
Behavior and Performance of Interactive Multi–player Game Servers

Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos
Department of Electrical and Computer Engineering

10 King’s College Road,
University of Toronto

Toronto, ON M5S 3G4, Canada
{abdel, bilas, moshovos}@eecg.toronto.edu

Abstract

With the recent explosion in deployment of services to large
numbers of customers over the Internet and in global ser-
vices in general, issues related to the architecture of scal-
able servers are becoming increasingly important. However,
our understanding of these types of applications is currently
limited, especially on how well they scale to support large
numbers of users. One such, novel, commercial class of
applications, are interactive, multi–player game servers.

Multi–player games are both an important class of com-
mercial applications (in the entertainment industry) and
they can be valuable in understanding the architectural re-
quirements of scalable services. They impose requirements
on system performance, scalability, and availability, stress-
ing multiple aspects of the system architecture (e.g., com-
pute cycles and network I/O). Recently there has been a
lot of interest on client side issues with respect to games.
However, there has been little or no work on the server side.
In this paper we use a commercial game server to gain in-
sight in this class of applications and the requirements they
impose on modern architectures.

We find that: (1) In terms of the benchmarking method-
ology, interactive game servers are very different from sci-
entific workloads. We proposse a methodology that deals
with the related issues in benchmarking this class of ap-
plications. Our methodology bears many similarities with
methodologies used in benchmarking online transaction pro-
cessing (OLTP) systems. (2) Current, sequential game
servers can support at most up to a few tens of users (60–
100) on existing processors. (3) The bottleneck in the server
is both game–related as well as network–related processing
(about 50–50). (4) Network bandwidth requirments are not
an important issue for the numbers of players we are inter-
ested in. (5) The processor achieves a surprisingly low IPC
of 0.416.

1 Introduction

The amount of bandwidth and associated latencies available
to Internet’s end-users has been improving rapidly. This of-
fers the prospect of delivering traditional as well as novel
services to large numbers of clients. Improved networks are
only one of the conditions necessary for this prospect to ma-
terialize. In addition, powerful servers are needed to pro-
vide the required compute resources. The higher the num-
ber of clients and the quality of the provided service, the
higher computing resource demands placed on the server
side.

Understanding the scalability of such services (i.e., how
their demands change with the number of clients) is essen-
tial for designing server architectures to successfuly support
them. While the scalability of scientific workloads has been
studied extensively, little is currently known about the scal-
ability of commercial applications. Interactive multi–player
games is a class of commercial applications that has not
been studied thus far and that is interesting especially for
the entertainment industry. This class of applications has
gained a lot of attention lately due to the potential for pro-
viding customizable entertainment. Practically all modern
titles today include an online, multi–player mode.

In virtually all cases, multi–player games are enabled
by a central server. Clients connect to this server who is
responsible for interpreting their actions, maintaining con-
sistency, and passing information among them. A variety
of multi–player games exist with different characteristics
and demands varying from simple card games, up to role–
playing environments with hundreds of users. There is no
single application that is representative of all such servers.
In this work we focus on first–person action games. We
believe that this game architecture is the prime candidate
for evolving into highly interactive ”real–life–like” simula-
tors. First–person action games support fine grain, close to
instantaneous control of player actions and a high degree of
interaction amongst the players and a detailed 3D virtual
world. We believe these properties are fundamental for sim-
ulating a believable environment with a degree of fredom
and response times that approximate real life experience.
While other multi–player games players exist, the level of
interaction is typically coarse. In the interest of space, we
will use the term server to refer to servers for first–person
action games in the rest of this paper.

Current servers are limited to few tens of users. This
type of multi–player games can benefit dramatically from
scalability. Being able to support hundreds (and eventu-
ally thousands) of users opens up additional opportunities
for interaction and may enable new games or online multi–
person experiences (e.g., a virtual world where hundreds of
players interact simulating real–life–scale experiences). Ac-
cordingly, it is important to understand how game servers
behave and what bottlenecks may exist. Recent work has
focused on client side issues related to the CPU and graph-
ics subsystems.

In this work we study game server scalability by look-
ing at a commercial server application that has been used
extensively and exhibits many of the required characteris-
tics. We study Quake [5, 6], a sequential, publicly available,
multi–player, game–server. Developing a benchmarking
methodology for Quake poses a number of challenges: (i)



There is no well defined input to use for system benchmark-
ing. (ii) The input stimulus is external to the application
server (triggered by client systems). (iii) Typical setups re-
quire interaction of human users. (iv) The levels of scalabil-
ity to be studied exceed the size of most university–level lab-
oratories requiring hundreds or thousands of clients. These
issues are similar to online transaction processing (OLTP)
systems and the related benchmarking methodologies [13].
The methodology we develop here allows us to (i) perform
large scale experiments on a relatively small setup, (ii) au-
tomate the benchmarking process, and (iii) compare results
across runs.

We use a variety of metrics to understand application
behavior at two levels: We first take a high–level look at
the computation and communication processing breakdown
in the server by using an experimental setup with 32, dual–
processor PCs, interconnected with a private 100Mbit/s
Ethernet network. This study provides us with insight
on the relative importance of network processing versus
computation and where scalability bottlenecks exist if any.
Then, we take a closer look at various factors degrading
performance at the processor level. This study reveals ad-
ditional information of how the game server stresses the
various architectural features (e.g., branch prediction and
caches) of a modern high–performance processor.

