
��������
Multiplayer games, i.e., games where several persons interact
simultaneously over networks like the Internet, receive much inter-
est. One of the reasons is that competing with human counterparts is
typically considered as much more interesting and challenging than
playing just against a computer.

A major problem of network-based multiplayer games is caused
by the network transmission delay. This means that it takes a while
until information, e.g., about the movement of the opponents
objects and their new position, reaches the receivers. This delay
causes several difficulties and leads to paradoxical situations. For
example, consider a racing game with two players, shortly after the
start both believe that they have the lead because it takes a while
until the position of the counter player reaches the local player.
Approaches to provide for a global consistent state of the game by
introducing a local presentation delay have been proposed, how-
ever, these increase the application-level delay even more.

Therefore, it is important to investigate the impact such delays
can have on the performance of multiplayer games and the attrac-
tiveness of these games for the human players. Such a study is the
purpose of this work. We concentrate on real-time games for the
Internet where significant delays can occur. The evaluation is per-
formed through measurements using a car racing simulator.

���	
��	����������	����	��������
D.4.4 [��	����
�����	��]: Communications Management – �����
����	; H.5.1 [����������� ���	����	�� ���� ��	�	�������: Multi-
media Information Systems –
���������� �	�������� ��� ������
����������������������������	�; H.5.2 [��������������	����	�
������	�	������]: User Interfaces�������������	����	��������
������������������	��� ������ ���; J.7 [������	��� �� �� 	�
����	��]: �������������������������������������� ��� ����;
K.8.0 [�	�����!��������
]: General – !���

"	�	��!��	���
Experimentation, Human Factors.

#	�$����
Multiplayer games, real-time applications, delay, user impact

%���&����'����&
Computer-based games are a big market and there are expectations
from various sides that this will increase even more. Multiplayer
games where several persons interact simultaneously receive much
interest since competing with human counterparts is typically
considered as much more interesting and challenging than playing
just against a computer [8]. Reasons for this are that humans play
often more intelligent, more spontaneous, and with more intuition. If
this is not already sufficient, the mere knowledge that there is
another human on the other side is challenging.

The first multiplayer games existed already in the 1980 using a
split-screen-modus – the screen was split in 2 or 4 windows, one per
player. Yet, these systems where centralized on one computer
without any distribution. Later systems provided for LAN-based
sessions.

A major problem of networked multiplayer games is caused by the
network transmission delay. This means that it takes a while until the
information, e.g., about the new position of the opponents objects,
reaches the receivers. While some technical means such as network-
level quality of service mechanisms, e.g., DiffServ, can reduce or at
least bound this delay, some delay will always exist, for instance
about 0.1s for the propagation of light between Europe and
Australia. This delay causes several difficulties and leads to
paradoxical situations. As an example, consider a racing game with
two players. Shortly after the start both believe that they have the
lead because it takes a while until the position of the counter player
reaches the local player. Thus, a primary goal is to provide for a
global consistent state of the game – independent of the existing
delays. Approaches which introduce a local presentation delay, e.g.,
as that used within MiMaze [1], have been developed to provide for
a consistent, distributed state. However, these increase the
application-level delay even more.

Since delay cannot be avoided completely, it is important to
investigate the impact such delay can have on the performance of
multiplayer games. This is the purpose of this work. While we have
been working on consistency-enhancing mechanisms [5], these are
beyond the scope of this paper and will be presented elsewhere. We
concentrate on real-time games for the Internet where significant
delays can occur. Especially critical are simulator-like games such
as racing games, flight simulators, and sports games because these
require very smooth movements of the objects. We neither study
non-real-time games nor split-screen mode games or those which are
restricted to LANs where typically only very small delays occur.

It should be noted here that not only from a technical point of
view, the boundary between games and ’serious’ applications is not
always a sharp one. For example, flight simulators may be seen as
games but also as (semi) professional ’training tools’. Hence, we
believe that the results discussed in this work cannot only be applied
to games but also to more serious applications.

