playback point in the
last synchronizer, it can no longer be used. Thus,
each packet has a finite life in the system.

4.3 Discussion

The idea of reliable many-to-many communication is
not a new concept. In this section, we will provide a
discussion of which ideas we can borrow, and which
we have to discount for our delivery layer.

4.3.1 Unicast

Naive Unicast

The most basic many-to-many method of providing
reliability is a full mesh of connections between en-
tities on the channel. Using this method, a sender
has connections to each of the receivers. Either the
sender or the receiver detects losses and prompts the
sender to retransmit lost packets. This method may
work well on a small scale, but as noted in [20], it
causes unnecessarily high link usage, especially at
the sender, as it must send indiviual messages to each
receiver. In addition, all recovery messages must
come from the sender, and thus time to recovery is
bound by the longest RTT. Because of the problems
this design, we discounted naive unicast as an infea-
sible method.

End-Host Multicast

Another method of providing a many-to-many re-
liable delivery is to use end-host multicast [20],
whereby entities unicast messages to each other
based on some sort of global topology. Reliability

is enforced between neighbors in this method, gen-
erally in the transport layer. However, as the au-
thors concede, latency is generally higher than other
many-to-many methods such as IP-Multicast [20].
Packets must propagate through the topology until
they reach every host. This is quite scalable, yet it
most likely would not meet the latency requirements
of our architecture.

4.3.2 IP-Multicast

To solve the problem of propagation delay of end-
host multicast, we can use IP-Multicast to send effi-
ciently to many hosts. However, since IP-Multicast
is built at the IP-layer, to this date, no standard re-
liable transport protocol is available for it. How-
ever, research [11, 18, 4] has been done making IP-
Multicast scalably reliable. For simplicity, we cat-
egorize these efforts into two separate categories,
Topology-Based, and Receiver-Based.

Topology-Based Reliability

In this category of reliable IP-Multicast, receivers are
grouped together in trees, rings or some other topol-
ogy [11]. Reliability is ensured by having receivers
aggregate their acknowledgments and sending them
back to the sender, which retransmits. Local recov-
ery is an enhancement of this, whereby some mem-
ber of the aggregate group fill the requests for re-
transmission between themselves [11]. The authors
of [18, 11] show this to be a very scalable approach
to reliability over IP-Multicast. However, the scala-
bility comes at the cost of latency, as retransmission
must wait for NAKs to propagate up from a receiver
through the topology, or use ACKs and RTO timers,
which is bound by RTTs.

32



Receiver-Based Reliability

This category of reliability, as described in [4] uses
receiver NACKs to fuel sender retransmission. The
receivers detects losses and sends a recovery request
back to the multicast group. Anyone who stored the
packet can respond to the request with the data. One
implementation of this, SRM, sets RTT based timers
to ensure that the multicast channel is not flooded
with requests. This method is less scalable than
topology-based reliability, in that all entities must
keep state of all other entities on the channel. How-
ever, the timers set ensure that network utilization is
kept to a minimum. The authors of [12] show that in
the ideal case, SRM provides the lowest latency re-
covery of known solutions. Observe that Topology-
Based Reliability is actually a subset of Receiver-
Based Reliability.

4.4 CRIMP Design

Using the methods of reliable many-to-many deliv-
ery discussed above, we designed a reliable multi-
cast layer which conforms to the requirements of the
architecture. We also use the simplifications that the
architecture afforded us to further enhance the de-
sign. In this section, we describe the design deci-
sions of CRIMP, our multicast library.

4.4.1 Design Overview

Since we required low latency recovery, we used
the Receiver-based reliable multicast as described
above. Our implementation borrows heavily from
SRM [4]. The major criticism [11] of this approach
is the scalability of state kept by the senders, the re-
quirement of infinite storage for packets, and session
messages to avoid missing ends of packet sequences.
Since the senders in our architecture are limited in
number, keeping state for these is not unreasonable.

Since packets have a limited lifetime, infinite storage
is also not a problem. Packets are part of an unending
stream, and thus session messages are unnecessary.
Since the simplifications afforded by the architecture
cancel these issues, we felt that a Receiver-based ap-
proach with slight augmentations could provide us
with a scalable, lower latency solution. In the follow-
ing subsections, we discuss the details of the multi-
cast layer, and the augmentations we made to provide
potentially lower latency.