We find that: (1) Current systems can support in the
order of few tens of players (our systems support between
60 and 100). (2) Processor cycles are the main bottleneck.
At large player counts the processor is fully utilized. The
compute time is divided almost equally between game and
network protocol stack processing. (3) Network bandwidth
is less of a concern as players exchange only little informa-
tion with the server (in the order of a few KBytes/s per
client). (4) Processor performance improvements can help
increase the numbers of players by a small multiplicative
factor (e.g., doubling processor clock speed increases the
number of supported players from 80 or so to about 100).
(5) Parallelization offers a potentially viable path for sup-
porting an order–of–magnitude increase in the number of
players.

The rest of the paper is organized as follows. In sec-
tion 2 we review a typical multi–player setup and the basic
operations that take place on both the client and the server
side. In section 3 we describe our methodology and exper-
imental setup. In section 4 we present our server analysis
for a small number of players. In section 5 we extend our
methodology to large numbers of players and in Section 6
we present our results on system scalability. Finally, we
comment on related work in section 7 and summarize our
conclusions in section 8.

2 Overview and Background

Before we present our experimental analysis of server scal-
ability and behavior, in this section we review a typical
multi–player game setup. We emphasize the actions taken
by the server and provide a high–level description of the
structure of the server and client applications. Quake [6] is
a popular representative of a subset of applications in this
class. It is a sequential application, advertised to support
up to 32 or so simultaneous users and is used extensively
world–wide. Accordingly, studying Quake provides us with
insight that could be applicable to other game server ap-
plications as well, as many of them have a similar software
architecture. In our work we use version 2.40 of the multi–
player mode of Quake, QuakeWorld.

Internet

56K

Cable

fast link

Players on LAN

Player 1

Player 3

fast link

Game Server

Player 2
DSL

Figure 1: Typical Game session geographical setup

Figure 1 shows a generic setup for interactive, multi–
player game sessions. In this client–server setup, servers
usually maintain consistency of the plot and handle coordi-
nation among clients, whereas clients perform all graphics
and user–interface operations. More specifically: A set of
players, or clients connect to a centralized game server, or
simply server, they join a game session, and participate un-
til they leave the session, they are terminated, or the session
is ended. Clients communicate only with the server. The
server parses client actions and notifies other clients accord-
ingly. Players can locate available servers via well–known
directory servers where servers publicize their network ad-
dress and other game related information. In this work, we
are interested in server behavior after a game session has
been initiated. Game servers are usually stand–alone PCs
or workstations. Client systems are, today, either home–
level desktop systems or game consoles.

connect(server_ip,server_port);
while (connected)
{
if (!time_for_frame()) continue;
//
// end previous time-slot
// start new time-slot
//
if (get_input()) // from keyboard, mouse, etc.

send_intentions(); // to server
if (recv_reply()) // from server about request sent

// during previous time-slot
update_state();

perform_prediction(); // on all game entities
update_screen(); // render video for this frame
update_audio(); // play audio for this frame

}

Figure 2: Pseudo–code for client execution.

Figure 2 shows the pseudo code for the client execu-
tion. When a client joins a game session it enters a loop
performing the following actions in well defined iterations
(time–slots): (i) get the player input, if any, and send it
to the server, (ii) receive server updates for all relevant
entities for the request the client sent in the previous time–
slot, (iii) perform prediction on all entities (e.g., players and
objects with associated actions), and (iv) render the next
frame. Prediction is necessary since network and server la-
tencies introduce time slack amongst the clients and the
server. Even with high–speed connections, this time slack



can be perceivable by humans. Accordingly, when servers
do not respond on time, to provide the illusion of a single,
time consistent world, clients guess where an entity will be
based on its current speed and direction. This prediction is
not always correct and deteriorates as network and server
latencies increase. If there is no server response for pre-
viously sent requests the client performs only actions (iii)
and (iv). In all practical cases the client needs to render at
least 24–30 frames per second (fps). This frequency defines
the time–slot for each iteration, resulting in 30 to 40ms
time–slots for each iteration.

while (1) {
//
// wait until request arrives or timeout occurs
//
if (select(server_port,time_out)==ERROR)
continue;

//
// start a server frame
//
update_world(); // move autonomous items, etc.
while (recv_request()) // from any client
{
execute_request(); // update world using request

}
for (c=0; c<total_clients; c++)
{
if (received_req(c)) // if client sent a request

send_reply(c); // reply with update
}
//
// end this server frame
//

}

Figure 3: Pseudo–code for server execution.

Figure 3 shows the pseudo code for the server execution.
The server spins in a tight loop waiting for client requests
that carry player intentions. Upon receiving client input,
the server determines how this interacts with the rest of
the virtual world. This is a non–trivial, compute inten-
sive task and we describe it in more detail later on. The
server replies only to explicit client requests, assuming that
clients are always active sending frequent requests with user
actions. All replies are sent after all requests in the request
queue have been processed. Ideally, the server replies with
updates to client requests within the same client time–slot
that the client sent the request. However, in practice, as
the number of players increases the server may take more
than a few time–slots to respond with updates leading to
the perceived lag at the client side and unpleasant lack of
smoothness to the real–time experience.