The outline of this paper is as following: In the next section we
discuss multiplayer games and their requirements, the influence of
basic system parameters and in particular of delay. In Section 3 we
describe our experimental evaluation of network delay handling
approaches and the gained results. We discuss related work in
Section 4 before concluding the paper in Section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1266'$9¶��� May 12-14, 2002, Miami, Florida, USA.

Copyright 2002 ACM 1-58113-512-2/02/0005…$5.00�

���������	
��������
�������
������������	�
�����
���
Lothar Pantel

Pantronics
Saarstr. 73

69151 Neckargemünd, Germany

lothar.pantel@pantronics.com

Lars C. Wolf
Technical University Braunschweig

Muehlenpfordtstraße 23
38106 Braunschweig, Germany

wolf@ibr.cs.tu-bs.de

23

(��)'*���*�+,��"�),�
Multiplayer computer games can follow different general
architectures. They can be server based with dynamically
determined master or with a central server, e.g., from the game
provider. Another approach is to follow a distributed scheme
without any central component holding the complete state of the
match. The distribution of the information about movements, etc.
can be done by multicast communication and every participant’s
system computes its own view of the global state. It is obvious that
the latter approach is better regarding the reduction of transmission
delays since all data packets reach the receivers on the direct path.

(-%�����!�	��	�������������	�������	�	��
To ensure fairness, identical movements of the game entities (cars,
aircrafts, bullets, etc.) must be performed with the same speed on the
different endsystems. Obviously, the communication system is a
potential source of errors since messages can be delayed or even get
lost. The game designer has to decide which messages must be
treated in which way. Some are key messages which cannot be
computed by other systems. Such messages must, therefore, be
transmitted reliably. Other messages are sent regularly such as a new
position. If one message is lost, a newer one will replace it soon (and
using an absolute position information, errors are avoided). Thus,
these messages must not be sent reliably and result in low overhead
for sender and receivers. The most critical requirement of distributed
games is that of low network delay. Bandwidth needs are relatively
low if the number of participants is low. For instance, MiMaze uses
a packet size of 52 bytes at a rate of 25Hz.

(-(���	!��
Within this paper, ���� means the time between the generation of
an event and the resulting update of the game state including the
presentation to the users. Delay leads to significant problems for
real-time multiplayer games. A consistent presentation of the
scenario should be given and the distributed state of the game should
be similar on all endsystems. Yet, it is an important issue how the
system handles old state information and how large the difference
between the real and the expected positions of the players in a game
may be due to the delay of messages. For instance, in a car racing
simulator, position errors occur in dependence of the speed of the
cars if no compensation is applied. Hence, resulting questions are:
’How can we, despite the delay, achieve that no car is displayed on
an old, wrong position?’; ’How should a collision of vehicles be
treated?’.

Many system aspects in real-time multiplayer games are based on
assumptions about times. However, a global wall-clock time is not
existing in such systems and the forward and backward transmission
delays might be different. To reach some common time-base,
mechanisms such as NTP (network time protocol) or simple probe-
based approaches to determine the skew of clocks can be used.

To get some examples for delay values encountered by existing
multiplayer games, we measured the round trip time (RTT) from
dial-in home users to a games server. The clients performed delay
measurements during their initialization. This way, a player can
choose his peer based on the encountered delay. We made RTT
measurements to 20 persons during different times of day. Using the
largest German Internet service provider as dial-in access point, the
average delay was 342ms (with an Intervall [134ms, 660ms]). Via a
university dial-in access, we achieved an average of 429ms (interval
[154 ms, 745ms]).

(-.��,/�	��	����$� �����	���!�"��	�
To study the delay-handling approaches used in commercial games,
we performed a series of experiments [5] using two popular racing
games (Re-Volt and Need-for-Speed) in two player mode. Our goal
was to examine how commercial game developers handle the delay-
problem, respectively, as to what extent this end-to-end delay is
taken into account. The Internet connection used for the experiments
had a delay of approximately 200ms. This value is not unusually
high, especially for the case that a world-wide utilization should be
possible. The test was repeated with a delay of approximately 100ms
afterwards – with basically the same results, of course, the
observations are somewhat less significant.

