ORTS: A Hack-Free RTS
Game Environment

Michael Buro

NEC Research Institute, Princeton NJ 08540, USA

mic@research.nj.nec.com

Abstract. This paper presents a novel approach to Real-Time-Strategy
(RTS) gaming which allows human players as well as machines to com-
pete in a hack-free environment. The main idea is to replace popular but
inherently insecure client-side game simulations by a secure server-side
game simulation. Only visible parts of the game state are sent to the
respective clients. Client-side hacking is therefore impossible and players
are free to choose any client software they please. We discuss perfor-
mance issues arising from server-side simulation and present ORTS — an
open RTS game toolkit. This software package provides efficient C++
implementations for 2D object motion and collision detection, visibility
computation, and incremental server-client data synchronization, as well
as connectivity to the Generic Game Server (GGS). It is therefore well
suited as a platform for RTS related A.I. research.

Keywords: Real-time-strategy game, peer-to-peer, server, client, latency,
multi-player

1 Introduction

Real-time strategy (RTS) games have become very popular over the past cou-
ple of years. Unlike classic board games which are turn-based, RTS games are
fast paced and require managing units and resources in real-time. An important
element of RTS games is incomplete information: players do not know where
enemy units are located and what opponents plan, unless they send out scouts
to find out. Incomplete information increases the entertainment value and com-
plexity of games. The most popular RTS titles so far have been the million-sellers
WarCraft-II and StarCraft by Blizzard Entertainment and Age of Empires series
by Ensemble Studios. These games offer a wide range of unit and building types,
technology trees, multi-player modes, diverse maps and challenging single-player
missions. From the A.I. research perspective the situation looks ideal: playing
RTS games well requires mastering many challenging problems such as resource
allocation, spatial reasoning, and real-time adversarial planning. Having access
to a large population of human expert players helps to gauge the strength of
A I systems in this area — which currently leaves a lot to be desired — and in-
spires competition. The commercial success of RTS games, however, comes at a
price. In order to protect their intellectual property, games companies are disin-
clined to publish their communication protocols or to incorporate A.I. interfaces
into their products which would allow researchers to connect their programs to

2 Michael Buro

compete with peers and human experts. Another reason for keeping game soft-
ware closed is the fear of hackers caused by software design concessions. Due to
minimal hardware requirements the game companies want to meet, the aforemen-
tioned commercial RTS games rely on client-side simulations and peer-to-peer
networking for communicating player actions. This approach reduces data rate
requirements but is prone to client hacking — such as revealing the entire playing
field — and threatens the commercial success of on-line gaming as a whole. The
ORTS project [2] deals with those two problems: it utilizes an open communica-
tion protocol — allowing players and researchers to connect any software client
they wish — and implements a secure RTS game environment in which client
hacking is impossible. ORTS is an open software project which is licensed under
the GNU Public License to give users the opportunity to analyze the code and
to share improvements and extensions.

The remainder of this paper is organized as follows: Section 2 presents the
ideas behind server-side RTS simulations and takes a detailed look at information
hiding and data rate requirements. Section 3 deals with implementation issues
and discusses the ORTS kinematics model, visibility computation, and server-
client data update. A summary and outlook section wraps-up the article.

2 A Server-Client RTS Game Model

Popular RTS games utilize the client-side game simulation described in Fig. 1.
A detailed description of this approach — including various optimizations that
mask client latency — can be found in [1]. Clients run game simulations and only
transmit user actions to a central server or directly to their peers. At all times
game states are synchronized and known to all clients, regardless of what is
visible to the respective player. The client software hides information not meant
for the respective player. An alternative approach is presented in Fig. 2. Here,

2b)

1) 2a)

low datarate
medium datarate

Fig. 1. Common client-side game simulation: clients first establish contact to a central
server (1). When a game is created, all clients start simulating world changes simultane-
ously and send issued user commands either back to the server (2a), which broadcasts
them to all other clients, or directly to their peers (2b) using a ring or clique topology.
The data rate requirements are modest if the number of players and the number of
commands they issue are small.