The virtual world that the server maintains consists of
the game session 3D map (a BSP file, implementing a bi-
nary space partition representation of a 3D world) and all
the players. The map consists of a polygonal representa-
tion of the 3D maze in which the players move about. In
the maze there are several entities that clients interact with
(e.g., pickup or activate). Each entity has its own charac-
teristics and actions that it can perform. For example,
two such entities are a lift and a flag. If a player steps on
a lift, then the server needs to activate the lift, simulate
its motion and also model the player’s motion as induced
by the lift. When a player drops a flag, the server has to
simulate its motion, and determine when and where it col-

lides with other objects in the world. If these objects are
solid, then the flag’s motion is terminated, otherwise the
motion characteristics are changed (e.g., when it drops in
water). All this state needs to be kept consistent amongst
all players by server processing. Also, there are various
types of matter that items or players can move through.
For example, there is air, water, lava, etc. all of which have
different properties that need to be obeyed when the server
is updating the game state and informing players of these
updates. Moreover, to minimize bandwidth requirements
and to support low bandwidth connections (e.g., modems),
the server determines which entities are of interest to each
client and sends out information only for those (i.e., it will
notify a client only of entities that are visible to it or that
may soon become visible). Thus, the server processing can
become very involved and complicated especially when the
number of players and level of world detail increase.

Finally, in our study we ignore the network path be-
tween the server and the client (both throughput and la-
tency). Our goal is to understand server behavior and study
its scalability. Providing sufficient network bandwidth and
latency is an orthogonal issue, beyond the scope of this
work. However, since network stack processing occurs to-
day on host CPUs, we do examine protocol (TCP/IP) over-
heads in our experiments. Thus, there are three potential
bottlenecks on the server side as the number of clients in-
creases: (i) the number of incoming requests and the corre-
sponding replies, (ii) the size of request and reply messages,
and (iii) the aggregate processing time for each request due
to game–plot updates.

3 Methodology

One of the most challenging aspects of our work is ad-
dressing methodological issues in benchmarking this class
of applications. The ultimate goal is to be able to eval-
uate changes to the game server that result in improved
scalability and/or perceived client quality at a particular
scale. However, realistic setups for these applications have
characteristics that do not match traditional benchmarking
methodologies, but are similar to online transaction pro-
cessing (OLTP) systems [13]: The input is external to the
application triggered by client systems. The input is gen-
erated by human users and is based on global system state
(interactions of all users in the system). Studying these
applications at large scale involves hundreds or even thou-
sands of clients, which would exceed most university–level
laboratory setups. These characteristics make it difficult
to both automate the benchmarking procedure and to also
compare results across runs. In the next paragraphs we de-
scribe our experimental setup and we develop our method-
ology to deal with these issues.

Experimental platform: For the most part, we conduct
our work on a cluster of 32, Pentium II–400 MHz, dual–
processor workstations connected by a private, 100 Mbit/s
Ethernet network. Each processor has two separate 16KB
non–blocking L1 caches (4–way) for instructions and data, a
512KB unified, half–speed L2 cache (4–way), and a 100MHz
system bus. We also provide some sample runs on an Pen-
tium III–800MHz incarnation of this cluster, with each pro-
cessor having two separate 16KB non–blocking L1 caches
(4–way) for instructions and data, a 256KB unified, full–
speed L2 cache (8–way), and a 100MHz system bus. Each
node in the system has 512 MBytes of main memory and
has an off–the–shelf, low–end graphics card. The operat-



ing system is Windows NT. We dedicate one node as the
Quake server and use the rest as clients. We perform most
of our measurements by instrumenting the code, and using
the Pentium counters either directly or through EMON, a
third–party tool [7]. EMON is an interface to using the Pen-
tium counters for measuring a large number of CPU events,
such as branch predictions, cache misses, resource conflicts,
types and numbers of executed instructions. Some of the
higher–level measurements are performed with the Perfor-
mance Monitor tool available in Windows NT. We find that
in all cases, a few minutes of execution time is sufficient to
capture the game server behavior. In our runs we exclude
setup and initialization time and we run each experiment
for 2 minutes (and usually multiple times to verify consis-
tency of our results).

Performance metrics: We monitor a number of statistics.
Although we are interested mainly on the game server be-
havior it is essential to monitor both the server and the
client. On the server side we measure: (i) the number and
size of incoming and outgoing messages that help us deter-
mine bandwidth requirements, (ii) the request processing
time that shows how computationally intensive the game
plot is, (iii) the execution time breakdown in compute time,
send and receive processing time1, and idle time, (iv) the
number of client requests received and processed in each
server time–slot, and (v) internal processor statistics about
branch predictions, cache misses, instruction fetches, and
resource conflicts. On the client side we measure: (i) in-
coming and outgoing bandwidth requirements (mainly for
verifying our server measurements), (ii) request rate to the
server, (iii) response rate from the server, and (iv) response
time. We also use processor utilization and graphics ren-
dering time as intermediate metrics to develop our method-
ology.

Capturing user intentions in action files: To automate the
benchmarking procedure we propose replacing human with
automatic players. Quake includes a demo–recording fa-
cility that can be used to record the keyboard and mouse
events of a player to a file for later playback. The recorded
events make sense only if the client is always spawned at
the same starting location of the map as was used at the
beginning of the recorded clip. Otherwise, the player might
be, for example, walking into walls or falling into pits, or
performing other actions a human player would obviously
not perform in the same situation. We modify the client
code to obtain user input from a previously recorded file
rather than from the keyboard or mouse. Thus, there is no
need for human players to interact with the server. From
our experience, the game–play is still very interactive and
logical with the automated players.

Providing standard maps: In Quake input maps specify
the setting where the game will evolve. The main factors
that determine our choice of maps are the complexity of
the map and the induced level of interaction among play-
ers. The complexity of the map is defined by its layout
and the number of objects it includes. These two aspects
usually conflict since player interactions increase in small
maps, whereas only large maps can contain many objects
and employ elaborate layouts. To capture these aspects we
use mainly two maps in the presentation of our results: A

1Receive interrupt handler processing is currently accounted for
in the compute time part.

small and simple map that forces a high level of interaction
among players even at small player counts. This map con-
tains a set of small, interconnected rooms and due to its
size it cannot be made very complex. The second map we
use is a larger and much more complex map that includes
many objects and an elaborate layout, which, however, may
not force as many player interactions as the smaller map.