The screens of both participants have been placed directly side by
side for this test so that deviations could be observed ’globally’ at an
’absolute time’.

The following tests were performed in particular:

"#�$���� �����
Direct Play (which is used in these games) assigns the role of a
coordinator to one of the two participating computers. This way, it
can be controlled which computer takes care of tasks which can
typically only be provided by one system. This contains also the
release of the start (countdown, start-traffic light, start-sound). Since
the transmitted start-release signal would arrive delayed (due to
network delay) at the computer of the other player, the start on this
side would take place later than on the other one if no compensation
is applied. A delayed start-release would have obviously massive
fairness-problems as consequence. A possible solution is to delay
the start-release by an amount equal to the latency between the two
computers on the initiating computer as well.

Besides the observation of the start-countdown on both
neighboring screens, the start-sound is especially well suited for a
check of a correct synchronization. From both loudspeaker systems,
the start signal should (within the perceptibility) sound
simultaneously.

"%#�$����&������
The start is a crucial phase of a race, often making a preliminary
decision. As soon as the vehicles begin to move, the first deviations
of the position through the speed can occur. Due to the additional
acceleration, the deviation is even bigger than with constant speed.

On both computers, two identical vehicles with identically
simulated motors, etc. are used to avoid any differences in their
accelerations as far as possible. The acceleration is done with the
keyboard in order to exclude any different behavior of proportional
joysticks. During start, both cars stand at the same line side by side.
In principle, it is to be expected that both cars remain head to head
also during accelerating (up to the first curve ...). Using this
experiment, for the first time it will become clear whether position
consistency is remained at all.

"�#�$�����������$�����	�"$��������$���#
To deepen and verify the result from item (b) (Start Process), the two
simulated cars are stopped in the course of the race and are aligned
at the beginning of a straight route section precisely side by side.
Now both are accelerated simultaneously by one person using the
two keyboards which are lying side by side in order to guarantee that
the keystrokes (within the perceptibility) actually take place
simultaneously. Also here the correct behavior would be if the cars
would drive side-by-side.

"�#�'�����	�(������������$����
In this test, the vehicles drive with approximately constant speed
side-by-side. On both systems, an identical situation should be
presented, e.g., if one car has a leadership by some car lengths on the

24

first screen, the same situation should appear on the second screen as
well. An identical screen situation only happens if the position
consistency is maintained during the game. Without correction, each
driver believes to be in front because without a delay compensation,
the car of the local player is immediately displayed on the screen
while the position of the opponent has become obsolete by �GHOD\.
The resulting error ��) ��*��GHOD\ leads in general to the situation that
on both sides the local car is in leadership – a slightly paradoxical
situation.

"�#�����������+�������
A collision as well as a ’crash’ of game objects, e.g., vehicles, is
often detected in 3D games through a polygon-collision. Only a
position difference of 0 of the opposing vehicles (on both screens)
leads on both computers to an identical, local evaluation of the
polygon-collision. If the position consistency is not sufficient or a
delay compensation is missing at all, contradictory situations can
occur as illustrated in Figure 1. The deviation (contrary to the
driving direction) leads at screen B to a collision, however at screen
A this is not the case. Among others, the following results are
possible:

• On computer A a collision messages is given, initiated and
caused by computer B. Player A is probably confused because
on his screen the vehicles are significantly apart.

• Also the following case is possible: On computer B, no colli-
sion is generated although both vehicles seem to have collided.
The reason for this is that on computer A the vehicles still lie
apart.

0
��	�%1��	2���������	��!�������������GHOD\����� 	������	��������
3�	��-������GHOD\

�������	��
�� 	����	!	�����45
-	-5�������������		��������������������		���-

With this test (e), it should be examined how the programs respond
in the case of a collision. Both vehicles are stopped during the race
and placed directly one after another with a short distance. Then on
both systems the acceleration is done simultaneously and the
vehicles have an identical simulated acceleration performance. The
expected result is that both cars accelerate keeping a constant, short
distance. If the delay is not compensated, a problem emerges for
vehicle B since car A, starting by the delay time too late, is
occupying the way. The test is repeated with exchanged roles,
vehicle A / B, several times.