ORTS: A Hack-Free RTS Game Environment 3

low datarate
high datarate

Fig. 2. ORTS server-side game simulation: clients and a master server (MS) are con-
nected to a central server — GGS in this case — and several worker servers (S) are
connected to the master server (1). When a game is created on MS, it schedules an
idle worker server on which the game is to be simulated. This server then connects to
the clients to send the individual game views and to receive unit commands (2).

a central server runs the simulation and transmits only the part of the game
state the respective client is entitled to know. In the following two subsections
we compare both models with regard to information hiding and data rate issues.

2.1 Information Hiding

Playing games with incomplete information at a competitive level on the internet
demands that information can be physically hidden from clients. To see this one
just needs to imagine a commercial poker server that sends out all hands to each
client. Hacking and losing business is inevitable. Translated into the RTS world,
information hiding rules out client-side simulations in theory. Regardless of how
clever data is hidden in the client, the user is in total control of the software
running at her side and has many tools available to reverse engineer the message
protocol and information hiding measures, finally allowing her to reveal “secret”
game state information during a game. [5] discusses means of thwarting such
hacking attempts. Despite all the efforts to secure clients, hacks — which spoil
the on-line game experience — are known for all popular RTS games based on
client-side simulation. Perhaps encryption and information hiding schemes that
change with every game and require analysis that takes longer than the game
itself lead to a practical solution to the information hiding problem. However,
uncertainty remains and we argue that game designers do not even have to fight
this battle anymore when up-to-date hardware is used.

2.2 Data Rate Analysis & Measurements

Synchronized client-side simulations require only player commands to be trans-
mitted to peers, which keeps the data rate low if only a few commands are
generated during each frame and the number of players is small. Independent
of the chosen communication topology and player views during the game, the

4 Michael Buro
client input data rate dm) — measured in bytes/frame — depends on the number
of participating players and the rate they issue commands:

dk(in): Z di(out)‘ (1)

i=1,i#k

In the server-side simulation model the input data rate grows linearly in the
number of objects the players see in the current frame:

a0 = D . #objects visible to player &, @)

where D is the average data rate generated by one visible object. To compare the
i/o requirements of both models we look at the extreme cases: 1) small vs. large
number of players and unit commands per frame and 2) overlapping vs. disjoint
player views. Client-side simulation has a lower input data rate requirement if a
small number of players only generate few commands during each frame. Server-
side simulation excels if the number of players and unit commands is high and
the player views are mostly disjoint.

Data rates in the server-side simulation model can be decreased by incremen-
tal updates, compression, and partial client-side simulation of visible objects.
The empirical results presented in Fig. 3 indicate that even without partial sim-
ulation it is possible to play RTS games at 5 frames/sec featuring hundreds of
visible objects over conventional DSL or cable modem lines.

For the tests the motion of up to 1500 circular objects were simulated. In
the initial configuration objects of diameter 16 were distributed evenly on an
empty 800x800 playing field. Then object ownership was assigned randomly to
two players. During the game both players picked new random headings for their
objects whenever they collided. All objects had constant speed of 4/frame and a

16 T T 4000 20 T T T 7500
15 framerate —— | framerate ——
14 todlient - 1 3500 18 toclient -~ 16750
13 from client -~ | 1 fromlient -} o0
12 O N e ST 3000
1 14 | BJ5()
oK g pum— i
9 ; N >
T s 2000 % T 3750 %
7 9 / g
6 1500 % 8 W <
Al 6 2250
4 1000 /
3| : 4t = 1500
i - 500 2l .
0 0 0 0
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
) slow CPUs DSL+cahle number of objects b) fast CPU DSL+local number of objects

Fig. 3. Data and frame rates dependent on the number of objects. Slow (500 MHz)
client CPUs, DSL and cable modem connection with 80 msec ping time (a). Fast (850+
MHz) client CPUs, DSL and local connection (b).