4 Understanding System Behavior

We perform our basic experiments with the small input map
using 1, 2, 4, 8, 12, and 16 players. This study allows us to
identify computation and network processing scaling trends
for a player load for which the server is not overloaded. In
order to ensure that the perceived player behavior is simi-
lar to setups with human players we always use one human
player during the experiments and compare results on the
client side across all clients. This is a sanity check pro-
cedure we follow at this early stage of understanding this
class of applications, to make sure that the values of the
metrics we measure are similar for automated players and
human players. We expect that future work will use only
automatic players. The server always runs on a dedicated
system. In this set of experiments, each player runs on
a different, dedicated client as well. In all cases we show
the average value for each metric. Where meaningful, we
include error bars that show the minimum and maximum
values and an explicit measurement for the average value
of the same metric for a human player. Also, we include
measurements for one human player (1R) and for one auto-
matic player (1V) to show that they behave similarly with
respect to each metric.

1 R 1 V 2 4 8 12 16

Number of Players

0

200

400

600

800

B
W

 (
by

te
s/

se
c)

Figure 4: Server incoming network throughput per client.
The ’x’ plot represents the human avg for each run.

Server Network Throughput: Figure 4 shows the per
player incoming network throughput in the server. We
see that on average each player sends about 830 bytes/sec.
Moreover this throughput is independent of the number of
players. We also see that the incoming network through-
put for the human player is practically identical to that of
the automatic players. The difference between the mini-
mum and maximum per client incoming bandwidth can be
translated to approximately a difference of 1 request/sec.
The (incoming) request size does not vary with the number
of players and therefore we do not plot it.

Figure 5 shows the per client outgoing network through-
put at the server for different numbers of total clients. We
see that the average throughput to each client increases
with the total number of players and doubles when going
from one to about twelve players. Figure 6 shows that



1 R 1 V 2 4 8 12 16

Number of Players

0

500

1000

1500

2000

2500

B
W

 (
by

te
s/

se
c)

Figure 5: Server outgoing network throughput per client.
The ’x’ plot represents the human avg for each run.

1 R 1 V 2 4 8 12 16

Number of Players

0

100

200

300

400

P
ac

ke
t 

Si
ze

 
(B

yt
es

)

Figure 6: Server response size.

the average (outgoing) reply size is increasing almost lin-
early with the number of players, indicating an increase
in the amount of information the server is sending out to
clients rather than an increase in the number of messages
per client. The reason for this increase is that as more play-
ers interact, the server needs to communicate more informa-
tion to each player involved. This measure may be highly
influenced by the geography of the input map. Our exper-
iments indicate, however, that in practice, server network
throughput requirements do not vary significantly across
input maps (Section 6). Finally, we note that the outgo-
ing network throughput for the human player is practically
identical to that of the automatic players.

These results indicate that network throughput is not
a problem and that a single, 100 Mbit/s Ethernet connec-
tion could support hundreds or even thousands of users.
However, when trying to scale beyond that level, a single
network connection may not suffice.

1 R 1 V 2 4 8 12 16

Number of Players

0

100

200

300

400

500

R
eq

ue
st

/s
ec

Figure 7: Server received request rate (requests/s).

Server Received and Processed Requests Throughput:
Since the server first receives all client requests and then
processes them, we look at the number of received and pro-
cessed requests separately. Figure 7 shows the number of

1 R 1 V 2 4 8 12 16

Number of Players

0

100

200

300

400

500

R
ep

lie
s/

se
c

Figure 8: Server response rate (replies/s).

requests received by the server. We see that, as expected,
the number of requests/sec increases linearly with the num-
ber of clients. Figure 8 shows the number of requests that
are processed at the server per second. The average number
of requests/sec processed increases linearly with the num-
ber of clients indicating that the server is not saturated.
Moreover, if we compute the minimum and average request
processing times, we observe that they stay about the same
across different player counts, indicating that request pro-
cessing does not depend significantly on the total number
of players. However, the maximum request processing time
varies noticeably across different player counts.

1 R 1 V 2 4 8 12 16

Number of Players

0

20

40

60

80

100
Recv
Send
Comp
Idle

P
er

ce
nt

ag
e 

of
 T

im
e 

(%
)

Figure 9: Server execution time breakdown.

Server Execution Time Breakdown: Figure 9 shows the
execution time breakdown at the server. This measure is
a high level metric that provides an overall picture of the
activity in the server. However, it provides cumulative in-
formation across the full experiment and does not show
potential bursty behavior that may affect perceived quality
at the clients. We see that network stack processing time
and game–related processing time (indicated as compute
time) increase linearly with the number of players. At 16
players about 75% of the time the server is idle indicat-
ing that it is not saturated. Finally, we observe that the
server spends about an equal fraction of its time in network
and in game–related processing. These results suggest that
both game–related processing as well as network stack pro-
cessing should be distributed across multiple processors to
achieve high–levels of scalability. Thus, multiple network
connections may be necessary, depending on the underly-
ing system architecture, not to increase the required net-
work bandwidth, but to facilitate the reduction of network
processing overheads by using multiple host CPUs for net-
work protocol processing over separate network interface
controllers (NICs).