�%������� ������
The observed results were that the games provided very limited
handling of delay effects only. While both provided for a
synchronized start release (test 1), already the start process (test 2)
was not handled correctly by the first game (due to the game
concept, this test was not applicable to the other game): The two
identically simulated cars are accelerated simultaneously,
nevertheless, the local car was always in leadership, correct would
have been that both accelerated cars go directly side by side.

Both games also failed for test 3 and test 4, i.e., each of the two
drivers believes to possess the leadership based on the presentation
on his screen.

Finally, for test 5, both games were not able to provide any
satisfying treatment of collisions. Both showed some handling of
delay-induced collisions (e.g., in one case one car is pushed)
however on costs of a massive discrimination of the rear car.

.��,6�,��),&��*�,7�*'����&��0��8,
�)������0��,*�+
As noted before, an inconsistent state of a game brings several
problems and can be confusing to the players. One approach to
enhance the consistency is to delay the presentation of the actual
game state, e.g., as used in MiMaze and others. However, such
methods introduce some further delay, i.e., in addition to the delay
already caused by network transmissions and processing. Hence, an
important question is how much delay is acceptable for users in real-
time games. This user-level delay has to include all communication,
processing, and buffering (consistency-enhancing) steps. We
performed a series of experiments to study the impact of delay on
users, i.e., the performance of players, on the fidelity, and on the
attractiveness of the game.

.-%�������!	��	���
The general scenario is given by a network and several computers
connected to it, one of them considered as the local machine. The
performed steps are shown in Figure 2.

At time t0, a user-input through the local participant is made, for
example from a joystick or a keyboard. This event is evaluated at
time t1 at the local computer and leads here to a position update of
the local game object (the local participant). The update of the
position may also take place periodically. At time t2, a timestamp is
generated and associated with the object’s position which has been
determined at time t1. The timestamp is a globally uniform time or
the other systems must be aware of the clock skew between their
local times and the clock of the computer generating this timestamp.
The data packet consisting of timestamp and object position is sent
to all further participants, e.g., via multicast.

The local presentation of the new local object position does not
take place immediately. Instead, the presentation is delayed in a
queue. This delay is the same and equally long at all participating
computers and should be chosen so that it corresponds to the largest
appearing delay. However, in the interest of a smooth user control,
this delay should be not bigger than necessary, i.e. not bigger than
the longest packet transmission time.

While the described steps are performed, data packets containing
the actual position information about the objects of the other players
are received. They are collected, e.g., by a separate thread, and
(based on their timestamps) assigned to the corresponding local
position information. Afterwards, the presentation of all the objects
belonging to a certain timestamp takes place on the display at time t4.

With ideal network conditions, i.e., networks with hard
transmission time guarantees, this static presentation delay
procedure can maintain full position consistency. However, these
ideal conditions are given rather seldomly. The disadvantage of this
approach is that, in order to perform the synchronization, also the
local user input is delayed before the resulting situation is displayed.
Hence, the visual reaction to a control input (for example a
keystroke) appears only after a downtime. The extent up to which
such a delay is acceptable for users will be investigated in this
section.

Screen Player A Screen Player B

GV�= Y�Â�WGHOD\ GV�= Y�Â�WGHOD\

Car A Car A Car BCar B vv

25

0
��	�(1���������	�	��������	!�������	���	-

.-(�����!	�	������
For the evaluation of the described presentation delay scheme, we
implemented it in a RC-Car simulation. This game is a virtual racing
game for remote controlled model cars. Here, the driver does not use
the cockpit perspective but a higher position allowing a view about
the whole area (Figure 3). This overview view is especially well
suited for investigation purposes since all participants can be seen at
the same time. This RC-Car simulator has been developed by one of
the authors (L. Pantel).

0
��	�.1�7����!��������
-

The static delay scheme has been implemented in the ’Virtual RC
Racing’ game using a FIFO buffer where the delay duration depends
on the buffer size. Such a racing game is especially well suited as a
test scenario since the closeness to reality depends on the steering
behavior. The feeling how the car reacts is influenced by the delay
between steering and reaction (in this case the display of the
graphics). Overall, we believe that a racing game represents an
especially critical case with respect to the time gap between action
and reaction.