ORTS: A Hack-Free RTS Game Environment 5

1800 to dlient —— 000 0 framerae —— 15000
1600 from client -—— 4 8000 55 . to dlient - 1 13750
50 \ fromclient - -4 12500
1400 7000 1 11250
o 1200 6000 e 40 10000 e
§ 1000 a0 § D] S0 g
Z 2 T3 700 2
g o w0 g T 50 8
) B B
600 3000 © 20 5000 <
0 B 15 3750
e g 10 B S SO S e o] 2500
20 e ! 1000 5] 1250
0 0 0
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
a) number of objects b) number of objects

Fig. 4. Data and frame rates dependent on the number of objects: Bytes per frame
and bytes per second at a fixed simulation rate of 5 Hz (a). Total frame and data rates
measured on a dual Pentium-3/933 system for the entire simulation including object
motion, collision test, (de)compression, and data transmission (b).

sight range of 60 which ensured that a large fraction of enemy units was visible
at all times (Fig. 7). All experiments were conducted on a dual Pentium-3/933
system under Linux. Fig. 4a) shows the generated data rates dependent on the
number of objects when using message compression. In average approximately
1.2 bytes per visible object per frame is sent to each client and ca. 0.6 bytes
per own object per frame is returned to the server. The details of the utilized
compression scheme are described in the next section. Fixed at 5 frames/sec
the resulting data rates can be handled by current DSL and cable modem tech-
nology. Neglecting latency it is even possible to run a server for a two-player
game with up to 400 visible objects on systems with 6 KB/sec upload data rate.
The graphs in Fig. 4b) take server and client CPU load latencies into account.
They show the total performance and data rates when two clients and a server
are running on the same dual processor machine. The frame rate drops from
57 Hz when 200 objects are simulated to 5 Hz in case of 1500 objects. During
these experiments the CPU loads for the server and both clients stayed around
60%/40%/40%. To increase the frame rate, latency caused by simulation, mes-
sage (de)compression, and data transmission has to be minimized. The current
implementation is not well optimized. In particular, data (de)compression and
transmission use stream and string classes which slow down computation by al-
locating heap memory dynamically. Another approach for increasing the frame
rate at the cost of command latency is to delay actions by a constant number
of frames [1]. This allows the server to continue its simulation after sending out
the current game views without waiting for action responses. Whether built-in
command latency is tolerable is game dependent. Currently, this technique is
not employed in ORTS.

To check how server-side simulation performs in conjunction with smaller
channel capacities and higher latencies we ran two external clients on slower

6 Michael Buro

(500 MHz) machines which transmitted data over a 128/768-kBaud DSL and a
240/3200-kBaud cable modem line. The frame rates we measured are shown in
Fig. 3. Apparently, latency caused by transmission and slower client side compu-
tation rather than the available data rate is the bottleneck in this setting. Nev-
ertheless, we can conclude that playing RTS games in a hack-free environment
featuring hundreds of moving objects is possible using up-to-date communica-
tion and PC equipment. It is important to note that the reported frame and data
rates are lower bounds because in actual RTS games player views usually do not
coincide (Fig. 7). On the other hand, data rates will increase if features are added
and more object actions become available. However, the data rate increase is ex-
pected to be moderate because compression routines have access to all feature
vectors and the entire action vector and can therefore exploit repetitions.

3 Implementation Issues

3.1 ORTS Kinematics

ORTS objects are circles placed in a rectangular playing field. Each object has
a fixed maximal speed and can move in any direction or stop anytime. ORTS
kinematics is simple: there is no mass, no acceleration, and no impulse conserva-
tion. When two objects collide they just stop. This basic model simplifies motion
and collision computation but already covers the important motion aspects of
RTS games. Object motion is clocked. In each time interval objects move from
their current location to the destination location which depends on the object’s
heading and speed. The algorithm presented in Fig. 6 detects all collisions that
occur in one time interval and moves the objects accordingly. The algorithm first
computes the motion bounding spheres Fig. 5 for all objects. Then it constructs
the sphere intersection graph G in which nodes represent bounding spheres and

Fig. 5. Motion bounding sphere. A circular object moves from position p(0) to p(1).
The motion bounding sphere S covers all points occupied by the object in time interval
[0,1]. Spheres are good approximations if the motion vector is short compared to the
object radius — which is usually the case in RTS games.