Client Rendering Overhead and Frame Rate: Figure 10
measures the overhead associated with rendering a single



1 R 1 V 2 4 8 12 16

Number of Players

0

5

10

15

20

Avg

Real

G
ra

ph
ic

s 
T

im
e 

(m
se

cs
)

Figure 10: Graphics Rendering Time for Clients.

frame in our clients. This measure also includes any con-
text switching overhead during frame rendering time. Over-
all, the single–frame rendering overhead is low and does not
limit frame rate. The average overhead in each of our clients
is about 20ms which allows for a frame rate greater than
45fps. Note that clients render frames at their own rate
regardless of whether the server responds or not. When the
server does not respond the client renders the next frame
by using extrapolation from previous actions. Thus, this
metric shows only if the client system is able to support a
specific frame rate. As expected, the average frame rate for
clients does not change as the number of players increases
indicating our client’s capability of sustaining adequate pro-
cessing rates.

1 R 1 V 2 4 8 12 16

Number of Players

0

100

200

300

400

500

R
ep

lie
s/

se
c

Figure 11: Server response rate as measured at the clients.

Client Received Response Rate: Figure 11 shows the
server response rate as measured at the clients. Note here
that the response time is measured at the client side when
the client checks for server replies2. If we calculate the
average response time (from Figure 11) we see that it is al-
ways within a 30ms–range time–slot, indicating that clients
receive server replies on time to update their state before
rendering the frame. However, our measurements show that
response times exhibit a high variation with maximum val-
ues in the 100ms range and occasionally higher. Finally, as
expected, we note the matching between response rate mea-
sured at the server (Figure 8) and the same measurement
at the clients (Figure 11).

2Thus, it is possible that server replies arrive at the client prior to
the time the client code checks the incoming port for server messages.
However, the client need not process any replies prior to the time it
checks for them. If a reply is found when the client checks the port,
then there is no perceived delay according to the client. However, if
a reply is not found when the client checks the port, then the client
is forced to render a frame without an update from the server. This
leads to unnatural movements if it occurs often. Thus, it is safe to
monitor the response time as explained above.

Summary: We see that existing systems can comfortably
support a few tens of players (server idle time for 16 players
is about 75%). All of the presented statistics are useful in
understanding server behavior. However, we propose us-
ing the total server response rate and the average response
time as measured in all clients for comparing overall server
performance across different experiments. This approach is
similar to online transaction processing systems [13], where
the number of completed transactions per second is the pri-
mary metric for server performance.

5 Scaling the Number of Players

Our main goal in studying server performance is the ability
to support large numbers of players. However, currently,
this requires an equal number of client systems. To elim-
inate this constraint we propose running multiple players
on each client. The main issue with this approach is to not
introduce new bottlenecks, either in the CPU, network, or
any other resource on the client side. This approach does
not introduce bottlenecks in terms of memory and network
bandwidth and latency requirements. The client code uses
at most 32 MBytes of memory (per player) which will com-
fortably allow for up to 16 players on each of our client
nodes. Also, as discussed previously in Section 4, the net-
work bandwidth available in our setup is sufficient for hun-
dreds or thousands of players. In the next paragraphs we
describe what system modifications are necessary to multi-
plex players on the same client, under what circumstances
this is equivalent to using one player per client, and what
is the maximum number of players that can be supported
per client.

Modifications: In order to enable more automatic play-
ers to share a client node we modify the client code to
reduce its compute cycle requirements. Our analysis shows
(Figure 10) that from the three steps performed in each
time–slot in the client (Figure 2), on systems without spe-
cial graphics support, most of the time is spent rendering
new frames, one in each time–slot. Given the desired frame
rate of about 25–30 frames per second, each time–slot is
about 30 ms. As explained about 20ms are spent rendering
each frame. The rest of the time (about 10ms) is spent
in other useful computation or spinning until it is time to
start the next time–slot. To free compute cycles on the
client side, we replace both the frame rendering procedure
and any spin–waits in each time–slot with sleep() system
calls that drop in the kernel. The client sleeps for some
amount of time and then wakes up to continue with the
next iteration. Our sleep() timer is such that it corre-
sponds to rendering 30 frames per second.

Results: We now increase gradually the number of play-
ers from 2 to 16 on the client node and we compare our
results with the single–player measurements in Section 4.
Figure 12 shows that each client can support at least up to
24 players per node with overall processor utilization under
15%. Furthermore, the task queue length (not shown) is
always very close to zero indicating almost no contention
among the players that use the processors at the same time.

Moreover, all our results on the server side show that
server behavior remains identical3. In particular, compar-
ing server response rate in the multiplexed case with the
case where each player runs on a single client (Figure 11)

3We omit these results for space reasons.



1 2 4 8 16 24

Number of Players

0

3

6

9

12

15

A
vg

. P
ro

ce
ss

or
 

U
ti

liz
at

io
n 

(%
)

Figure 12: Client average processor utilization for processor
1 without the rendering and spin–wait overheads.

we find that the server response time for player requests is
very similar on average for all player counts up to 16 play-
ers. Thus, we can multiplex at least up to 16 players on
a single client node without introducing new bottlenecks.
This number can be raised if necessary in future work, de-
pending on the specific parameters of the client systems.