4.4.2 Bootstrapping

In CRIMP, since we limit the number of servers
and each server needs a unique identity, we require
that new servers establish themselves before send-
ing game messages to the multicast channel. The
unique identity is required since packets are refer-
enced, akin to SRM, by the tuple fserver identifier,
sequence numberg. Using the überserver abstrac-
tion, we defined a bootstrapping sequence for estab-
lishing a mirror in the group.

1. When a mirror wishes to join the game, it sends
a request-join control packet to the multicast
channel.

2. The überserver responds back to the mirror, on
the multicast channel with either an establish-
ment message or a denial message. The estab-
lishment message contains the mirror’s identi-
fier.

3. Upon establishment, the mirror requests the
game-state from the überserver.

4. The überserver replies via unicast TCP with the
game-state.

If the messages in steps 1 or 2 are lost, the mirror
will retransmit its request based on an exponentially
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backing off RTO. These control messages are done
on the multicast channel so other mirrors can add the
new mirror to their server tables. The überserver will
reply with the game-state instead of another mirror,
since the game state at the überserver is considered
to be the reference state. This is done via TCP to
simplify the reliable transmission of a large chunk of
data. The mirror will capture packets on the multi-
cast channel while the transfer of game-state is oc-
curring, and apply the changes once it finishes. Once
the changes are applied, the mirror can become an
active participant in the game. 1

4.4.3 Loss Detection

Since packets are sent by each mirror at a relatively
high rate, at least one packet per 30 ms, detecting
loss can be done quite quickly by counting packets
received after the next expected sequence number.
This scheme, which we borrow from TCP’s dupli-
cate ACKs, we call N -Out-Of-Order, where N cor-
responds to the number of packets received after the
expected one. If N is chose to be to low, packets will
be falsely assumed to be lost. If N is chosen to be
too high, packets will be discovered lost too late.

4.4.4 Recovering from Loss

The loss recovery algorithm which we use is very
similar to that of SRM. Like SRM, when a lost
packet is detected, the receiver schedules a recov-
ery message to the multicast channel on the interval
[C1dS;A; (C1 + C2)dS;A]. As in [4], dS;A is the ap-
proximate one-way delay from the source server S to
the receiving server A as estimated by A. C1 and C2

1Since the focus of the paper is on the asymptotic perfor-
mance and not startup cost, for most of our studies, implemented
a simplified the überserver-mirror transaction, by having the
mirror block until the überserver register all games. This al-
lowed for a more deterministic study of both the network layer
and the overall architecture

are parameters to the equation which tune how many
duplicate recovery messages are sent versus the time
waited. In our case, we wish to set C1 and C2 ag-
gressively, to 1:5 and 1, somewhat more aggressively
than in SRM to avoid latency. As in SRM, if the re-
ceiver receives either the packet or a recovery request
for the same packet from a different server, nothing
is done. Otherwise, the receiver sends a recover re-
quest for the packet to the multicast channel. Our
enhancement of this recovery algorithm is to have
the receiver send an immediate NAK with probabil-
ity 1

n
where n is the number of mirrors. By doing

this, we expect to always have an immediate NAK if
no mirrors receiver the packets. This should add a
negligible amount of traffic, in that in the worst case,
only 1 extra packet is expected.

To repair the lost packet, any server which re-
ceives the recovery request and has the packet
stored becomes a candidate for repairing the lost
packet. As in SRM, the candidate will schedule a
repair packet randomly on the uniform distribution
[D1dA;C ; (D1 +D2)dA;C ]. dA;C is the approximate
one-way delay from the server A which sent the re-
covery request to the repair candidate C as estimated
by C . D1 and D2 are parameters to the equation
which tune how many duplicate repairs are sent ver-
sus the delay in receiving a repair. Ideally, these pa-
rameters provide a single low latency repair packet.
We choose D1 = 2 and D2 = 1 as they for SRM.
If a repair is seen for the packet before the time ex-
pires, no repair is sent. Otherwise, a repair is sent
when the timer elapses. We enhance this further by
having the sender respond to recovery requests im-
mediately. This will provide a low latency solution
to all receivers, or the set of receivers close to the
sender missing the packet. This adds only the cost of
a packet per recovery request to the multicast chan-
nel.