.-.���	�����	��,/�	��	���
The purpose of the experiments was to determine the acceptable
presentation delay. We had 12 candidates who performed these
experiments. In the following, some figures show three lines only,
these represent three out of the twelve persons which we considered
as representative for the three categories Beginner, Average, and
Excellent Driver. Yet, the average values given below include the
results from all subjects.

First the candidates performed some training to get accustomed to
the behavior of the car and to the game in general. This training was
done without any delay. Then the experiments were started. The
static presentation delay was increased in steps of 50 ms each up to
a maximum of 500 ms. These increments were done steadily,
however, the players did not knew about the amount of the
artificially introduced delay. The subjects played the game by
driving five laps for each delay setup and they were interviewed
about their subjective impression of the resulting playing situation.
A test series was stopped when the candidate considered the setup as
not tolerable anymore, i.e., when the somehow artificial reaction of
the car and the behavior of the game in general (caused by the
introduced delay) was declared as inacceptable.

The test runs were recorded and examined afterwards using the
replay function of the program. This replay offers forward,
backward and pause functions and provides us with the necessary
means for a thorough analysis of each run. It allows to determine
various aspects as discussed in the following:

���	��+�������� ��������'�������������'���,�It gets
more difficult to control the car if it reacts slower to steering
commands (due to the inserted delay). Hence, the driver must drive
more slowly and more carefully in order to keep control or he gets
into a zigzag course which extends the route since he departs from
the best path. In both cases, the average time per round increases.
Thus, this value is a good measure for the influence of the
presentation delay.

�����+�������� ��������'�������������'���,�The average
time also contains exceptions and obvious driving-mistakes, for
example through lack of concentration. This value, i.e., the best of
five attempts reflects the best value possible for this driver under the
given conditions, i.e., with the given presentation delay.

'������������,�If the speed is not reduced for tests with large
delay values, the driver departs more and more from the best course
and gets into a zigzag course. This effect also depends on the driving
style and cannot be regarded as universal measurement. Moreover,
this measure can be grasped only subjectively and was assessed
therefore only in 3 steps. The recorded runs were examined using a
replay of the driven course and assessed relatively to each other.

-��.���������/����	�����������,�How often the car leaves the
overall course depends on the driving style as well. It can be
considered as a further increase of the zigzag-course, however, it has
the advantage that it can be counted easily and is, hence, a more
objective measure.

.-9���	��!��
Before looking at the subjective impression of the delay impact,
more objective and measurable units are given. In Figure 4 and
Figure 5, the average and the best lap time per delay value are given
for three persons (which have been chosen as typical examples).
Figure 6 shows the average over all participants.

(YHQW�SURFHVVLQJ

ZLWK�SRWHQWLDO

SRVLWLRQ�XSGDWH

*HQHUDWH�WLPH�

VWDPS�IRU

FXUUHQW�SRVLWLRQ

2XWSXW�YLD

GLVSOD\
'HOD\�XQLW�

SRVLWLRQ�TXHXH

�H�J������PV� VXEV\VWHP

0XOWLFDVW�QHZ

SRVLWLRQ�LQIR

ZLWK�WLPHVWDPS

5HFHLYH�XSGDWHG

SRVLWLRQ�LQIRV

IURP�RWKHU�SOD\HUV
WR�RWKHU�SOD\HUV

$OLJQPHQW�RI

LQWHUQDO�DQG

H[WHUQDO�SDFNHWV

XVLQJ�WLPHVWDPSV

,QWHUQHW

W� W� W� W� W�

8VHU�HYHQW

�,QSXW��

FRQWURO�

26

Looking at Figure 4 showing the average times, line 1 gives the
typical results for an inexperienced person (’beginner’). This line is
almost a straight line, but a delay value below 50 ms has no influence
on the result. The reason for this line shape is that a beginner tends
to drive relatively slowly and, hence, cannot make use of a fast
system response time. Therefore, higher delay values up to 200 ms
seem to be acceptable for unpracticed drivers.