6 System Scalability

6.1 Increasing the Number of Players

In this section we present results for larger numbers of play-
ers. Figures 13–17 present our results for the small map
with up to 96 players (16 players per client). The incoming
network throughput and request rate continue to increase
linearly with the number of players (the clients pay no at-
tention to the lagging server, and continue sending their
requests at the normal rate). We see (Figure 13) that af-
ter 64 players the server is saturated. The server is not
able to keep up with player requests and the outgoing net-
work throughput and server replies start dropping (Fig-
ures 13, 14). Specifically, we notice that upto 32 players
the response rate seems to be doubling as we double the
number of players. With 64 or more players the server does
not sustain this trend and is therefore saturated. The ex-
ecution time breakdown in Figure 15 shows that idle time
drops to almost 0% at about 80 players. Processing time is
still divided almost equally between network stack process-
ing and game–related processing. Looking at request pro-
cessing time (Figure 16) we see that it increases very little
with the number of players (about 10% between 1 and 80
players). This indicates that the reason for the reduction
in server response rate is the fact that the request queue in-
creases linearly with the number of players and the server
spends more time receiving requests as opposed to process-
ing them. Finally, the maximum response time increases
linearly with the number of players (Figure 16) as does the
average and maximum server reply sizes (Figure 17).

6.2 Using Larger Maps

We now examine the system behavior with a larger and
more complex map (Figures 18– 20). Figure 18 shows that
the server response rate drops after 64 players, similarly
to the small map results. The execution time breakdown
(Figure 19) shows that at 64 players the idle time drops to
about 3% as opposed to about 10% with the small map.
This increase in compute time compared to the small map
is due to an increase in the average request processing time
at the server as demonstrated in Figure 20. However, simi-
larly to the small map, the average request processing time

1 R1 V 2 4 8 16 32 64 80 96

Number of Players

0

500

1000

1500

2000

T
ot

al
 R

ep
lie

s/
se

c

Figure 13: Server response rate (small map).

1 R1 V 2 4 8 16 32 64 80 96

Number of Players

0

2000

4000

6000

8000

10000

B
W

 (
by

te
s/

se
c)

Figure 14: Server outgoing network throughput per client
(small map).

does not vary significantly with the number of players and
thus the server response rate drop is due to the size of the
incoming request queue. As a consequence of the increased
server processing time, outgoing server network throughput
drops by about 1KByte/s with the larger map. Server in-
coming network throughput, server incoming requests per
second, server outgoing reply size, and client rendering time
are all virtually identical to the results obtained with the
smaller map and are not shown here. In summary, between
maps, the main source of differences is the average request
processing time at the server and the induced increase in
server–CPU utilization.

6.3 Increasing CPU Speed

To investigate the impact of faster processors on server per-
formance, we now provide data for a server with 800MHz
processors (please refer to Section 3 for more detail about
the system). Figure 21 shows that the server response rate
does not drop after 64 players but increases from 64 to 96
players by about 25%. Also, the average request process-
ing time drops from the 170µs–range (Figure 20) to the

1 R1 V 2 4 8 16 32 64 80 96

Number of Players

0

20

40

60

80

100
Recv
Send
Comp
Idle

P
er

ce
nt

ag
e 

of
 

E
xe

c.
 T

im
e 

(%
)

Figure 15: Server execution time breakdown (small map).



1 R1 V 2 4 8 16 32 64 80 96

Number of Players

0

50

100

150

200

Avg
Min
Max

R
eq

ue
st

 P
ro

ce
ss

in
g

T
im

e 
(u

se
cs

)

0

5

10

15

20

25

M
ax (m

secs)

Figure 16: Request processing time at the server (small
map).

1 R1 V 2 4 8 16 32 64 80 96

Number of Players

0
250
500
750

1000
1250
1500

R
es

po
ns

e 
Si

ze
(b

yt
es

)

Figure 17: Server response size (small map).

90µs–range (Figure 23). The execution time breakdown
(Figure 22) shows that the idle time at 64 processors is
about 35%, compared to about 3% with 400MHz proces-
sors. However, at 96 players idle time drops to about 10%
indicating that increasing the number of players further will
quickly saturate the server.

6.4 Server CPU Behavior

In this section we present the results of our low-level proces-
sor event analysis of server behavior for the base 400MHz
system. We used EMON [7] a hardware-counter manipula-
tion tool provided by Intel to access the hardware perfor-
mance counters of the Pentium II processor. Since during a
single run of the server we can only measure two hardware
events, we repeated each experiment multiple times mea-
suring each time a different pair of events. There was only a
negligible variation in measurements across different runs.
Consequently, we were able to combine results from differ-

1 R 1 V 2 4 8 16 32 64 96

Number of Players

0

500

1000

1500

2000

2500

T
ot

al
 R

ep
lie

s/
se

c

Figure 18: Server response rate (large map). In this subsec-
tion we omit the 80 player point in graphs since our main
goal is to investigate the similarities between using small
and large maps for experiments.

1 R 1 V 2 4 8 16 32 64 96

Number of Players

0

20

40

60

80

100
Recv
Send
Comp
Idle

P
er

ce
nt

ag
e 

of
 

E
xe

c.
 T

im
e 

(%
)

Figure 19: Server execution time breakdown (large map).

1 R1 V 2 4 8 16 32 64 96

Number of Players

0

50

100

150

200 Min
Avg
Max

R
eq

ue
st

 P
ro

ce
ss

in
g

T
im

e 
(u

se
cs

)

0

5

10

15

20 M
ax (m

secs)

Figure 20: Request processing time at the server (large
map).

ent runs as if they came from a single experiment. In the
interest of space we restrict our attention to experiments
with 64 players and that use the small map.