To avoid responding to recovery requests for the
same lost packet, every candidate server which sees a
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repair message will ignore recovery requests for that
packet for EdS;C . E is a parameter which tunes how
many duplicate repairs are sent for the same recovery
request versus how frequently a fresh recovery re-
quest will be ignored. We chose E = 3, as in SRM.
We think that this gives a good balance of ignoring
duplicate messages and replying to valid messages.

A server which either sends a recovery request or
witnesses a recovery request from a different server
must wait for a repair to return. It is possible to
lose either the recovery message or the repair, so a
retransmission timeout is set for the waiting server.
This RTO is FdS;A and is started when the recov-
ery request was sent or witnessed. Ideally, a repair
should return in about an RTT to the sender plus the
wait-time needed to avoid duplicate repairs. If this
timer expires, the server restarts the recovery pro-
cess. We chose F = 2, corresponding to about an
RTT.

4.4.5 Canceling Recovery

Since packets are only useful for a finite slice of time,
a server can stop trying to recover a lost packet after
a certain amount of time. This is facilitated through
the clocking built into CRIMP. Packets and first re-
covery tries are stored in a data structure called a
CRIMP interval. CRIMP intervals act as a history of
what has occurred on the multicast channel. When
a new packet arrives, it is copied into the newest
CRIMP interval. Periodically, the server will call a
function tic()which moves the newest CRIMP in-
terval into the past and provides a newer CRIMP in-
terval. The oldest CRIMP interval will be removed,
and any stored packets in the interval are deleted and
recovery requests are canceled. The length of the
history is configurable. In our case, it makes sense
to set the length of the history of intervals to that of
the longest synchronizer, since packets are of no use
after that point.

4.4.6 Server Management

CRIMP also handles the problems of network par-
titioning and server crashes. This is done using the
authority of the überserver. The überserver maintains
a list of last contacts with servers. If packets are not
received in a time corresponding to 3

4
of the length

of time that its CRIMP intervals correspond to, the
server is considered dropped. This time is used, since
after that point, the server would have difficulty re-
covering from losses if it was down. Hence, any
servers which can reach the überserver are still con-
sidered part of the game. If the network partitions,
all servers in a section other than the überserver are
dropped. If the partitioned servers return after be-
ing dropped, they must go through the bootstrapping
process again to carry the game.2.

4.5 Server Selection

Since each game will have a different set of servers
for it, we needed a system for a user to be directed
to a game mirror. We do this with a master server
which tracks games and a graphical tool qm-find
which interfaces with the master server.

4.5.1 Master Server

When a new game is started by an überserver, it
registers with a well-known server, called a master
server (a term borrowed from [2]). The überserver
sends the ip address and port for itself and its mir-
rors, as well as the game information being played on
the server (map, game style, etc.). The master server
sends periodic keep-alive messages via TCP to the
überserver which replies with any changes in its rele-
vant information such as new mirrors, removed mir-
rors, players, or maps. If the überserver does not

2We do not consider network partitioning in our evaluation,
the description is here only for completeness
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reply to a keep-alive message, the master server re-
moves it from its database. The master server also
has a client interface which will return games and
their lists of mirrors.

4.5.2 qm-find

qm-find is our proposed tool for finding the clos-
est game to a client. The tool will query the mas-
ter server for all games matching a specific query
(map, game style, etc.). The master server returns the
corresponding list of games. When the user selects
a game, qm-find queries an IDMaps [6] HOPS
server to find the mirror with the lowest approximate
RTT relative to the user. qm-find then spawns the
game client with the the lowest RTT mirror as the
server name and port arguments.

4.6 Evaluation

Since CRIMP was designed with the architecture in
mind, we wanted to evaluate the network layer un-
der game conditions. However, due to limited equip-
ment, and test subjects, we were unable to run ex-
periments with large numbers of clients and servers.
Nevertheless, we captured the traffic on the multicast
channel for a smaller number of clients, and created
a traffic model based on the patterns in these.