0
��	�91��2	��
	���	��	������������� �		������!��	���
�	�����1�%-��	
��	�5�(-��2	��
	���2	�5�.-�,/�	!!	�����2	�

The second line represents the results of a medium-level driver with
a somehow rough driving style. First, the lap time is quite good since
the driver has some training. Then, due to the rough style (with fast
reactions to changes in the driving direction of the car), it rises faster
than for the beginner. The reason is that this style cannot be
successfully continued at higher delay values but leads to a zigzag
course. Thus, already in the area of about 50 ms delay the lap times
get worse.

The third line shows the lap times of an experienced driver. The
difference between best and average lap time is relatively low. Until
a delay value of about 150 ms, only a small increase in the round
times can be observed, followed by an almost exponential increase
above 150 ms. At this point, the reaction time of the car becomes so
big that an experienced driver cannot achieve significantly better
results than a beginner. The experienced person stops the test series
at 250 ms because he feels that the steering does not react reasonable
anymore. Below 50 ms, no significant alterations of the lap time are
measurable. Hence, we believe that even for competitions, a
presentation delay up to 50 ms is uncritical.

0
��	�:1��	�����	��3���02	�������4������ �		������!��	���
�	�����1�%-��	
��	�5�(-��2	��
	���2	�5�.-�,/�	!!	�����2	�

Figure 5 presents the results for the same persons but showing the
best lap time only. Since no averaging is a applied, a more irregular
behavior can be observed. Nevertheless, the results are in line with
those shown for the average values in Figure 4.

It should be stated here explicitly that we must distinguish
between the objectively measured lap times and the subjective
impression of the drivers. Eventually it is not crucial with which (as
large as possible) presentation delay still the fastest lap times are
possible. Instead it is important how comfortable the drivers feel
when they are steering a car as well as whether the game (at a given
delay) still looks realistic or at least acceptable.

After the tests, the participants were informed about the achieved
results. They were surprised about their relatively good lap times
with delay values of 150 ms to 200 ms. Overall it was noticed that it
is possible to get used to a presentation delay value until
approximately 200 ms – but the driving was stated to be definitely
not realistic in such a scenario.

+��������������������������,�Figure 6 illustrates the arithmetic
mean value of the average-lap time for all participants of the test.
Starting for delay values above 50ms, the achieved round times
increase strongly. This confirms the previous results that a delay
value of 50ms is acceptable without significant restrictions, also, for
example, at a competition.

0
��	�;1�)	�������2	��
	���������	
3���	������	��!���������!!�����������4-

-��.���������/����	���������������� ����,�As a further
criterion, we evaluated the number of times a car left the course, e.g.,
because of driving mistakes. The results are illustrated in Figure 7.
The y-axis gives the number of times the car run out of the course
per lap, hence, it is normally smaller than 1.

In principal, this aspect is a relatively rough and indirect measure
and the results also depend on the driving style of a particular person.
Nevertheless, Figure 7 shows clearly the steady increase in mistakes
made by the drivers. The ability to control the vehicle decreases
(somehow linearly) with increasing delay values.

'������������,�Finally, the driven course has been considered in
3 steps: best, some rolling motion, significant zigzag course. We
used the replay function of the application for this evaluation. Of
course, this is a subjective measure only. Moreover, the results also
depend on the driving behavior of the participants and not only on
the applied delay. Thus, no figures are given.

Delay in ms

1
2

3

Round Time in s

10

15

20

5

0
50 100 150 250 350200 300 400

3.Excellent Driver2.Average Driver1.Beginner

Delay in ms

1
2

3

Round Time in s

2

4

0
50 100 150 250 350200 300 400

3.Excellent Driver2.Average Driver1.Beginner

6

8

10

12

14

16

Round Time in s

8

0
50 100 150 250200

Average

10

12

14

Delay in ms

27

We observed that all those drivers who had some rolling motions
already for a delay of approximately 100 ms, entered a zigzag course
at latest at a 250 ms delay. Participants which avoided rolling motion
at 100 ms through a more cautious, slower style run into such
problems not later than at 300 ms.