The server achieves an IPC of 0.416 even though Pen-
tium II processors can potentially issue multiple instruc-
tions per cycle. This suggests that the processor is fre-
quently stalled. Ideally, we would want to measure the rel-
ative importance of each of the many possible stall causes.
This is a challenging task as many of these stalls overlap
(e.g., a data miss could happen at the same time as a branch
misprediction, or two data misses can be in-progress simul-
taneously). Had we used simulation, it would have been
possible to provide additional insight by selectively elimi-
nating each stall source (e.g., by simulating perfect memory
we can gauge the importance of memory stalls). However,
given that we use an actual system we resort to indirect
metrics.

To gain insight on the low IPC we first report statistics
on the mix of instructions executed by the server. As shown
in Table 1, 15.7% of the instructions are branches, 63.5%
access memory and only 4.8% are floating point operations.

1 R 1 V 2 4 8 16 32 64 96

Number of Players

0
500

1000
1500
2000
2500
3000

T
ot

al
 R

ep
lie

s/
se

c

Figure 21: Server response rate (800MHz processors, large
map).



1 R 1 V 2 4 8 16 32 64 96

Number of Players

0

20

40

60

80

100
Recv
Send
Comp
Idle

P
er

ce
nt

ag
e 

of
 

E
xe

c.
 T

im
e 

(%
)

Figure 22: Server execution time breakdown (800MHz pro-
cessors, large map).

1 R1 V 2 4 8 16 32 64 96

Number of Players

0
20
40
60
80

100
120

Min
Avg
Max

R
eq

ue
st

 P
ro

ce
ss

in
g

T
im

e 
(u

se
cs

)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ax (m

secs)

Figure 23: Request processing time at the server (800MHz
processors, large map).

These fractions are quite different than the widely used rule
of thumb where memory referencing instructions acount for
1/3 of all instructions and branches for 1/5. A relatively
high fraction of memory references is common in IA-32 ma-
chines due to the relatively low number of registers. This
is further exaggerated by the nature of the processing that
takes place where relatively large datastructures (e.g., those
representing the 3D world) are continuously traversed.

Table 2 reports the resulting IPC, branch missprediction
and the instruction and data miss rates for the L1 and L2
caches. The branch misprediction rate is very high, about
14%. Given that more than 15% of the instructions are
branches, this means that mispredictions occur every 45
instructions on the average. Taking into account that in
Pentium II branch mispredictions induce a penalty of at
least 10–15 cycles, this suggest that the instruction window
is heavily underutilized.

Focusing on the memory system, we see that all caches
observe very low miss rates for instructions and data, sug-
gesting that on systems with reasonably fast memory, the
memory subsystem should not be a problem.

Finally, to provide additional insight on memory per-
formance, we report in Table 3 the percentage of memory
references that are serviced at each level of memory. We
see that for instructions only 0.07% ends up in main mem-
ory whereas the same number for data is 0.44%. That is,
only 1 every about 1400 instruction references reaches main
memory and 1 every about 230 data references does so too.

Branch Mem FP Other

15.7% 63.5% 4.8% 16.0%

Table 1: Breakdown of committed instruction types (64
players, small map).

IPC Branches L1I L2I L1D L2D

0.416 14.0% 0.6% 10.5% 7.2% 6.1%

Table 2: Server statistics: IPC, branch misprediction per-
centage, and cache miss rates for L1 and L2 caches, divided
in instruction and data misses (64 players, small map).

L1 L2 Main Memory

Instr. 99.4% 0.53% 0.07%
Data 92.8% 6.76% 0.44%
Total (I+D) 97.6% 2.26% 0.14%

Table 3: Percentage of Instr. fetches and Data references
serviced by the various levels of memory hierarchy (64 play-
ers, small map).

These provide an additional indication that memory per-
formance seems to be only a secondary issue.

Finally, we measure the resource stalls and we find that
the processor spends about 25% of its time waiting for re-
sources to become available. If we combine all the above
observations we see that the very low IPC is due to branch
mispredictions, resource stalls, whereas memory subsystem
stalls seem to be secondary. From our measurements it is
not possible to draw any conclusions about the available
instruction level parallelism. Further looking into these is-
sues, although very interesting, is beyond the scope of this
work and is left for future research.

7 Related Work

Recently, there has been a lot of effort in the computer
architecture and in particular the parallel computer archi-
tecture community to enrich the pool of applications used
for system evaluations with novel, commercially–oriented
classes of applications (e.g., [3, 9, 14]). Work on processor
and memory subsystem performance has mostly examined
the behavior of multimedia applications (e.g., [4, 10]) and
database systems (e.g., [1, 2, 8, 11, 12]). However, we are
not aware of any work that has studied the behavior of ap-
plications in the area of interactive entertainment and in
particular game server applications. Finally, the method-
ology we develop in this work bears similarities with previ-
ous work on the methodology used for benchmarking online
transaction processing systems [13].

8 Conclusions

In this paper we investigate the behavior and scalability of
a commercially–oriented application, an interactive, multi–
player game server, Quake. Quake is a popular representa-
tive of interactive entertainment applications. Our goal is
to understand the behavior of this class of applications and
to provide a novel benchmark for scalable servers.

We first analyze the behavior of the game server and
provide insight on the characteristics of this class of ap-
plications. We develop the required methodology to deal
with idiosyngracies of interactive applications, namely the
fact that human users generate the input and that com-
parisons across runs may not be consistent. We find that
network bandwidth is not an issue since the game server
circulates only control information and all graphics opera-
tions are handled by clients. The incoming required band-
width per player is practically constant and in the order of
a few KBytes/s whereas the outgoing bandwidth per user



depends on the total number of players (and the induced
interactions) but does not exceed a few KBytes/s. Thus,
current network connections on game servers can support
thousands of users. Similarly, memory requirements are
not an issue for modern systems. We propose the use of the
server response rate and the average response time for eval-
uating overall server performance. These metrics should be
reported as measured on the client–side.