ORTS: A Hack-Free RTS Game Environment 7

compute motion bounding spheres
compute sphere intersection graph G
forall connected components c in G {
empty H // pair-heap of edges and collision times
empty S // stopped nodes collected here
forall active edges (u,v) in c { // at least one moving node
if (u and v intersect) { stop u and v at time O and add them to S }
add ((u,v), NextCollisionTime(u,v,0)) to H
}
T :=0 // current collision time
forever {
while (S not empty) {
empty N // newly stopped nodes collected here
forall u in S {
forall neighbors v of u in G {
if (v is moving) {
d := NextCollisionTime(u, v, T)

if (d = 0) {
stop v at time T // instant collision
add v to N

remove ((u,v),?) from H
} else if (T+d >= 0 && T+d <= 1)

add ((u,v),T+d) to H // update collision time
else
add ((u,v),2) into H // no collision anymore
} else
remove ((u,v),?) from H // remove inactive edge
}
}
S :=N;
}
finished := false;
forever { // find next collision time

if (H empty) { finished := true; break; } // all done?
retrieve ((u,v),t) with minimum t from H

T := t; // next collision time
if (T > 1) { finished = true; break; } // no more collisions?
if (u or v is moving) break; // edge active? -> handle collision
remove ((u,v),?) from H // remove inactive edge
}
if (finished) break; // component done

if (u is moving) { stop u at time T; add u to S }
if (v is moving) { stop v at time T; add v to S }

Fig. 6. Pseudo-code for object motion and collision test. NextCollisionTime(u,v,t) re-
turns the elapsed time until the next collision of objects u and v occurs after time t. If
the objects do not collide during the current time interval the function returns a value
greater than 1.

8 Michael Buro

edges indicate intersections. In order to minimize the sphere distance computa-
tion — which consumes quadratic time if implemented naively — spheres are first
assigned to grid sectors and then all distances between spheres in each sector
are determined to form G. Motion and collisions can now be handled local to
the connected components of G because objects do not collide if their motion
bounding spheres are disjoint. The algorithm then generates the sequence of
collision times for each component of G separately and moves the objects to
their respective final positions. The central data structure is an augmented heap
which gives access to the edge with the earliest collision time and allows adding,
updating, and removing of edge-time pairs in logarithmic time. An additional
mapping from edges to time allows to perform delete operations of pairs with
unspecified collision time which is used in several placed throughout the sub-
routine. The algorithm starts by computing local collision times ignoring global
effects at first. Then, starting with the earliest collision, it moves colliding ob-
jects to the collision location, stops the objects there, and updates the collision
times between newly stopped objects and objects in their neighborhood. When
all collisions are handled the remaining non-colliding objects are moved to their
final location. Compared with the visibility computation we describe in the next
subsection the running time for object motion and collision test is negligible.

3.2 Visibility Computation

In ORTS objects have circular vision. Enemy objects are reported to a player
if it is in sight of at least one friendly object (“Fog of War”, Fig. 7). Similar to
object motion, a naive implementation leads to quadratic run time. Moreover, the
sector approach we adopted for object motion is slow in case of large sight ranges
because many objects fall into single sectors. The ICollide software package [3]
implements a fast on-line collision test which can also be applied for visibility
computation. It is based on the fact that axis-aligned rectangles intersect if and
only if their projections onto the x and y axes overlap, and exploits that the order
of projection intervals only slightly change over time. Although this algorithm
is fast in sparse settings — where it takes only linear time in average — its worst
case run time is quadratic independent of the actual number of intersections. To
increase the worst-case performance when objects are crowded we make use of a
well known line-sweep technique for computing rectangle intersections. Objects
and vision areas are approximated by bounding squares. Square intersections
are detected in a left-to-right sweep by maintaining two priority search trees [4]
which contain the current set of vertical intervals of sight and object squares.
Whenever a new square appears in the sweep its vertical projection is checked
for intersections with the other type of squares and then added to the respective
set of intervals. At exit of a square its vertical projection is removed from the
respective priority search tree. Adding and removing intervals from a priority
search tree takes O(logn) time, while reporting all K; intersections at time step

ORTS: A Hack-Free RTS Game Environment 9

Fig. 7. Two views of a two player ORTS game. Straight lines represent attacks. Object
sight ranges are indicated by filled ovals.

10 Michael Buro

i is possible in time O(logn + K;). Including the initial sort of the x-coordinates
the total worst-case run time amounts to O(n - logn + K), where n is the total
number of objects and K the number of square intersections.