0
��	�<1�0�	=�	��������	������	�����������	-

$�%0�����������������,�More important than mere objective
measurements is the impression the participants had – a car
simulator should mainly provide a realistic perception and a game
should bring some fun. The statements made by the participants can
be summarized as follows (for the overview perspective).

.-:��7	$��	�	�����	
The delay value which can be tolerated by the participants depends
on the used ’camera’ perspective. Using a cockpit view (’sitting in
the car’) instead of the overview perspective, at least 50 ms of
additional delay can be tolerated. The explanation is that the
overview perspective places stronger demands on the driver. For
instance, the steering direction left/right is flipped when the car goes
towards the pilot. Hence, the pilot needs more feedback (action &
reaction) from the car. Moreover, in opposite to the cockpit view, in
the overview perspective the car can be seen as a whole which also
leads to a more sensible perception of the driving behavior.

9���,*��,��>��#
As far as we know, not much research work has been performed in
the realm of real-time multiplayer games so far. In [3], the problems
arising from inconsistent state in participating systems of distributed
virtual environments is discussed and a ’timewarp’ approach is
proposed to handle these. However, no experimental study has been
done and no quantitative results are given. The same author presents
in [4] a study of consistency in continuous interactive media. Among
other parts, an approach called ’local lag’ is proposed where the
presentation of events is delayed. An experimental study of the
effect of these delays is not given since it is not the purpose of that
paper.

A similar but also restricted approach is used within MiMaze [1].
MiMaze is a distributed ’3D Pacman game’ where information about
the new state of the game is distributed via multicast to all
participants. Based on the received messages, each participant
calculates its own view of the global system state. The consistency
of the game is improved by delaying the presentation of events using
’buckets’. Basically, this can be seen as a static version of the above
mentioned local lag approach. Due to this static defering of the
processing in MiMaze, the whole game is always 100 ms in the past.
Players which encounter a higher delay, i.e. which cannot be
synchronized within this 100 ms range, cannot participate. As an
interesting analogy we can notice that this synchronization
mechanism resembles the playout buffer used by audio-
conferencing systems to reduce jitter effects.

The MiMaze developers performed several measurements of the
consistency of this distributed application – which can be seen as
related to the usability and performance of the game. The
measurements were restricted to participants in the national french
network. Especially the position consistency, the difference between
the target and the actual position of the game figures, is of major
interest. The measured average delay was µ=55.5 ms, the standard
deviation is relatively large with σ=50.4. For 65% of the frames
there is no deviation of the current position against the target value.
This value looks relatively good. However, it is mainly caused by the
principal approach of the game where there are long periods of time
without any movements (only 10% of the buckets are completely
filled with new information). In 85% of the cases, the error is less
than 20 units. In comparison to that, the radius of a game figure
amounts to 32 units. Yet, there are also considerable exceptions with
much more than (several times) the diameter of the game figure.

Unfortunately, more user oriented studies, e.g., how they
considered these delay-induced delays, whether that had an
influence on their playing, their performance, etc. have not been
made.

Recent studies on delay distributions to game servers have been
published [2]. However, since these games are not as time sensitive
as ours, the results are not directly comparable.

:����&�*'���&�
The measurements show that a delay up to 50 ms is uncritical for a
car-racing game. This has been shown by the objective
measurements as well as by the spontaneous statements of the
participants. A delay of more than 100 ms should be avoided, at least
for a racing game in the overview view (as studied here) and if the
system should provide for some realistic driving behavior. Since we
are considering the racing game as a worst-case system, for other
games, e.g., first person shooter, such a presentation delay of 100 ms
or even more may be acceptable.