We extend our methodology to enable experiments with
large numbers of players on small experimental setups and
we verify that our modifications do not introduce additional
bottlenecks or other erratic behavior. We use this extended
methodology to examine system scalability. We find that
current architectures can support a few tens of players (our
systems can support between 60 and 100 players) and that
server utilization increases linearly with the number of play-
ers. Future microprocessor technologies may be able to pro-
vide increases in the number of supported players by a small
multiplicative factor (doubling the speed of the CPU results
in a less than double increase in the number of players)
but only parallelization can extend this to the order(s)–of–
magnitude required improvements. Also, multiple network
interface controllers may be necessary, depending on the
underlying server architecture, not to increase the required
network bandwidth, but to facilitate the reduction of net-
work processing overheads.

We analyze CPU behavior in terms of micro–events and
we find that: (i) the server CPU achives a very low IPC
of 0.416 out of the theoretical maximum of 4. (ii) The
branch misprediction rate reaches a high of 14%. (iii) The
memory subsystem exhibits very good locality and should
result only in secondary effects. (iv) The CPU spends about
25% of the cycles stalled on resources. These results suggest
that there is a lot of room for improving server performance
at the microprocessor architecture level.

Similarly to all benchmarking efforts, our work does not
capture every aspect of server behavior, given the limited
number of inputs we use. However, we are able to make
a decisive first step towards understanding and quantifying
system behavior. Our next step is to use commodity–based
parallel architectures, such as small–scale symmetric multi-
processors (SMPs) and larger–scale shared memory clusters
that, cost–wise, scale linearly with system size, to examine
if they can support hundreds or thousands of simultaneous
players.

Finally, scaling game servers beyond a few tens of play-
ers may require rethinking their internal architecture. Nev-
ertheless, our study is still valuable as it provides insight
on what parts of the server may have to be parallelized or
are worth to look at.

9 Acknowledgments

The authors would like to thank id Software [5] for releas-
ing the source code for Quake in the public domain. We
would also like to thank Reza Azimi for useful discussions
on various aspects of this work, Peter Jamieson, and Eu-
genia Distefano for helpful hints on setting up and using
the experimental testbed. We are thankful to the reviewers
for their insightful comments. Finally, we thankfully ac-
knowledge the support of Natural Sciences and Engineer-
ing Research Council of Canada, Canada Foundation for
Innovation, Ontario Innovation Trust, the Nortel Institute
of Technology, and Communications and Information Tech-
nology Ontario.

References

[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill,
and David A. Wood. DBMSs on a Modern Proces-
sor: Where Does Time Go? In Proc. of the 25th Intl.
Conference on Very Large Databases, pages 266–277,
September 1999.

[2] Luiz Andre Barroso, Kourosh Gharachorloo, and
Edouard Bugnion. Memory system characterization
of commercial workloads. In ISCA, pages 3–14, 1998.

[3] A. Bilas, J. Fritts, and J. P. Singh. Real time par-
allel MPEG-2 decoding in software. In Proceedings of
the 1996 International Parallel Processing Symposium,
April 1996.

[4] J. Fritts, W. Wolf, and B. Liu. Understanding mul-
timedia application characteristics for designing pro-
grammable media processors. In SPIE Photonics
West, Media Processors ’99, San Jose, CA, pages 2–
13, January 1999.

[5] id Software. id Software Home Page.
http://www.idsoftware.com.

[6] id Software. Quake Home Page.
http://www.idsoftware.com/quake.

[7] Intel Corp. EMON. http://www.intel.com.

[8] Kimberly Keeton and David Patterson. Towards a sim-
plified database workload for computer architecture
evaluations. In Workload Characterization for Com-
puter System Design, edited byh L. K. John and A. A.
Maynard, Kluwer Academic Publishers, 2000.

[9] Ann Marie Grizzaffi Maynard, Colette M. Donnelly,
and Bret R. Olszewski. Contrasting characteristics and
cache performance of technical and multiuser commer-
cial workloads. In The 6th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 145–156, October 1994.

[10] Parthasarathy Ranganathan, Sarita V. Adve, and Nor-
man P. Jouppi. Performance of image and video pro-
cessing with general-purpose processors and media ISA
extensions. In Proc. of the 26th Annual Int’l Symp.
on Computer Architecture (ISCA’99), pages 124–135,
1999.

[11] Parthasarathy Ranganathan, Kourosh Gharachorloo,
Sarita V. Adve, and Luiz Andre Barroso. Performance
of database workloads on shared-memory systems with
out-of-order processors. In Architectural Support for
Programming Languages and Operating Systems, pages
307–318, 1998.

[12] P. Trancoso, J-L. Larriba-Pey, Z. Zhang, and J. Tor-
rellas. The memory performance of DSS commercial
workloads in shared-memory multiprocessors. In Proc.
of the 3rd IEEE Symp. on High-Performance Com-
puter Architecture (HPCA-3), 1997.

[13] Transaction Processing Performance Council. Trans-
action Processing Performance Council Home Page.
http://www.tpc.org.

[14] Z. Zhang and S. Sarukkai. Commercial applications on
shared-memory multiprocessors. In In Proceedings of
the First Workshop on Computer Architecture Evalu-
ation using Commercial Workloads, February 1998.