3.3 Server-Client Data Update

A server-side simulation cycle consists of sending the respective game state views
to all clients, waiting for their object action responses, executing all actions,
moving objects, and resolving collisions. To ensure high frame rates, latency and
required data rates have to be minimized. For slow data connections compression
is essential because clients need to be informed about a potentially large number
of visible objects. In ORTS each object has an associated numerical feature
vector with the following components:

(Object ID, Owner, Radius, Sight Range, Min. Attack Range, Max. Attack
Range, Speed, Attack Value, Replicating, Hit Points, Moving, Position)

Most of these values stay constant during simulation or vary only slightly. Before
compression algorithms such as LZ77 [6] are applied it is therefore beneficial to
reduce entropy by computing differential vector updates first. Compression and
decompression increase CPU loads and latencies in the server and the clients.
Decreasing the compression rate in favor of lower compression times may there-
fore result in a better overall performance. The better performance when using
a fast CPU at the client side (Fig. 3b) indicates that compression induced la-
tencies currently form the bottleneck in the ORTS implementation. We will deal
with (de)compression speed optimizations and implement the command delay
approach to increase the simulation rate in future ORTS releases.

4 Summary & Outlook

ORTS is a hack-free RTS game toolkit. Its open message protocol and avail-
able client software enable A.L. researchers to gauge the performance of their
algorithms by playing RTS games in a secure environment based on server-side
simulation. Even though popular RTS titles do not provide dedicated A.IL. in-
terfaces, programs can — in principle — be constructed to play those games by
accessing the frame buffer and audio streams and generating mouse and key-
board events. However, only having indirect access to the game state and being
restricted to a sector view imposed by popular GUIs slows down computation
and communication by forcing the A.I. to switch focus often. It also limits the
command rate considerably because only objects within the current sector can
receive instructions. The server-side simulation discussed here removes these ar-
tificial limitations at the cost of higher data rates and latencies which, however,
can be handled by modern hardware quite easily. Human players also benefit
from the open game concept as they are no longer confined to static user in-
terfaces and predefined low-level object behavior. Instead, players can utilize
self-made or third-party client software for low- or mid-level object control —

ORTS: A Hack-Free RTS Game Environment 11

e Ho A 1wen

Fig. 8. StarCraft User Interface. The main screen area shows a detailed view of a
playing field sector. Its location is indicated on the “mini-map” in the lower left part.

such as path-finding and multi-unit attack/defense. Improved A.I. frees players
from cumbersome hand-to-hand combat and lets them concentrate on strategic
decisions. Moreover, GUIs can be chosen freely because server-side simulations
are not prone to client-side hacking. For instance, players may want to replace
the usual detailed view of a single playing field sector (Fig. 8) by several low
resolution views which together cover much more space and allow to control
multiple sectors more efficiently.

ORTS provides basic RTS game functionality and can be extended easily.
Currently, objects are restricted to moving circles placed on a rectangular playing
field, there are no landmarks or resources, motion is acceleration free, objects
can replicate, have limited vision and just stop when they collide, and object
interaction is restricted to attacking objects in a given attack range. This simple
RTS game is already challenging and playing it well requires understanding
of multi-object attack/defense formations, scouting, and motion planning. We
are currently working on a machine learning approach for basic unit behavior
and think about similar ideas to train the other components of a hierarchical
command and control structure.

Acknowledgment

The ORTS project has benefited from many fruitful discussions with Susumu
Katayama and Igor Durdanovic.

12

Michael Buro

References
1. P. Bettner and M. Terrano. 1500 archers on a 28.8: Net-
work programming in Age of Empires and beyond. Gamasutra

http://www.gamasutra.com/features/20010322/terrano_01.htm, March 2001.

. M. Buro. ORTS project. http://external.nj.nec.com/homepages/mic/, March

2002.

J. Cohen, M. Lin, D. Manocha, and K. Ponamgi. I-Collide: An interactive and
exact collision detection system for large-scaled environments. Proceedings of ACM
Int. 3D Graphics Conference, pages 189-196, 1995.

E.M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257-276,
May 1985.

. M. Pritchard. How to hurt the hackers: The scoop on in-

ternet cheating and how you can combat @ it. Gamasutra
http://www.gamasutra. com/features/20000724/pritchard_01.htm, July 2000.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression
(implemented for instance in zlib http://www.gzip.org/zlib). IEEE Transactions
on Information Theory, 23:337-342, 1977.