These delay values may also be seen in the light of these
comparisons: For the lip synchronization requirements of audio and
video streams an area of [-80 ms, +80 ms] has been found as
tolerable in [7] and if the skew is above 160 ms, basically everybody

���!	�%1�����	��2	�����	����-

Delay Impression

 500 ms • not acceptable
• car cannot be controlled
• action and reaction do not fit together

 200 ms • delay is clearly observable
• but the car can be controlled
• it is possible to adapt the own style and get used to this

situation
• but the overall behavior is not realistic

100 ms • acceptable if no high demands with respect to realism
are needed

• delay can be noticed, but hardly optically be seen
50 ms • delay can hardly be noticed

• the driving behavior is basically unmodified

0 50 150 250100 200
0

0.2

0.4

0.6

1.4

1.2

1.0

0.8

1.6

Delay in ms

D
ep

ar
tu

re
 fr

om
 C

ou
rs

e
pe

r R
ou

nd

28

detects this error. Moreover for the transmission and processing of
signals coming from the different parts of the human eye there exists
a delay in the area of about 100 ms and the brain seems to be capable
to adapt to such delays (and perhaps another quantum of this size).

In general we believe that static delay schemes are not very well
suited for real-time multiplayer games. Schemes using an adaptive
mechanism for the presentation delay are a relatively straight-
forward extension of this approach. They can improve over static
schemes because the current situation and not a, perhaps even not
existing, worst-case delay is taken into account. A further
improvement is possible by a combination of such an adaptive
scheme with dead-reckoning and an extrapolation of the current state
to a future state.

As shown in [6], dead-reckoning has the drawback that the
prediction error increases significantly with increasing network
delays. In that study, also using a RC-car game, the average
predicition error was 17cm for a delay of 100ms and 60cm for a
delay of 200ms (which is a factor of 3.5!).

0
��	�?1�8������� 	�	-

Therefore, a hybrid concept using a combination of the two
approaches seems to be useful. This can use a shorter prediction
interval with a presentation delay of, e.g., 50 ms. Such an approach
should also be able to provide for a satisfying treatment of larger
delays, e.g., as they can occur in dial-up networks. As illustrated in
Figure 8, this hybrid scheme consists of a static presentation delay
component (with a length depending on the delay acceptable for the
specific game) and a variable length prediciton. The latter has to
absorb jitter effects.

A detailed study of the hybrid scheme in general and of the impact
of all further schemes (adaptive, dead-reckoning, hybrid) on player
performance remains for further study. Other future work items are
the treatment of congestion and of collisions within multiplayer
games.

�	�	�	��	�
[1] L. Gautier and C. Diot: “Design and Evaluation of MiMaze, a

Multiplayer Game on the Internet”, Proc. IEEE Multimedia
(ICMCS’98), Austin, TX, USA, 1998, pp. 233-236.

[2] Tristan Henderson: “Latency and User Behaviour on a Multi-
player Game Server”, Proc.Third International Workshop on
Networked Group Communication (NGC2001), November 7-
9, 2001, UCL, London, UK.

[3] Martin Mauve: “How to Keep a Dead Man from Shooting”,
Proc. of the 7th International Workshop on Interactive Distrib-
uted Multimedia Systems and Telecommunication Services
(IDMS) 2000, Enschede, The Netherlands, 2000, pp. 199-204.

[4] Martin Mauve: “Consistency in Replicated Continuous Inter-
active Media”, Proc. of the ACM Conference on Computer
Supported Cooperative Work (CSCW) 2000, Philadelphia,
PA, USA, 2000, pp. 181-190.

[5] Lothar Pantel: “Approaches for the Treatment of End-to-End
Delay within Multiplayer Games” (in German), Studienarbeit,
TU Darmstadt, 2000.

[6] Lothar Pantel, Lars Wolf: “On the Suitability of Dead Reckon-
ing Schemes for Games”, First Workshop on Network and
System Support for Games (NetGames2002), April 16-17,
2002, Braunschweig, Germany.

[7] R. Steinmetz und C. Engler: “Human Perception of Media
Synchronization”, Technical Report 43.9310, IBM European
Networking Center Heidelberg, Heidelberg, Germany, 1993.

[8] Jose Pablo Zagal, Miguel Nussbaum, Ricardo Rosas: “A Mod-
el to Support the Design of Multiplayer Games”, Presence,
Vol. 9, No. 5, October 2000, pp. 448-462.

Overall Transmission and Processing Time

Statical

Jitter, Congestion, ...

Variable

t

Presentation
Delay

length
prediction

29