In figure 4.1, we present the network traffic for two
servers on a 100baseT LAN. Here our definition of
traffic is bytes sent per packet. We considered multi-
ple games with varying numbers of clients. Observe
that the packet size after some initial large messages,
asymptotically remains nearly constant. We also
present this data as a histogram in Figure 4.2. We
removed the outliers (over 100 bytes) from the plot
since we care about asymptotic performance. We
used the remaining data points in the histogram as
a traffic model for studying multicast performance.
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Figure 4.2: Histogram of Packet Sizes

Experimental Setup

Using the traffic model as discussed above, we cre-
ated a simple test harness to evaluate the network
layer. This test harness sent a packet of a size de-
termined randomly, using the histogram as a proba-
bility density function, to the multicast channel. Due
to limitations of dummynet, we were unable to create
random network delay and loss on a multicast chan-
nel between two machines. We ran multiple test har-
nesses on the machines to create a virtual topology
like that in Figure 4.3.

Using this virtual topology, having a two-way
FreeBSD Dummynet [17] bridge (denoted Dum-
mynet in the figure) with a delay of 25 ms, and va-
riety packet loss rates, we evaluated the multicast
layer in terms of perceived RTT, total losses and du-
plicate ACKs. Each sender sent 2000 total packets,
one packet every 30 ms, as in Quake. We initialized
CRIMP with a history of 1000 ms.

To compute meaningful results, we recorded the
send time of each packet, and the time that each
client receives the packet. We also recorded the num-
ber of duplicate recovery packets sent and number
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Figure 4.3: Virtual Multicast Topology

of duplicate repairs. We consider a packet to be a
duplicate if a packet with the same data has already
been sent. Hence, if a receiver sends two recovery
requests, one is considered to be a duplicate. We
present the results from our experiment in in Table
4.6. We concede that the topology may cause the

Loss Perceived Total Duplicate Duplicate
Rate RTT Losses Recovery Repairs

0% 15ms 0 0 0
5% 32ms 0 441 323
10% 78ms 0 1653 1215
15% 161ms 2 2512 1951

Table 4.1: Performance of Multicast

multicast layer to exhibit unusual results since half of
the machines in essence see the same behavior (25ms
delay, a loss, or 0ms delay). This nullifies any chance
of localized recover, and also causes the probability
of no one receiving the packet 0, in essence making
our aggressive recovery less effective.

From these results, we can see that our multicast
adequately provides reliability for our architecture.
Note that only in the 15% loss rate case were packets
not received. We think that this may be misrepresen-
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tative, and an artifact of our topology having an en-
tire side miss a packet. In the 5% loss case, which we
view as a conservative estimate of an actual network,
we experience a perceived RTT about than twice that
of the 0% case. This behavior is consistent with our
expectations of an efficient reliable multicast.

4.7 Future Work

4.7.1 Forward Error Correction

A possible improvement for recovery is using for-
ward error correction [10] to recover packets without
going to the network. If, for example, each packet
also included the contents of the last two packets,
the server would in essence, have received all three
packets. If one of the previous two packets was lost,
it could be recovered from that packet. The network-
based reliability would thus be needed only for bursts
of packet loss. This would decrease recovery latency
for some packets at the expense of increased network
stress (in the example, packets would triple in size).
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Chapter 5

Conclusions

In conclusion, we present a novel networked game
architecture, the Mirrored-Server architecture. This
architecture takes advantage of mirroring that has
been shown to provide better services to clients [6],
and extends it to a system which changes at a very
high rate. To facilitate this architecture, we also
describe a new synchronization mechanism, Trail-
ing State Synchronization to provide efficient con-
sistency between mirrors. We also present a reliable
multicast layer, CRIMP, which takes advantages of
simplifications presented by this architecture to pro-
vide low latency many-to-many reliability. We also
some results which prove that our architecture can
provide quality gameplay, yet leave much evalua-
tion for future work, since we were hamstrung by
the oddities of the Quake server.
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